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Abstract

In recent years, manufacturing processes have become more and more complex, and meeting high-yield target expectations and quickly

identifying root-cause machinesets, the most likely sources of defective products, also become essential issues. In this paper, we first define

the root-cause machineset identification problem of analyzing correlations between combinations of machines and the defective products.

We then propose the Root-cause Machine Identifier (RMI) method using the technique of association rule mining to solve the problem

efficiently and effectively. The experimental results of real datasets show that the actual root-cause machinesets are almost ranked in the top

10 by the proposed RMI method.
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1. Introduction

In recent years, manufacturing processes have become

more and more complex, and meeting high-yield target

expectations and quickly identifying root-cause machine-

sets, the major killer machine(s) that causes a low-yield

situation in a regular manufacturing procedure, also become

essential issues. Although process control and statistical

analysis techniques can be applied to establish a solid base

for well-tuned manufacturing processes, identification of

root-cause machineset is still hard and costly due to the

existence of multiple coefficients among variants, nonlinear

interactions, and the intermittent nature of the problem. For

example, CIM/MES/EDA systems in most semiconductor

manufacturing companies help users analyze collected

manufacturing data in order to discover the root-cause

machineset when a low-yield situation occurs; however, too

many indexes and diagrams generated by the statistical

methods in CIM/MES/EDA systems, such as K-W test,

covariance analysis, regression analysis, etc., are usually not
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easy for engineers to assimilate and judge. On the other

hand, lots of time is required to solve the false-alarm issue.

In this paper, we attempt to apply the technique of

association rule mining to provide an efficient and effective

solution. The root-cause machineset identification problem

of analyzing correlations between combinations of

machines and the defective products is first defined. Then

the Root-cause Machine Identifier (RMI) method consisting

of three phases, data preprocessing, candidate generation

and interestingness measurement, is proposed to solve the

problem. In the data preprocessing phase, two data

preprocessing procedures, stage-oriented and machine-

oriented, are proposed and can be selected at different

considerations of manufacturing defect hypotheses to

transform the raw data into the materials for mining. In

the candidate generation phase, a level-wise processing

procedure based on the Apriori property (Agrawl & Srikant,

1994) is used to remove the machinesets whose defect

converges are less than the user-specified minimum defect

coverage (i.e. they have not enough evidences to be the root

cause) and generate the candidate machinesets for the

transformed materials. The defect coverage of a machineset

is defined as the percentage of all defective products passing

through the target machineset. In the interestingness

measurement phase, a user-specified interestingness

measurement is used to evaluate the possibility of being the

root cause for each candidate machineset. In additional to

two typical interestingness measurements (confidence and
Expert Systems with Applications 29 (2005) 807–815
www.elsevier.com/locate/eswa

http://www.elsevier.com/locate/eswa


W.-C. Chen et al. / Expert Systems with Applications 29 (2005) 807–815808
f), an novel interestingness measurement considering the

characteristic of continuity of defect products, called

continuity-based interestingness measurement, is proposed

and can be selected. Consequently, the candidate machine-

sets with their interestingness values are ranked in

descending order and then provided to experts for further

determination.
2. Related work

2.1. Data mining and mining association rules

Data mining, also referred to as ‘knowledge discovery’,

means the process of extracting nontrivial, implicit,

previously unknown and potentially useful information

from databases (Chen, Han, & Yu, 1996; Han & Kamber,

2001). Depending on the types of knowledge derived,

mining approaches may be classified as finding association

rules (Agrawal, Imielinski, & Swami, 1993; Agrawl &

Srikant, 1994; Brin, Motwani, & Silverstein, 1997; Brin,

Motwani, Ullman, & Tsur, 1997; Cheung, Han, Ng, &

Wong, 1996; Park, Chen, & Yu, 1995a; Park, Chen, & Yu,

1995b; Park, Chen, & Yu, 1995c; Wur & Leu, 1999),

classification rules (Cheeseman & Stutz, 1996; Quinlan,

1986, 1993; Weiss & Kulikowski, 1991), clustering rules

(Ester, Kriegel, & Xu, Kaufuman & Rousseeuw, 1990; Ng

& Han, 1994; Zhang, Ramakrishnan, & Livny, 1996) and

others (Catledge & Pitkow, 1995; Faloutsos, Ranganathan,

& Manolopoulos, 1994; Han & Kamber, 2001). The most

commonly seen is finding association rules in transaction

databases.

Conceptually, an association rule indicates that the

occurrence of certain items in a transaction would imply

the occurrence of other items in the same transaction

(Agrawal et al., 1993). The processing procedure for mining

association rules can typically be decomposed into two tasks

(Agrawl & Srikant, 1994): (a) discover the itemsets

satisfying the user-specified minimum support from a

given dataset, i.e. finding frequent itemsets, and (b) generate

strong rules satisfying the user-specified minimum confi-

dence from all frequent itemsets found by (a), i.e.

generating association rules. Task (a) is used to obtain

statistically significant patterns, and Task (b) is used to

obtain interesting rules.

Since Task (a) is very time consuming compared to Task

(b), the major challenge in mining association rules focuses

on reducing the search space and decreasing the compu-

tation time in Task (a). Some famous mining algorithms

were proposed to achieve this purpose. Apriori algorithm

(Agrawl & Srikant, 1994), the best known, utilizes a level-

wise candidate generation approach to reduce the search

space such that only the frequent itemsets found in

the previous level are used as seeds in generating the

candidate itemsets in the current level. The key idea of the

Apriori algorithm is that if an itemset does not satisfy
the user-specified minimum support, then its proper super-

sets also will not and can be pruned. This Apriori property

will greatly reduce the number of itemsets considered.
2.2. Interestingness measurement for association rules

Although a level-wise candidate generation algorithm

can efficiently discover significant patterns, many of them

may be not interesting to users. Thus, designing a useful

interestingness measurement is becoming an important

issue (Brin, Motwani et al., 1997; Chen et al., 1996; Han

& Kamber, 2001; Tan & Kumar, 2000). Confidence, the

most typical interestingness measurement for association

rule mining, measures the conditional probability of events

associated with a particular rule. For example, an

association rule A/B with confidence c% means that c%

of all transactions containing A also contain B. However, the

confidence measurement may be misleading or insufficient

for many real-world applications. For example, given a

minimum confidence of 60%, the association rule milk/
cigarette with confidence 66% is then discovered in a

supermarket. However, it is misleading since the probability

of purchasing cigarette is 70%, which is even larger than

66%. In fact, milk and cigarette associate negatively since

purchasing milk actually decreases the desirability of

purchasing cigarettes. Thus, many researches (Brin,

Motwani et al., 1997; Brin, Motwani, Ullman et al., 1997;

Freitas, 1999; Hilderman & Hamilton, 1999; Piatestsky-

Shaprio, 1991; Silberschatz & Tuzhilin, 1996; Tan &

Kumar, 2000) have proposed other effective interestingness

measurements.

Piatestsky-Shaprio (1991) proposed a domain-indepen-

dent interestingness measurement to evaluate the interest-

ingness of discovered rule A/B:

f Z
jA&BjK jAjjBj=Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jAjjBjð1 K jAj=NÞð1 K jBj=NÞ
p ;

where N denotes the total number of tuples in the database,

jAj denotes the number of tuples that contain the antecedent

A, jBj denotes the number of tuples that contain the

consequent B and jA&Bj denotes the number of tuples that

contain both A and B. The range of this interestingness

measurement is between K0.25 and 0.25.
3. Root-cause machineset identification problem

Fig. 1 shows a general manufacturing process requiring a

multistage production procedure. Each stage may have more

than one machine performing the same task. Thus, products

may pass through different machines in a specific stage.

Assume a shipment consists of k identical products {p1,

p2,.,pk}.Eachproductmustpass through l stages hs1,s2,.,sli

in sequence to be finished, and there are n manufacturing

machines {M1, M2,.,Mn} in this shipment. Note that a



Fig. 1. A general manufacturing process.
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machine with multiple functions may appear in more than

one stage in the process. The manufacturing process

relation, rZ{t1, t2,.,tk}, based on the relation schema

R(PID, S1, S2,.,Sl, D), can be used to record the

processing information from each stage and the test result

for each product, pi, 1%i%k. Among the attributes in R,

PID is an identification attribute used to uniquely label the

products, Si is a context attribute associated with a pair

hmanufacturing machine, timestampi used to indicate that

the manufacturing machine is used in the ith stage at the

timestamp for each product, and D is a class attribute used

to state whether a product is defective or not.

Example 1. Table 1 shows a manufacturing process

relation used to record five-stage (lZ5) and seven-

machine (nZ7) processing information for a shipment

consisting of five products (kZ5). The first tuple shows

that product p1 passed through stage 1 on hM1, 1i, stage 2

on hM5, 3i, stage 3 on hM3, 10i, stage 4 on hM4, 12i, and

stage 5 on hM5, 14i, and its test result shows a defect (DZ
1). The other tuples have similar meanings.

Our goal is to identify the root-cause machineset for a

given manufacturing process relation. In recent years,

many approaches have been proposed to solve similar

problems. Examples are such as Raghavan (2002) applied

decision tree to discover the root cause of yield loss in

integrated circuits, Gardner and Bieker (2000) combined

self-organizing neural networks and rule induction to
Table 1

A manufacturing process relation for five products in a five-stage manufacturing

PID S1 S2 S3

1 M1, 1 M5, 3 M3, 10

2 M2, 5 M1, 8 M1, 12

3 M3, 2 M3, 7 M5, 13

4 M3, 4 M1, 6 M4, 14

5 M4, 7 M2, 11 M4, 15
identify the critical poor yield factors from normally

collected wafer manufacturing data, Mieno et al. (1999)

applied a regression tree analysis to failure analysis in

LSI manufacturing.
4. Root-cause machine identifier method

We attempt to apply the technique of association rule

mining to solve the root-cause machineset identification

problem. According to the general operation of mining

association rules, three major scenarios need to be

discussed:

(1) Data preprocessing scenario: Since the technique of

association rule mining is usually performed on transac-

tional data (its target of mining is not predetermined), it is

important to transform the data in the manufacturing

process relation into the materials and retain the

appropriate relationships between machines and products

that facilitate mining.

(2) Mining procedure scenario: A product may pass

through hundreds of stages (machines) to be finished.

The evaluation of all combinations of machines is

relatively enormous and impractical. Therefore, the

pruning strategy is required to remove the candidates

with inadequate evidences to be the root cause such

that the search space and the computation time can be

reduced.
procedure

S4 S5 D

M4, 12 M5, 14 1

M2, 15 M1, 17 0

M4, 17 M3, 20 0

M4, 18 M5, 19 1

M2, 20 M5, 23 1
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Fig. 2. The flowchart of the RMI method.

Table 3

An example of the stage-oriented preprocessing procedure

TID Items

1 m11, m52, m33, m44, m55

4 m31, m12, m43, m44, m55

5 m41, m22, m43, m24, m55

Table 2

An example of the machine-oriented preprocessing procedure

TID Items

1 M1, M3, M4, M5

4 M1, M3, M4, M5

5 M2, M4, M5
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(3) Visualization scenario: Among the generated candi-

dates, a suitable interestingness measurement is then

needed to identify the root-cause machineset.

To overcome the above three scenarios, the RMI method

shown in Fig. 2 consisting of three phases, data

preprocessing phase, candidate generation phase and

interestingness ranking phase, is proposed. The data

preprocessing phase focuses on transforming the raw data

in a given manufacturing process relation into transactional

data. The candidate generation phase focuses on generating

candidate machinesets from the transactional data, and the

interestingness measurement phase focuses on identifying

the root-cause machineset from the obtained candidate

machinesets.

By the user-selected preprocessing procedure in the data

preprocessing phase, the RMI method first gets materials

transformed from the data in the manufacturing process

relation. Then given a user-specified minimum defect

coverage, a threshold used to remove the machinesets

without enough evidences to be the root cause, the RMI

method generates all candidate machinesets by the

candidate generation phase. Finally, by the interestingness

ranking phase, the RMI method ranks the candidate

machinesets based upon a user-specified interestingness
measurement and provides the result to experts for further

determination.
4.1. Data preprocessing phase

The data preprocessing phase first selects the defective

tuples from a given manufacturing process relation. Two

data preprocessing procedures, machine-oriented and stage-

oriented preprocessing procedures, have been proposed to

handle different manufacturing defect hypotheses. The

machine-oriented preprocessing procedure concentrates on

the machines a product passes through, regardless of the

manufacturing stage. Thus, although a machine may be

used in more than one stage in a tuple because of its

multi-functionality, this preprocessing procedure treats

it as only a single appearance.

Example 2. For the manufacturing process relation shown

in Table 1, the machine-oriented preprocessing procedure

transforms the defect tuples 1, 4 and 5 as shown in Table 2.

The tuple TID1Z{M1, M2, M4, M5} means that the product

p1 passed through four machines, M1, M3, M4 and M5. The

other tuples have similar meanings.

The machine-oriented preprocessing procedure trans-

forms the processing information in the manufacturing

process relation into intuitive transactional data and

assumes a machine’s functions are correlated. That is, if

one function is faulty, the other may also be. By contrast, the

stage-oriented preprocessing procedure assumes that a

machine’s functions are not correlated. If one function is

faulty, the other ones may still operate normally. Therefore,

this preprocessing procedure treats machines in different

stages as distinct individuals.

Example 3. For the manufacturing process relation shown

in Table 1, the stage-oriented preprocessing procedure

transforms the defect tuples 1, 4 and 5 as shown in Table 3.

The machine m11 indicating M1 is used at stage 1 is different

from the machine m12 indicating M1 is used at stage 2. The

tuple TID1Z{m11, m52, m33, m44, m55} means that the



Table 5

Defect coverage and defective product information for each candidate 1-

machineset obtained
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product p1 passed through stage 1 on M1, stage 2 on M5,

stage 3 on M3, stage 4 on M4 and stage 5 on M5. The other

tuples have similar meanings.

Machineset Involved defective

products

Defect coverage (%)

m43 P4, p5 66

m44 P1, p4 66

m55 P1, p4, p5 100

Table 6

Defect coverage and defective product information for each 2-machinesets

generated

Machineset Involved defective

products

Defect coverage (%)

m43, m44 p4 33

m43, m55 p4, p5 66

m44, m55 p1, p4 66

Table 7

Defect coverage and defective product information for each candidate

2-machineset obtained
4.2. Candidate generation phase

A level-wise processing procedure like finding frequent

itemsets in association rules mining is used to generate

possible sets of machines called candidate machinesets. The

defect coverage of a machineset is defined as the percentage

of all defective products passing through the target

machineset. Therefore given the user-specified minimum

defect coverage, in the first iteration, the proposed candidate

generation phase calculates the defect coverage for each

individual machine, and then retains the 1-machinesets that

satisfy the minimum defect coverage as candidates. In the

second iteration, the proposed phase generates machinesets

consisting of two machines by joining the candidate

1-machinesets from the first iteration, and retains the

2-machinesets that satisfy the minimum defect coverage

as candidates. In each subsequent iteration, candidate

machinesets found in the preceding iteration are used as

seeds in the current iteration, and the process continues until

no new candidate machinesets can be generated.

Since this level-wise processing procedure is based on the

Apriori property, each proper subset of a candidate machineset

must be a candidate. In other words, if a machineset does not

satisfy the user-specified minimum defect coverage, then none

of its proper supersets will be. This can greatly reduce the

number of candidate machinesets to be considered. Moreover,

to improve the computation performance, the candidate

generation phase retains defective product information for

each candidate machineset in the current level so that each

machineset’s defect coverage information in the next level can

be efficiently calculated by utilizing the retained information

rather than re-processing the original database.

Example 4. Table 4 shows the defect coverage for each

1-machineset in Table 3. The first tuple shows that only the
Table 4

Defect coverage and defective product information for each 1-machineset

in Table 3

Machineset Involved defective

products

Defect coverage (%)

m11 p1 33

m31 p4 33

m41 p5 33

m52 p1 33

m12 p4 33

m22 p5 33

m33 p1 33

m43 p4, p5 66

m44 p1, p4 66

m24 p5 33

m55 p1, p4, p5 100
defective product p1 passed through the machineset m11. Thus,

the defect coverage of m11 is 1/3Z33%.

Example 5. Continuing from Example 4 and assuming the

user-specified minimum defect coverage is 50%, Table 5

shows candidate 1-machinesets of Table 4.

Next, 2-machinesets {m43, m44}, {m43, m55} and {m44,

m55} are then generated by joining the candidate

1-machinesets in Table 5. The defect coverage for {m43,

m44} is 33% and its defective product information is {p4} by

performing the intersection of the set of defective products

of m43 and m44. Complete results are shown in Table 6.

As we can see, the machineset {m43, m44} is removed

since its defect coverage is less than 50%, the specified

minimum defect coverage. The resulting candidate

2-machinesets are shown in Table 7.

Next, the only 3-machineset {m43, m44, m55} generated

by joining the candidate 2-machinesets in Table 7.
Table 8

Defect coverage and defective product information for each candidate

machinesets obtained

Machineset Involved defective

products

Defect coverage (%)

m43 p4, p5 66

m44 p1, p4 66

m55 p1, p4, p5 100

m43, m55 p4, p5 66

m44, m55 p1, p4 66

Machineset Involved defective

products

Defect coverage (%)

m43, m55 p4, p5 66

m44, m55 p1, p4 66



Table 9

Calculated continuities for each candidate machineset in Table 8

Machineset Product

sequence

Defective

product

Continuity
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However, since {m43, m44} is not included in the set of

candidate 2-machinesets, it is removed according to above-

mentioned Apriori property. All candidate machinesets

generated are shown in Table 8.

sequence

m43 (p4, p5) (p4, p5) 1

m44 (p1, p3, p4) (p1, p4) 0.5

m55 (p1, p4, p5) (p1, p4, p5) 1

m43, m55 (p4, p5) (p4, p5) 1

m44, m55 (p1, p4) (p1, p4) 1

Table 10

f 0 for each candidate machinesets in Table 8

Machineset f Continuity f 0

m43 0.67 1 0.67

m44 0.167 0.5 0.0835

m55 1 1 1

m43, m55 0.67 1 0.67

m44, m55 0.67 1 0.67
4.3. Interestingness ranking phase

Although a candidate machineset having high defect

coverage is statistically significant, it may not have a high

possibility of being the root cause. For example, the defect

coverage of m43 is the same as that of m44 in Table 8, but

intuitively, m43 is more probable than m44 since all products

passing through it are defective. In this section, an

interestingness ranking phase using an interestingness

measurement to evaluate correlations between candidate

machinesets and defective products is proposed for finding

the root-cause machineset. Below, in additional to two

typical interestingness measurements confidence and f, an

novel interestingness measurement called continuity-based

interestingness measurement is proposed to extend f.

Confidence, the most well-known interestingness

measurement for association rule mining, calculates the

conditional probability that a candidate machineset causes

defective products (machineset/defect). That is, it calcu-

lates the percentage of all products passing through a

candidate machineset that are defective. f, a domain-

independent interestingness measurement proposed by

Piatestsky-Shaprio (1991) evaluates the discovered rule

A/B as follows:

f Z
jA&BjK jAjjBj=Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jAjjBjð1 K jAj=NÞð1 K jBj=NÞ
p :

This equation indicates the degree to which ‘when

antecedent A appears, consequent B also appears’. If A is

regarded as a certain candidate machineset and B is regarded

as a defective product, then the equation calculates the

degree of correlation between the candidate machineset and

the defect.

However, the manufacturing process characteristics,

such as the observation that the root-cause machineset

often produces defective products continuously, are not

considered in the two above-mentioned interestingness

measurements. Thus, we propose continuity function to

measure the continuity between the defective products for a

candidate machineset. High continuity may indicate a

higher probability of being the root cause. We can easily

extend the interestingness measurement f to f 0, called

continuity-based interestingness measurement, as follows:

f0 Z f � continuity:

The continuity function calculates the reciprocal of the

average distance between pairs of neighboring defective
products in the product sequence as follows:
Continuity Z 0 if jXj%1

Continuity Z
1

XiZjXjK1

iZ1

dðaðxiÞ;aðxiC1ÞÞ=jXjK1

if jXjO1 ;

8>>>><
>>>>:
where XZ(x1, x2,.) denotes a defective product sequence

contained in the product sequence PZ(p1, p2,.) which is a

sequence of products passing through a candidate machi-

neset (i.e. X is a subsequence of P), jXj denotes the number

of defective products, a(xi) denotes the order of the

defective product xi in P (e.g. if a(xi)Zj, xi is the jth

product in P), and d(a(xi),a(xiC1)) is the distance of a(xi)

and a(xiC1), which can easily be calculated by a(xiC1)K
a(xi).

Example 6. Table 9 shows the product sequence, defective

product sequence, and calculated continuity value for each

candidate machineset in Table 8. Among them, the

continuity value of m44 is 1=ðdðaðp1Þ;aðp4ÞÞ=ð2K1ÞZ0:5

according to its product sequence (p1, p3, p4) and defective

product sequence (p1, p4).

According to the user-specified interestingness measure-

ment, the set of candidate machinesets with their interest-

ingness values are ranked in descending order.

Example 7. Continuing from Example 6, Table 10 shows

the f 0 for each candidate machineset. Since m55 has highest

interestingness value, the machine M5 is the most likely the

root-cause machineset.



Table 11

Relevant information for the nine real datasets

Dataset Data size (Products*stages) Number of machines in machine-oriented

preprocessing procedure

Number of machines in stage-oriented

preprocessing procedure

Case 1 153*658 368 2727

Case 2 145*867 497 4509

Case 3 141*837 499 4434

Case 4 116*624 416 2500

Case 5 305*733 424 3094

Case 6 53*587 411 2414

Case 7 484*709 455 3381

Case 8 106*632 419 2618

Case 9 77*1109 450 3367

Table 12

Accuracy results of the RMI method for the nine datasets

Dataset Machine-oriented preprocessing procedure Stage-oriented preprocessing procedure

Minimum defect

coverageZ0.3

Minimum defect

coverageZ0.4

Minimum defect

coverageZ0.5

Minimum defect

coverageZ0.3

Minimum defect

coverageZ0.4

Minimum defect

coverageZ0.5

Rank Rank Rank Rank Rank Rank

Case 1 4 4 4 22 12 6

Case 2 1 1 1 1 1 1

Case 3 1 1 1 1 1 1

Case 4 1 1 1 1 1 1

Case 5 1 1 1 1 1 1

Case 6 106 93 78 145 90 58

Case 7 6 5 5 2 1 1

Case 8 51 47 40 43 23 X

Case 9 74 50 44 10 X X
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5. Experimental results

The RMI method was implemented in Java on a Pentium-

IV 2.4 G processor desktop with 512 MB RAM, and nine

real datasets with the known root-cause machineset

provided by the Taiwan Semiconductor Manufacturing

Corporation (TSMC) were used to evaluate its accuracy. As

shown in Table 11, 368 and 2727 machines needed to be

considered in machine-oriented and stage-oriented prepro-

cessing procedures, respectively, for Case 1 having 153

products and each passing through 658 stages.

With the minimum defect coverages ranging from 0.3 to 0.

5 and the interestingness measurement f0, the ranks of the

actual root-cause machinesets among the generated candidate

machinesets are shown in Table 12. For example, the rank of

the actual root-cause machineset for Case 1 was the 4th using

machine-oriented preprocessing procedure with the minimum

defect coverageZ0.3. Note that ‘X’ means the actual root-

cause machineset cannot be found by the proposed method.

As stated previously, the machine-oriented preprocessing

procedure assumes all functions of a machine are co-affected

whereas the stage-oriented preprocessing procedure assumes

each function of a machine is independent. Table 12 shows

that the RMI method seems to have higher accuracy with the

stage-oriented preprocessing procedure than with the

machine-oriented preprocessing procedure in this
semiconductor manufacturing experiment, if appropriate

minimum defect coverages were set. By consulting with the

product engineers for all above cases, the explanations of the

experimental results are concluded as follows:

(a) For Cases 2, 3, 4 and 5, the actual root-cause machinesets

were all ranked in the first place both with the machine-

oriented and the stage-oriented preprocessing pro-

cedures. The major reasons are: (a) for Cases 2 or 3, the

actual root-cause machineset was a single-function

machine. Therefore, it had the same interestingness

value both with the stage-oriented and machine-oriented

preprocessing procedures; (b) for Cases 4 or 5, most

functions of the actual root-cause machineset had high

interestingness values and were ranked in the top 10 with

the stage-oriented preprocessing procedure. Therefore,

on the whole, the actual root-cause machineset with the

machine-oriented preprocessing procedure still had a

not-bad rank.

(b) For Cases 6, 7, 8, or 9, many normal products passed

through the actual root-cause machineset without

passing through the faulty function. Therefore the

actual root-cause machineset had higher rank with the

stage-oriented preprocessing procedure than with the

machine-oriented preprocessing procedure, if an

appropriate minimum defect coverage was set.
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(c) For Case 1, the actual root-cause machineset had the

same interestingness value in the machine-oriented

and stage-oriented preprocessing procedures because

it is a single-function machine (as in Cases 2 and 3).

However, since most of the other candidate machi-

nesets had lower interestingness values with the

machine-oriented preprocessing procedure, the actual

root-cause machineset with this preprocessing pro-

cedure had higher rank than with the stage-oriented

preprocessing procedure. This was a special case in

our experiments.

The actual root-cause machineset in most cases was

ranked in the top 10 with an appropriate minimum defect

coverage, except in Case 6, which had only 53 products so the

actual root-cause machineset was not more significant than

the others. Intuitively, setting a higher minimum defect

coverage will prune more machinesets from consideration

during the candidate generation phase, and thus decrease the

execution time. As shown in Table 12 and Fig. 3, the higher

minimum defect coverage is, the higher performance that

RMI method can be. However, the RMI method may prune
Table 13

Accuracy results of the RMI method on the nine datasets for interestingness mea

Dataset Machine-oriented preprocessing procedure (minimum defe

coverageZ0.3)

Confidence f f 0

Rank Rank Rank

Case 1 8 4 4

Case 2 1 1 1

Case 3 1 1 1

Case 4 1 1 1

Case 5 1 1 1

Case 6 163 94 106

Case 7 9 8 6

Case 8 25 32 51

Case 9 114 57 74
the actual root-cause machinesets out once the minimum

defect coverage is set too high. How to set appropriate

minimum defect coverage is thus becoming a critical issue

for future investigation.

In order to demonstrate the accuracy of f0 compared to

other known interestingness measures, Table 13 shows the

rank of the actual root-cause machineset among all candidate

machinesets generated by the RMI method when associated

with three interestingness measures, confidence, f and f 0.

The result shows that our proposed interestingness measure-

ment f0 did not always outperform f or confidence since the

properties of all given testing cases were different, and that

continuity can highlight cases 1, 7 and 9 with strong

continuity defect signal.
6. Conclusion

Identification of the root-cause machineset in manufactur-

ing can not only reduce manufacturing costs, but also

improve manufactory performance. However, conventional

methodologies for identifying root causes are restricted and

dependent on experience and expertise. In this paper, we have

defined the root-cause machineset identification problem and

proposed RMI method to solve the problem efficiently and

effectively. Two different data preparation procedures have

proposed to transform the raw data into the desired format

based on different manufacturing defect hypotheses. Also, an

novel interestingness measurement considering the manu-

facturing continuity has proposed for the interestingness

measurement phase in RMI method. Currently, the proposed

RMI method has been considered as one of standard

component in semiconductor manufacturing defect detection

solution using data mining techniques of SASw Taiwan

Cooperation in order to help FAB users discover root causes.

The experimental results show that about 80% cases can be

ranked at the top ten and 20% cases are still remained

unsolvable. In the future, we will continue our research to

refine interestingness measurements of RMI method, and
surements confidence, f and f 0

ct Stage-oriented preprocessing procedure (minimum defect cover-

age

Confidence f f 0

Rank Rank Rank

41 17 22

1 1 1

1 1 1

1 1 1

3 1 1

168 128 145

1 4 2

2 2 43

46 22 10
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develop automatic/semi-automatic mechanisms to solve the

low-yield situations.
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