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Abstract:  This work presents the use of a discrete
wavelet transform to determine the natural frequencies,
damping ratios, and mode shapes of a structure from its
free vibration or earthquake response data. The wavelet
transform with orthonormal wavelets is applied to the
measured acceleration responses of a structural system,
and to reconstruct the discrete equations of motion in var-
ious wavelet subspaces. The accuracy of this procedure
is numerically confirmed; the effects of mother wavelet
functions and noise on the ability to accurately estimate
the dynamic characteristics are also investigated. The fea-
sibility of the present procedure to elucidate real struc-
tures is demonstrated through processing the measured
responses of steel frames in shaking table tests and the
free vibration responses of a five-span arch bridge with a
total length of 440 m.

1 INTRODUCTION

Identifying the dynamic characteristics of a structure
from field measurements is crucial because the identi-
fied modal parameters can not only be used to validate
or update the finite element model established in the
design stage, but also to assess damage to a structure
caused by severe loading, like a strong earthquake, or by
deterioration of the material. Although spectral anal-
ysis in frequency domain provides an easy method for
identifying modal parameters, the loss of accuracy en-
gendered with FFT and noise on estimating the spectra
of measured responses and input forces causes the in-
correctness of the identified results, especially for highly
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damped systems and systems with severe modal interfer-
ence. Conventional techniques in the time domain, such
as the time series approach associated with the ARX or
ARMAX model (Safak and Celebi, 1991; Loh and Lin,
1996; Satio and Yokota, 1996) and the subspace approach
(VanDerVeen et al., 1993; Huang and Lin, 2001) have
been often applied to determining the dynamic charac-
teristics of a structure from its seismic responses. The
Ibrahim time domain method (Ibrahim and Mikulcik,
1977), the complex exponential approach (Brown et al.,
1979), and the polyreference method (Vold et al., 1982)
have been frequently used to process free vibration data.

In recent years a new and powerful mathematical tool
called wavelet transformation has been developed, the
history of whose development can be found in introduc-
tory articles (Flandrin, 1990; Strang, 1993) and books
(Combes et al., 1990; Barbara, 1996). Unlike a Fourier
transform, which expresses a signal in terms of frequency
components, the wavelet transform decomposes a signal
into frequency components that are functions of time.
The advantages of the wavelet transformation over the
Fourier transformation have been addressed in several
articles and books (Strang, 1993; Combes et al., 1990;
Barbara, 1988). The wavelet transformation has been
successfully applied in mathematics, physics, medicine,
biology, and engineering, especially for signal processing
and solving nonlinear problems. Such applications have
been reviewed in various articles (Jawerth and Sweldens,
1994; Unser and Aldroubi, 1996; Kobayashi, 2001).

The wavelet transformation also finds its blooming ap-
plication in civil engineering. One may be referred to
the recent publications. For example, Adeli and cowork-
ers (Karim and Adeli, 2003; Jiang and Adeli, 2004; Zhou
and Adeli, 2003) applied the transform to traffic incident
detection, traffic flow pattern analysis, and earthquake
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record analysis, while Kim and Melhem (2004) studied
damage detection.

Because of the successful application of wavelet trans-
formation in data de-noising and data compression,
Todorovska and Hao (2004) proposed storing the mea-
sured dynamic responses of a structure in a wavelet
domain. In this case, it is natural to identify the modal
parameters of a structure in a wavelet domain. Another
advantage of performing the system identification in
wavelet domain over performing it in a time domain
is that the wavelet-based time—frequency decomposi-
tion of measured data provides the frequency compo-
nents of data changing with time, which can give a rough
estimation of natural frequencies. Wavelet transforma-
tions have been frequently applied to determine the dy-
namic characteristics of a time invariant linear system
in the last decade. Schoenwald (1993) identified the pa-
rameters in the equation of motion for a system with
a single degree of freedom by applying a continuous
wavelet transform to the equation of motion. Ruzzene
et al. (1997) applied a discrete wavelet transform and
the Hilbert transform technique to determine the natu-
ral frequencies and damping of a structure system from
its free vibration responses. Robertson et al. (1998a and
1998b) developed a procedure for extracting impulse re-
sponse data from the dynamic responses of a structure
and used an eigensystem realization algorithm to identify
the dynamic characteristics of the structure. Gouttebroze
and Lardies (2001) developed a wavelet identification
approach in the time—frequency domain for elucidating
the natural frequencies and damping of a structure from
free vibration responses. Their approach cannot directly
determine the mode shapes. Lardies and Gouttebroze
(2002) further applied their wavelet identification tech-
nique (Gouttebroze and Lardies, 2001) to process the
measured ambient vibrations of a TV tower, by first ex-
tracting a free vibration signal from the measured ambi-
ent vibration responses, using the conventional random
decrement technique. Alvin et al. (2003) presented an
overview of the use of the wavelet transformation tech-
nique for extracting impulse response functions; they
also reviewed robust ways of identifying both propor-
tional and nonproportional damping parameters.

The wavelet transform has also been further applied
to system identification for a time-varying system or non-
linear system that has not been discussed in this article.
Those who are interested in the topic may be referred to
the recent literature on time-varying systems by Omen-
zetter et al. (2003) and Wei and Billings (2002) and on
nonlinear systems by Ghanem and Romeo (2001) and
Coca and Billings (2001).

These existing methodologies, involving wavelet
transformation for identifying the dynamic characteris-
tics of a linear structure, use the wavelet transforma-
tion either to extract impulse response functions or to

determine natural frequencies and damping from free
vibration responses. This article proposes a new proce-
dure for applying a wavelet transformation to either the
earthquake responses or the free vibration responses of
a structure, to directly determine its natural frequen-
cies, damping ratios, and mode shapes, without extract-
ing impulse response functions. This procedure applies
a discrete wavelet transformation to discrete equations
of motion that closely resemble those in the time series
ARX model. Then, the parameters of the equations of
motion are determined by a least-squares approach, and
are directly used to determine the dynamic characteris-
tics of the structure. The proposed procedure is first val-
idated using a numerical simulation of the earthquake
responses of a six-story shear building. In this numeri-
cal experiment, the effects of noise and various mother
functions in the wavelet transformation on the ability
to identify the dynamic characteristics are also studied.
Then, this procedure is further applied to the measured
dynamic responses of a five-story steel frame in a shak-
ing table test and to the dynamic responses of a five-span
arch bridge in an impulse test, to demonstrate the feasi-
bility of applying the proposed procedure to real data.

2 WAVELET TRANSFORMATION

It has been proved that functions in L? space, which
is the functional space where a function f(¢) satisfies
[ f2(t)dr < oo, can be represented by their projec-
tions onto the space linearly spanned by a family of
wavelet functions (Barbara, 1988). Let v/(¢) be the so-
called mother wavelet that must satisfy the admissibility

condition
i\
0<C¢=/ | (w)|da><oo (1)

00 w

where ¥(w) is the Fourier transform of v (¢). The corre-
sponding family of wavelets is generated by dilation and
translation, and is denoted by

) = a2y (20 @)

a
where a and b are dilation and translation parameters,
respectively, and are real. The term a must be positive.
Then, the wavelet transform of a function f(¢) in L? space
is defined as

W f(a.b) = (£, as(®) = [ " fows,wde ()

where (,) denotes inner product, and the superscript
* stands for the complex conjugate. The inverse of the
transformation is defined as

f@) = c% [ N [ N Wy f(a, b)wa,b(r);—2 dadb (4)

To facilitate digital computation, the wavelet trans-
form is normally transformed into a discrete form, in
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which the family of wavelets is commonly expressed as

Yima(t) = 27"y (27" —n) ®)

where m and n are integers. Daubechies (1988) devel-
oped the conditions under which ¥, ,(¢) forms an or-
thonormal basis, simplifying Equation (4) to

F@&) =3 (@), YnnO)Ymn(0) (6)

where (f(t), Ymn(t)) is the wavelet coefficient of f(¢)
corresponding to ¥, ,(¢).

Multiresolution analysis provides a formal approach
to construct such an orthonormal basis (Mallat, 1989a
and 1989b). In multiresolution analysis, the space V;, to
which the measured signal f(¢) belongs, is decomposed
into as many subspaces as needed, and is expressed as

Ww=View
=heWew
=hoW,eoW,ow

:VmGan@Wmfl@@vVZ@Wl (7)

where @ denotes the union of two subspaces, V; and W;
(i, j =1,2,...,m) are subspaces of V and they sat-
isfy the following properties, V,, € V,,,_1, V,, L W,, and
Vine1 = Vi & W,,,. The intersection of any two of V,,,
Wiy, Wie1,...,and Wy is a null space. In each of the
subspaces, V,,,, Wy, W1, ..., and W1, an orthonormal
basis can be constructed as described in Mallat’s articles
(Mallat, 1989a and 1989b). Equation (5) with n € Z (the
set of integers) can specify an orthonormal basis in W,
if the mother wavelet function ¥ (¢) is properly chosen.
An orthonormal basis in V, is expressed as

Gmalt) =27"29Q27"t —n) @®)

where ¢(¢) is called a scale function. The mother wavelet
function must be related to the scale function to satisfy
Equation (7) (Mallat, 1989a and 1989b). Because ¥, ,(¢)
and ¢y, ,(¢) are orthonormal bases in W,,, and V,,,, respec-
tively, Equation (7) indicates the following orthonormal
properties:

1whenm=kandn =1

(mn (), Yra (1)) = (%a)
0 elsewhere,
1whenm=kandn =1

(Dmn(t), Pra(t)) = (9b)
0 elsewhere,

(Dm.n(t), Yis(t))y = 0 for any k, I, m, and n (9¢)

where k and / are also integers.
Hence, if the space V| is decomposed up to level j
according to Equation (7), then f(¢) can be expressed in

terms of orthonormal wavelets as

J
f(t) = Z Z <f(z)s 1pm,n(t)h[fm,n(z)

m=1neZ

+ Y (). $jn())jalt) (10)

neZ

Equation (10) can be easily established by using the com-
mercial computer program MATLARB, in which a variety
of families of wavelets are available.

3 MODAL IDENTIFICATION

The dynamic responses of a linear structure satisfy the
equations of motion

[M]{x} + [C{x} + [K]{x} = {f} (11)

where [M], [C], and [K] are the mass, damping, and stiff-
ness matrices of the structure system, respectively; {X},
{x}, and {x} are the acceleration, velocity, and displace-
ment response vectors of the system, and {f} is the input
force vector. Usually, not all degrees of freedom of the
system are measured in a field experiment, for economic
reasons. Only some parts of {X} or {x} are measured.
Consequently, the measured response vector {y}, which
can be velocity or acceleration responses, satisfies the
following discrete equation (Leuridan, 1984).

1 J
()= Y [®ldy( =)+ Y [6];{f¢ — j)} (12)
i=1,2

j=0.1

where {y(t — i)} and {f(+ — i)} are the measured re-
sponses and forces at time ¢ — i, respectively, and [®];and
[€]; are the parameter matrices to be determined. Equa-
tion (12) is very similar to the time series ARX model.

Performing a discrete wavelet transform on {y(t — i)}
and {f(r — j)} withi=0,1,2,...,/andj=0,1,2,...,J
yields

(y(t — i)} = ,é;: (YO0, 1))
:ZO {5967, 1)} dmn(t) (13a)

(£ — ) = mio nno {9 m, n) } i n(t)
+ ﬁo {FD0m, n)} bt (13b)

Notably, for finite measured responses and input forces,
i depends on m. Substituting Equations (13a) and (13b)
into Equation (12), performing the inner product with
respect to ¥, ,(¢) on both sides of the resulting equation,
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and applying the orthonormal properties specified by
Equations (9a) and (9b) yields

Z[@

(yO(m, n)} = (D (m, n)} + i (6], {£)(m, n)}
0

=
(14)

Similarly, carrying out the inner product with respect

to dm.n(t), instead of v, ,(¢), in the process of obtain-

ing Equation (14) from Equations (12), (13a), and (13b)

leads to

I J
Yo [®L{FOn )} + Y [01{F ) 0m, )}
i=1

j=0

{§00n. n)} =
(15)

Rearranging Equations (14) and (15) for different values
of m and n yields

[¥O] = [C][[[ ” (16)

where
[C]Z[[‘I)]l [‘I’]2 [‘I’]I [0]0 [9]1 [911]
(17a)
[Y]:[[Y(l)]T [Y@]" [Y(I)]T]T (17b)
[F] = [[F«»]T [FD]" [Fw]T]T (17¢)

(YO = [{y?@. D} {y0@.2)}
[F(i)]z[{f(i)(l’l)} {f(i)(l’z)} {f(i)(m

Typically, Equation (16) represents a set of overdeter-
mined linear algebraic equations. The solution for the
matrix of parameters [C] is determined by a conventional
least-squares approach:

T T\ !
a-v] ((Wl]) o

Equation (12) reveals that the modal parameters of a

structure are determined from [®],withi=1,2,..., 1. A
matrix [G] is constructed from [®]; as
0 I o 0 --- 0
0 0 r o .- 0
[Gl=| : : R : (19)
0 0 o 0 - I
[®], [®];4 T [®],

YO m} {§90m. 1)} {390, 2))

W) {0} (06, 2)

The dynamic characteristics of the structure are deter-
mined from the eigenvalues and eigenvectors of [G]
(Huang, 1999). Let A, be the kth eigenvalue of [G],
and let {¥;} be the corresponding eigenvector. Further-
more, express {} " as (Y] {¥i}] - {¥}]) with each
{¥}; having the same number of components as {y} has.
Because {{«}; = yij{¥x}; where y;;is a scalar (Huang,
1999), these vectors ({¥«}i,i =1,2,...,n) correspond
to a mode shape of the structural system.

The eigenvalue Ay is typically a complex number, set
equal to ay + ibk. The frequency and damping ratio of
the system are computed by

Br=\/o} + B} (20a)

& = —ou/Br (20b)
where
1 1 bk
=—t — 21
= o () C1a)
1 2 2
o = E ln(ak + bk) (21b)

Here, At is the inverse of the sampling rate of the mea-
surement, B is the pseudo-undamped circular natural
frequency and & is the modal damping ratio.

(§9(m, n)}] (17d)

{foem )]  7e)

4 VERIFICATION

A numerical simulation was undertaken for a six-story
shear building subjected to a base excitation, to vali-
date the proposed procedure. The simulation was run
for a modal damping ratio of 5%. The theoretical nat-
ural frequencies of the system were 0.801, 2.14, 3.15,
4.25, 5.04, and 5.37 Hz. The acceleration responses of
the six degrees of freedom, some of which are depicted in
Figure 1, were used in the following data processing. The
data were sampled at 250 Hz.

The modal assurance criterion (MAC) (Allemang and
Brown, 1983), which is a correction-type indicator, was
applied to check for agreement between the identified
mode shapes and the theoretical ones:

|{<Pi1}T{(PiA}|2
loit o wia) {pia)

MAC({gir}, {9ia}) = (22)
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Fig. 1. Simulated responses of a six-story shear building and
the corresponding Fourier spectra.

where {g;;} is the identified ith mode shape and {g;4}
is the corresponding analytical mode shape. The value
of MAC is between zero and unity. When two mode
shapes are more similar, MAC is closer to one. When
two mode shapes are orthogonal to each other, MAC is
Zero.

Notably, in the following numerical studies, the identi-
fied results are referred to as “accurate” if the differences
between the identified frequencies and modal damping
ratios and the theoretical ones are under 2% and 20%,
respectively, and if the MAC values exceed 0.9. These
numbers in this criterion for accurate results are empiri-
cally selected. Because the values of damping ratios are
normally in a very small range, a relative large tolerance
for the error in identifying damping ratios is used in the
criterion. Numerical studies were also performed to elu-
cidate the effects of mother wavelet functions and noise
on the identified results. The signals were decomposed
into the sixth level (/2 = 6) in Equation (7), using or-
thonormal wavelets. The results are presented for I =J
in Equation (12).

4.1 Effects of mother wavelet functions

Three different mother functions—“sym1,” “sym4,” and
“sym10” shown in Figure 2—were used to generate dif-
ferent sets of wavelet functions and to process the accel-
eration responses of the second, fourth, and sixth stories
and the input excitation. The theoretical background of
the development of these mother functions can be found
in Daubechies (1992). The data at + = 8-10 seconds in
Figure 1 were processed. Figure 3 plots the results ob-
tained using different values of 7 and J in Equation (12)
and different mother functions. Using the wavelets gen-
erated by the mother functions “sym1” or “sym10” along
with the values of I and J larger than 20 gives accu-
rate identified results. Using the mother function “sym4”
along with using the values of 7 and J larger than 25
also yields accurate results. These results reveal that, al-
though the mother function may somewhat affect the
identified results, different mother functions eventually

14 | syml

Y
1
1

wix)

Fig. 2. Wavelet functions of sym1, sym4, and sym10.
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Fig. 3. (Continued).

result in satisfactory identified results if the values of
and J are sufficiently large.

Notably, Figure 3 also shows that, as the values of /
and J in Equation (12) increase, the identified frequen-
cies converge faster than the identified modal damp-
ing ratios. As I and J increase, other than structural
modes, extra spurious modes arise and computational
effort also increases. Nevertheless, the desired structural
modes consistently occur when the values of / and J are
large enough and continue to increase.

4.2 Effects of noise

In real applications, measured responses always con-
tain some level of corrupting noise. Noise, yielding a
10% variance of the signal-to-noise ratio, was randomly
added to the computed responses and input excitation
to simulate this situation. Figure 4 plots the results ob-
tained from processing the noisy input and acceleration
responses of all six stories by using various values of /
andJ and the mother functions. The responses att =8-16
seconds were used in this analysis. Figure 4 reveals that
larger values of I and J are required to yield accurate
results from noisy data than are required for yielding
such results from non-noisy data. The mother function
“sym4” somewhat outperforms “syml” and “sym10.”
When I = J = 53, “sym4” yields accurate results but
“sym1” and “sym10” do not. To reach accurate results

“sym1” and “sym10” need slightly larger values of
and J.

Figures 3 and 4 validate the proposed procedure for
accurately identifying dynamic characteristics from the
observed responses, even when the responses include
noise. The dynamic characteristics of a structure are con-
sistently identified with very high accuracy when the val-
ues of I and J are large enough. Furthermore, as long
as the values of I and J are sufficiently high, different
mother functions seem to affect the identified results
insignificantly. Notably, when dealing with noisy data
with more than 10% variance of the signal-to-noise ra-
tio, one may need to either use larger values of / and
J or apply some de-noising techniques to eliminate the
noise.

5 APPLICATION TO REAL DATA

The preceding section demonstrated the feasibility of the
proposed procedure by processing simulated data. This
section further applies this procedure to data measured
in the laboratory or in the field. The dynamic responses
of steel frames from shaking table tests and the free vi-
bration responses of an arch bridge from impulsive tests
were analyzed. Mother function “sym4” was applied in
these analyses.
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Fig. 4. (Continued).

5.1 Application to dynamic responses from shaking
table tests

The shaking table test is a popular and sophisticated
test used in the laboratory to study the behaviors of
structures under earthquake. The National Center for
Research on Earthquake Engineering in Taiwan con-
ducted a series of shaking table tests on three steel
frames (Yeh et al., 1999) (Figures 5 and 6). One frame,
denoted as “std,” was 3 m long, 2 m wide, and 6.5 m
high. Lead blocks were piled on each floor such that
the mass of each floor was approximately 3664 kg. This
frame is structurally regular. The second frame, which
is structurally irregular with respect to mass and de-
noted as “add_m,” was identical to “std” except in that
extra lead blocks were placed on the fourth floor such
that the floor was 25% heavier than that in “std.” The
third frame, which is structurally irregular with respect
to stiffness and denoted as “add_k,” was identical to
“std” except in that stiffening braces were incorporated
into the fourth story. These frames were subjected to
base excitations specified by records of real earthquakes,
such as the Kobe earthquake, but with different multi-
plicative factors applied. The responses were sampled
at 1000 Hz. Figure 7 depicts the acceleration responses
of the second and fourth floors in the long-span direc-

tion for frame “add_k,” subjected to 8% of the Kobe
earthquake.

Table 1 summarizes the identified dynamic character-
istics of the three frames obtained using the accelera-
tion responses of all floors and the input excitation in
the long-span direction. The results were obtained from
the responses of all floors at + = 7-20 seconds. The re-
sponses were reproduced with a 200-Hz sampling rate,
using one data point out of every five raw data points, to
reduce computational time and to match to the typical
sampling rate used during the monitoring of responses of
a structure under earthquake in the field. Frames “std”
and “add_k” were subjected to 8% of the Kobe earth-
quake, while “add_m” was subjected to 10% of the Kobe
earthquake motion.

InTable 1, the MAC values for the frame “std” indicate
excellent agreement between the identified mode shapes
and the analytical mode shapes obtained using the fi-
nite element package, DRAIN_2D. Figure 8 also displays
this consistency between the identified and the analyti-
cal mode shapes. The MAC values for frames “add_k”
and “add_m” reveal the correlation between the mode
shapes of these two frames and the mode shapes of frame
“std.” These MAC values and the mode shapes shown
in Figure 8 imply that placing the extra weight on the
fourth floor did not significantly alter the mode shapes,
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Fig. 5. Simple sketch of three five-story frames.

whereas incorporating the stiffening braces in the fourth
story did substantially impact the fourth and fifth mode
shapes.

As expected, the identified frequencies of frame “std”
are slightly larger than those of frame “add_m,” and gen-
erally smaller than those of frame “add_k.” Notably, the
frequency of the third mode of frame “add_k” is almost
identical to that of frame “std,” because the modal com-
ponents at the third and fourth floors in this mode of
frame “add_k” are almost identical, and so the braces
between these two floors had no effect in this particular
mode.

Fig. 6. A photo of frame “std” on shaking table.

The identified modal damping ratios for different
frames are smaller than 2%, especially in higher modes.
In the design process, a 2% modal damping is typically
used in the dynamic analysis of a steel structure.

Table 1 also lists the results obtained using a sub-
space approach (Huang and Lin, 2001). The present re-
sults generally display excellent agreement with those
in Huang and Lin (2001). However, the fifth mode of
frame “add_k” was identified by the approach described
herein, but not by the subspace approach, even though
the fifth mode was not significantly excited because the
high-frequency components of the input were too weak
(Figure 7). Notably, the frequency of the fifth mode de-
termined using the presented approach is consistent with
that reported in Huang and Lin (2001), obtained by pro-
cessing the responses to a white noise input.

5.2 Application to impulse tests of an arch bridge

Impulse tests were conducted on a five-span arch pre-
stressed concrete bridge with a total length of 440 m
(Yang et al., 2000) (Figure 9). The deck of the bridge
was around 22.5 m wide and 35 m above the ground.
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Table 1
Comparison of identified modal parameters for different frames

std

0,
Frame Kobe 8%

add_k

Kobe 8% add.-m

input
method

Subspace
(Huang and Lin, 2001)

Present

Kobe 10%
present

Subspace

(Huang and Lin, 2001) Present

1.40
4.53
8.23
12.39
15.99

1.30
0.16
0.19
0.13
0.10

1.00
1.00
1.00
1.00
1.00

Frequency (Hz)

Damping (%)

MAC

N A WNRFRE A WN P R W -

1.40
453
8.24
12.39
15.99

1.54
0.18
0.18
0.13
0.10

1.00
1.00
1.00
1.00
1.00

1.52
5.94

1.52
5.94
8.22 8.22
14.00 13.99
/ 18.29

1.90 1.78
0.17 0.20
0.18 0.17
0.18 0.13

/ 0.97

0.99 0.99
0.91 0.90
1.00 0.99
0.65 0.63

/ 0.78

1.34
452
8.06
11.93
15.75

1.41
0.20
0.20
0.16
0.12

1.00
1.00
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0.99
0.99
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Fig. 7. Responses of frame “add_k” and the corresponding
Fourier spectra.

The bridge was supported by rollers in the longitudinal
direction, but was constrained in the transverse and ver-
tical directions at both ends, which were separated from
the adjacent spans by expansion joints. The transverse
impulsive force was generated by suddenly braking a
loaded truck that weighed about 15 tons and was travel-
ing in a direction with an inclined angle of 30° from the
centerline of the deck.

The transverse velocity responses of the bridge were
measured by highly sensitive sensors of the servo veloc-
ity type. The number of sensors available was limited, so
the bridge was divided into four segments, as illustrated
in Figure 9. In each segment, the sensors were positioned
at 20-m intervals along the centerline of the bridge deck.
The free vibration responses in each of the four seg-
ments subjected to an impulsive force were measured
consecutively. The overlapping observation stations in
any two adjacent segments were used to correlate the
mode shapes identified from the responses in different
segments.

Figure 10 depicts typical responses observed at sta-
tions in different segments. The recorded responses con-
tain some contributions from the ambient vibration that
cannot be separated from the free vibration responses.
To eliminate the influence of ambient vibration, the
recorded responses within 8 seconds after the maximum
response occurred were employed in the identification
analysis. The responses in the different segments were
separately processed. Table 2 summarizes the identified
natural frequencies and corresponding damping ratios.
Some of the identified natural frequencies in Table 2
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Fig. 9. A sketch of the five-span arch bridge and sensor layout for impulsive tests.

correspond very well to those associated with the peaks
of the Fourier spectra displayed in Figure 10. Figure 11
presents the identified mode shapes. Nine modes were
identified with frequencies of less than 5 Hz.
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Fig. 10. Impact responses at different stations and the
corresponding Fourier spectra.

Figure 11 also depicts the mode shapes obtained from
finite element analysis (Yang et al., 2000) and similar
to the identified mode shapes. The legend also states the
corresponding frequencies. The finite element model was
established according to the designed geometry of the
bridge and the material properties. Comparing the finite
element results with the measured results indicates the
finite element model is inadequate. The finite element
model significantly underestimates the frequencies and
also totally misses some modes. Apparently, the finite
element model used in the structure design needs further
refinement, through a more realistic evaluation of the
boundary conditions, geometric and material properties
of the bridge (that is, the constants for soil springs, the
real Young’s modulus, the nonuniform cross-section of
girders and arches) by experiments or by model updating
techniques, a task that is beyond the scope of the present
work.

Table 2
Identified results from impulse tests

Mode f(Hz) Damping (%)
1 1.37 2.47
2 1.48 3.26
3 1.73 4.13
4 2.00 3.57
5 2.29 2.59
6 3.05 3.82
7 3.50 3.62
8 4.40 1.60
9 4.61 2.78
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Fig. 11. Comparison of identified mode shapes with finite
element results.
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Fig. 11. (Continued).

6 CONCLUDING REMARKS

This article presented a wavelet-based approach for
identifying the dynamic characteristics of a structure
from its seismic responses or free vibration responses.
A discrete wavelet transformation was applied to the
measured responses, using an orthonormal wavelet ba-
sis. Consequently, the discrete equations of motion were
reconstructed in various wavelet subspaces. The coef-
ficients in the discrete equations of motion were de-
termined by a conventional least-squares approach.
Then, the natural frequencies, damping ratios, and mode
shapes of the structure were calculated from these
coefficients.

Numerically simulated responses of a six-story shear
building under earthquake were used to validate the pro-
posed approach. The effects of the wavelet mother func-
tions and of noise on the ability to identify the dynamic
characteristics were also investigated. The proposed ap-
proach did provide accurate results, even for noisy data.
The wavelet mother functions did not significantly influ-
ence the identified results when the values of 7 and J in
Equation (12) were large.

The proposed approach was also applied to process
measured responses of three five-story steel frames in
shaking table tests and to responses of a five-span arch
bridge in impulse tests. The present results for steel
frames are in good agreement with published results
obtained from a subspace approach. However, the pro-
posed approach identified a higher mode that the sub-
space approach failed to identify because this mode was
not significantly excited, indicating the superiority of the
proposed approach over the subspace approach. Nine
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modes with frequencies of less than 5 Hz were identi-
fied from the transverse responses of the five-span arch
bridge. The identified results differ markedly from those
of the finite element analysis, implying the need for up-
dating the finite element model.
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