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Neural-Network-Based Adaptive Hybrid-Reflectance
Model for 3-D Surface Reconstruction

Chin-Teng Lin, Fellow, IEEE, Wen-Chang Cheng, and Sheng-Fu Liang

Abstract—This paper proposes a novel neural-network-based
adaptive hybrid-reflectance three-dimensional (3-D) surface re-
construction model. The neural network automatically combines
the diffuse and specular components into a hybrid model. The
proposed model considers the characteristics of each point and the
variant albedo to prevent the reconstructed surface from being
distorted. The neural network inputs are the pixel values of the
two-dimensional images to be reconstructed. The normal vectors
of the surface can then be obtained from the output of the neural
network after supervised learning, where the illuminant direction
does not have to be known in advance. Finally, the obtained normal
vectors are applied to enforce integrability when reconstructing
3-D objects. Facial images and images of other general objects
were used to test the proposed approach. The experimental results
demonstrate that the proposed neural-network-based adaptive
hybrid-reflectance model can be successfully applied to objects
generally, and perform 3-D surface reconstruction better than
some existing approaches.

Index Terms—Enforcing integrability, Lambertian model,
neural network, reflectance model, shape from shading, surface
normal.

I. INTRODUCTION

HAPE recovery is a classical computer vision problem. The

objective of shape recovery is to obtain a three-dimensional
(3-D) scene description from one or more two-dimensional
(2-D) images. The techniques used to recover the shape of an
object are called shape-from-X techniques, where X denotes
the specific information, such as shading, stereo, motion, and
texture. Shape recovery from shading (SFS) is a major computer
vision approach, which reconstructs the 3-D shape of an object
from its gradual shading variation in 2-D images. When a point
light source illuminates an object, they appear with different
brightness, since the normal vectors corresponding to different
parts of the object’s surface are different. The spatial variation
of brightness, referred to as shading, is used to estimate the
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orientation of surface and then calculate the depth map of the
object. The recovered shape can be expressed in terms of depth,
surface normal vector, surface gradient, or surface slant and tilt.
The SFS approach was first proposed by Horn [1] in the early
1970s and was further enhanced by himself and Brooks [2], [3].
Attempts have been made to enhance the recovery performance
of SFS [4]-[10]. To resolve the SFS problem, image formation
needs be studied. A straightforward image formation model is
the Lambertian model, in which the gray intensity of a pixel in
the image depends on the light source direction and the surface
normal. The conventional approaches to solve the SFS problem
are to employ the conventional Lambertian model and to min-
imize the cost function consisting of the brightness constraint,
the smoothness constraint, the integrability constraint, the in-
tensity gradient constraint, and the unit normal constraint [11],
[12]. Since the nonlinear optimization problem takes a long
computational time to solve and does not easily converge to the
optimum solution, direct shape reconstruction approaches have
been proposed [8], [13], [14]. These approaches require an extra
smoothness constraint in the cost function to guarantee a smooth
surface and stabilize the convergence to a unique solution.
Zhang [15] categorized the SFS techniques into four cate-
gories: minimization [5]-[7], [13], [16]-[21], propagation [1],
[8], [22]-[24], local [9], [25], and linear approaches [10], [26].
Minimization approaches obtain the solution by minimizing an
energy function. Propagation approaches propagate the shape
information from a set of surface points to the entire image.
Local approaches derive the shape by assuming of surface type.
Linear approaches obtain the solution from linearizing the re-
flectance map. Zhang compared the computational time and ac-
curacy of these four SFS approaches and indicated that none of
the algorithms performed consistently for all images. The algo-
rithms worked well for some images but performed poorly for
others. Zhang concluded that minimization approaches are gen-
erally the most robust but are also the slowest. To obtain high
3-D reconstruction performance, this paper uses the minimiza-
tion approach in the training stage of the proposed approach.
Recently, multilayer neural networks have also been adopted
to handle the SFS problem [27], [28], [31]. However, these ap-
proaches are still restricted by the Lambertian model, which re-
quires estimating the direction of the light source. Obviously,
this restriction makes the algorithm impractical for many appli-
cations in which illumination information is not available. Ad-
ditionally, the reflectance of objects does not always follow the
Lambertian model, so a more general model is required. Ac-
cording to [28], a successful reflectance model for surface re-
construction of objects should combine two major components:
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the diffuse and specular components. The Lambertian model de-
scribes the relationship between the surface normal and the light
source direction by generally assuming that the surface reflec-
tion is due to diffuse reflection only, and assumes that the surface
reflects the light equally in all directions. Thus, the Lambertian
model ignores the specular component.

Some specular or non-Lambertian models have been pro-
posed to model the specular component. Healy and Binford [29]
used the Torrance—Sparrow model [30], which assumes that a
surface is composed of small, randomly oriented, mirror-like
facets to retrieve a local shape from specularity. Cho and Chow
[31] proposed a novel hybrid approach using two self-learning
neural networks to generalize the reflectance model by mod-
eling the pure Lambertian surface and the specular component
of the non-Lambertian surface, respectively. This model does
not require the viewing direction and the light source direction
and yields better shape recovery than previous approaches.
However, the hybrid approach still has two drawbacks.

1) The albedo of the surface is disregarded or regarded as
constant, distorting the recovered shape. Generally, the
albedo is variant in different surface regions.

2) The combination ratio between the diffuse and specular
components is regarded as a constant, which is determined
by trial and error.

Therefore, the hybrid combination approach proposed in [31]
is unsuitable for the surface reconstruction of human faces or
general objects whose albedo and reflecting characteristic is not
the same across the entire surface.

This paper proposes a novel adaptive hybrid-reflectance
model to represent more general conditions. This model in-
telligently integrates both the diffuse and specular reflection
components and does not require determining the hybrid ratio in
advance. The pure diffuse and specular reflection components
are both formed by similar feed-forward neural network struc-
tures. A supervised learning algorithm is applied to tune up the
pointwise hybrid ratio automatically based on image intensities
and to produce the normal vectors of the surface for reconstruc-
tion. The proposed approach estimates the illuminant direction,
viewing direction, and normal vectors of object surfaces for
reconstruction after training. Therefore, new shaded images
could be generated under different illuminant conditions by
controlling the above parameters. The 3-D surface can also be
reconstructed according to these normal vectors using existing
approaches such as enforcing integrability [17]. Additionally,
the proposed approach considers the albedo and the reflecting
characteristic of each surface point individually. According
to the experimental results presented in Section VI, the shape
recovery algorithm is the most robust for recovery of surfaces
with the variant albedo and complex reflecting characteristic.

The remainder of this paper is organized as follows. Sec-
tion II describes the proposed hybrid-reflectance model that in-
cludes the diffuse and specular components. The details of the
neural-network-based hybrid-reflectance model and its learning
rule derivations are presented in Sections III and IV. Section V
presents the results of experiments performed to evaluate the
performance of the proposed approach. Conclusions are drawn
in the last section.
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II. THE HYBRID REFLECTANCE MODELS

This study aims to recover the surface of a 3-D object from
2-D images by SFS techniques. To resolve the SFS problem,
a mathematical reflectance model is needed to describe the re-
lation between the reflection behavior and the image forma-
tion. A proper reflectance model could help reconstruct the sur-
face shape accurately from the image intensity variation corre-
sponding to the reflection characteristic of the surface. Com-
puter vision has two light reflection components: diffuse reflec-
tion and specular reflection. Diffuse reflection is a uniform re-
flection of light with no directional dependence for the viewer
and specular reflection is the reflected light visible only at the
reflected direction. Considering only the diffuse (so-called Lam-
bertian) component or the specular component singly is not
enough for practical applications. Most surfaces are neither pure
Lambertian nor pure specular, and their reflection characteris-
tics are mixtures of these two reflection components. This paper
derives a modified mathematical hybrid reflectance model based
on [29]-[33] and uses it to develop a new neural-network-based
adaptive hybrid-reflectance model.

In [31], a linear combination of the diffuse intensity and the
specular intensity by a constant ratio was given as

Ruybria(z,y) = pRa(z,y)+(1—p)Ry(z,y) Vo,y € D (1)
where Ruybrid(-) denotes the total intensity of the hybrid re-
flectance model, which combines the diffuse intensity R4(-) and
the specular intensity R(-), and p denotes the combination ratio
for the hybrid reflectance model.

In (1), R,(-) denotes the diffuse reflectance model (called the
Lambertian model) which represents a surface illuminated by a
single point light source given by

Rq (n(a:,y),oz(:v,y))
= max {La(z,y)n(z,y)s(z,y),0} Vz,ye D (2)

where a(z,y) denotes the surface’s diffuse albedo at point
(x,y) over the image plane domain D; n(z,y) denotes the
surface normal on position (,); s € R3 denotes the direction
of point light at infinity; and L denotes the light strength.
Assuming that the Lambertian surface of a convex object is
given by the depth function z(z, y), the surface normal n(z, y)
on position (z,y) can be represented as

nl. ) = [—p(z,y) — q(z,y) 1]
o) VPP (@, y) + ¢*(z,y) + 1 )

where p(x,y) and q(z, y) denote the x- and y-partial derivatives
of z(z, y), respectively. In (2), the equation max{-} sets all neg-
ative components corresponding to the surface points lying in
attached shadow to zero, where a surface point (z, y) lies in an
attached shadow iff n(z,y)s < 0 [11].

In (1), Rs(-) denotes the specular reflectance model. Healy
and Binford [29] simplified the Torrance—Sparrow model [30],
which uses a Gaussian distribution to model the facet orienta-
tion function and considers the other components as constants.
Defining the halfway vector as h = (s + v)/||s + v||, which
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Fig. 1. Block diagram of the proposed adaptively hybrid reflectance model.

denotes the normalized vector sum between the light source di-
rection s and the viewing direction v, the model is represented

as
1 (,02
Ry= ——exp (-2 4
OTe eXp( 202> @

where ¢ denotes the angle between the surface normal n(z, y)
and the halfway vector h(z,y) at point (z,y) such that ¢ =
cos ! ({n(z,y)h(z,y))) and o denotes the standard deviation,
which can be interpreted as a measure of the surface roughness.
The specular reflectance model in (4) is popular for the SFS
problems but has many parameters to be determined. Therefore,
this model cannot easily be integrated with the diffuse reflection
component in the proposed approach.

The other well-known specular model is Phong’s model [33].
For specular reflection, the amount of light seen by the viewer
depends on the angle ¢ between the perfect reflected ray r and
the direction of the viewer v. Phong’s model states that the light
perceived by the viewer is proportional to cos 6" and can be
represented as

Rq (n(z,y), h(z,y)) = ((n(z,y), h(z,y)))" = (cos$)" (5)

where 7 denotes a constant. Different values of the constant r
denote different kinds of surfaces which are more or less mirror-
like. Phong’s model [33] is mathematically simpler than that
of Healy and Binford [29], and hence is more appropriate for
integrating the diffuse and specular reflections. Therefore, the
proposed scheme employs a neural network used to describe the
specular reflection based on Phong’s model.

In this paper, the ratio between the diffuse and specular re-
flection components corresponding to each point is adjusted for
each point on the object surface in the image. This ratio is re-
garded as an adaptive weight in the proposed neural network
and is updated in the learning iterations to obtain a reasonable
and appropriate value for each point on the 3-D surface.

III. NEURAL-NETWORK-BASED ADAPTIVE
HYBRID-REFLECTANCE MODEL

This section proposes a novel neural-network-based hybrid-
reflectance model in which the hybrid ratio of diffuse and spec-
ular components is regarded as the adaptive weight of the neural
network. The supervised learning algorithm is adopted, and the

hybrid ratio for each point is updated in the learning iterations.
After the learning process, the neural network can be used to
estimate the proper hybrid ratio for each point on the 3-D sur-
face of any object in an image. Thus, the diffuse and specular
components can be integrated intelligently and efficiently. Ad-
ditionally, the proposed hybrid-reflectance model also considers
the variant albedo effect. The variant albedo effect is sometimes
claimed to influence the performance of 3-D surface reconstruc-
tion and cause distortion in conventional approaches [34]-[36].

Fig. 1 shows the schematic block diagram of the proposed
adaptive hybrid-reflectance model, which consists of the dif-
fuse and specular components. This diagram is used to describe
the characteristics of the diffuse and specular components of the
adaptive hybrid-reflectance model by two neural networks with
similar structures. The composite intensity [nybriq 1S Obtained
by combining the diffuse intensity 4 and the specular intensity
R, based on the adaptive weights A\y(z,y) and As(x,y). The
system inputs are the 2-D image intensities of each point, and
the outputs are the learned reflectance map. When solving the
SFES problem by the proposed neural-network-based reflectance
model, the cost function Er is minimized to update the neural
parameters. After training, the normal surface vectors can be ob-
tained from the reflectance model to reconstruct the 3-D shape
of the object. The model can also be combined with different
light source directions and viewing directions to produce new
shaded images.

Fig. 2 shows the framework of the proposed symmetric
neural network which simulates the diffuse reflection model.
The input/output pairs of the network are arranged like a mirror
in the center layer, where the number of input nodes equals
the number of output nodes, making it a symmetric neural
network. The light source direction and the normal vector from
the input 2-D images in the left side of the symmetric neural
network are separated and then combined inversely to generate
the reflectance map for diffuse reflection in the right side of
the network. The function of each layer is discussed in detail
below.

Assuming that an input image has m pixels in total, then the
symmetric neural network includes rn input variables. The 2-D
image is rearranged to form an m x 1 column vector represented
asl = (I1,I,. .., I,)"T and fed into the symmetric neural net-
work. Through the symmetric neural network, the reflectance
map for diffuse reflection (R4, , Ra,, - - -, Ra,, ) can be obtained

™m

in the output of the symmetric neural network.



1604

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

\ J \ y, \ J

\ J

. _J

Layer1 Layer?2 Layer3

Fig. 2.

Each node in the symmetric neural network has some finite
“fan-in” of connections represented by weight values from the
previous nodes and “fan-out” of connections to the next nodes.
Associated with the fan-in of a node is an integration function
f which combines information, activation, and evidence from
other nodes and provides the net input for this node

net input = f(inputs to this nodeassociated link weights). (6)

Each node also outputs an activation value as a function of its
net input

node output = a¥ (net input) = oV (f) (7

where a(!)(-) denotes the activation function and the superscript
[ denotes the layer number. The proposed symmetric neural net-
work contains six layers. The functions of the nodes in each
layer are described as follows.

Layer 1: This layer gathers the intensity values of the input
images as the network inputs. Node I; denotes the ith pixel of
the 2-D image and m denotes the number of total pixels of the
image. That is

fi =1,
aV=f, i=1,...,m. (8)

The following equation also uses this notation.

Layer 2: This layer adjusts the intensity of the input 2-D
image with corresponding albedo value. Each node in this layer,
corresponding to one input variable, divides the input intensity
by the corresponding albedo and transmits it to the next layer.
That is

I .
fi=—, i=1,...,m
Q5
L=d®=f, i=1....m )

The output of this layer is the adjusted intensity value of the
original 2-D image. The nodes of this layer are labeled as
fl,fg, . ,fm. The term «; denotes the :th albedo value cor-
responding to the ith pixel of the 2-D image and 1/«; denotes
the weight between I; and I i

Layer 4 Layer5 Layer 6

Framework of the symmetric neural network for diffuse reflection model.

Layer 3: The purpose of Layer 3 is to separate the light source
direction from the 2-D image. The light source directions of this
layer are not normalized and are labeled as s}, s5, and s5. The
link weight in layer 3 is represented as wy,, for the connection
between node ¢ of layer 2 and node j of Layer 3

fi=Y Lwa,, i=1...m j=123
=1

(3) —

s;» =a; fi» 1=1,2,3. (10)

Layer 4: The nodes of this layer represent the unit light
source. Equation (11) is used to normalize the nonnormalized
light source direction obtained in Layer 3. These nodes in Layer
4 are labeled as s1, s2, and s3, respectively, and the light source
direction is represented as s = (s, 52, s3)7. The output of s;

can be calculated from

1 .
fj:ﬁ, .]:172737
VST +58y +83
!
S .
sj=alV=f;s,= J j=1,2,3. (11

Layer 5: Layer 5 combines the light source direction s and
normal vectors of the surface to generate the diffuse reflection
reflectance map. The link weight connecting node j of Layer
4 and node k of Layer 5 is denoted as vq4;, and represents the
normal vectors of the surface for the diffuse component. That
i, (Vdyy s Vdyy Vay, )" denotes the normal vector of the surface
for the diffuse component on the point k, where k = 1,...,m.
The outputs of the nodes in this layer are denoted as de and
can be calculated as

3
fk: E 55Vd;y s k‘:l,...,m
i=1

Ra, = = fr. k=1,....m. (12)

Significantly, f?dk denotes the nonnormalized reflectance map
of diffuse reflection, and therefore is normalized in Layer 6.
Layer 6: This layer transfers the nonnormalized reflectance
map of diffuse reflection obtained in Layer 5 into the interval [0,
255]. These nodes Rg4,, Rq4,, ..., R4, denote the normalized
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reflectance map of diffuse reflection, and their output can be
calculated as

i =R,
Ry, = aECG)
255 (fk - min(Rd))
N max(Ry) — min(Ry)
255 (de - min(Rd))

= - —-, k=1,...
max(Ry) — min(Ry)

k=1,...

,m

(13)

,m

where Ry = (Ra,, Ra,,..., R4, )T and the link weights be-
tween Layers 5 and 6 are unity.

Similar to the diffuse reflection model, a symmetric neural
network given by Fig. 2 is used to simulate the specular compo-
nent in the hybrid-reflectance model. The major differences be-
tween these two networks are the node representation in Layers
3 and 4 and the active function of Layer 5. The nodes of Layer
3 represent the nonnormalized halfway vector, labeled as h’ =
(h}, by, )T, and the nodes of Layer 4 represent the normal-
ized halfway vector labeled as h = (h1, ha, h3)T. According to
(5), Layer 5 of the specular component of the symmetric neural
network combines the halfway vector h and normal surface vec-
tors to generate the reflectance map of specular reflection. The
link weight connecting node j of Layer 4 and node % of Layer 5
is denoted as v, ,, and represents the normal vectors of the sur-
face for the specular component. Then, the outputs of the nodes
in Layer 5, denoted as Rsk, can be calculated as

3
fe=> hjve,, k=1,...m
j=1

R, :a;(f) =(fe)", k=1,... (14)

,m

where the active function a,(f) in this layer represents the 7 de-
gree of its net input. Significantly, Rsk denotes the nonnormal-
ized reflectance map of specular reflection, and is also normal-
ized in Layer 6.

Through the supervised learning algorithm derived in the fol-
lowing section, the normal surface vectors can be obtained auto-
matically. Then, the enforcing integrability method can be used
[17] to obtain the depth information for reconstructing the 3-D
surface of an object by the obtained normal vectors. In the pro-
posed approach, the reflectance characteristic of the hybrid sur-
faces can be decided without a priori information of the relative
strengths of the diffuse and specular components. This feature is
a significant improvement of conventional algorithms. The hy-
brid intensity of each point on the surface is considered individ-
ually to reduce the distortion met by conventional approaches in
the recovery process. Additionally, using the symmetric neural
network for diffuse reflection, the light source direction s in the
hidden nodes of the symmetric neural network can be obtained,
and the SFS problem can be resolved without specifying illumi-
nant positions in advance. This approach also relaxes the con-
straint in conventional approaches and is appropriate for prac-
tical 3-D surface reconstruction applications.

1605
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Fig. 3.

2-D sphere images generated with varying albedo and lighting
directions (degree of tilt angle and pan angle). (a) S1 = (60,135);
(b) S2 = (60,180); (c) S3 = (60,—135); (d) S4 = (60,90); (e)
S5 = (90,0); (f) S6 = (60,—90); (g) S7 = (60,45); (h) S8 = (60,0); (i)
S9 = (60,—45).

IV. TRAINING ALGORITHM OF THE PROPOSED MODEL

Back-propagation learning is employed for supervised
training of the proposed model to minimize the error function
defined as

m

Er = Z (Ruybrid, — Di)2

=1

(15)

where m denotes the number of total pixels of the 2-D image,
Ryypria, denotes the sth output of the neural network, and D;
denotes the +th desired output equal to the sth intensity of the
original 2-D image. For each 2-D image, starting at the input
nodes, a forward pass is used to calculate the activity levels of
all the nodes in the network to obtain the output. Then, starting at
the output nodes, a backward pass is used to calculate  Er /0w,
where w denotes the adjustable parameters in the network. The
general parameter update rule is given by

OFEr
wt+1)=w(t)+ Aw(t) = w(t) + 7 ( 8w(t)> (16)
where 7 denotes the learning rate.
The details of the learning rules corresponding to each ad-
justable parameter are given below.
Output layer: The combination ratio for each point Ay, (%)
and A, (¢) is calculated iteratively by

)\dk (t + 1) = )\dk (t) + A)\dk (t)
= A, (t) + 20 (Di(t) — Ruybria, (1)) Ra, (1),
)

k=1,....m
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Fig. 4. Comparisons of synthetic images and recovered surfaces of sphere, sombrero and vase. (a) The depth map of the objects. (b) The recovered result by the
diffuse reflectance model [11]. (c) The recovered result by the specular reflectance model [37]. (d) The recovered result by the hybrid reflectance model [31]. (e)

The recovered result by the proposed approach.

TABLE 1
THE ABSOLUTE MEAN ERRORS BETWEEN ESTIMATED AND DESIRED DEPTHS OF A SYNTHETIC OBJECT’S 3-D SURFACES, WHERE BOTH LIGHT AND VIEWING
DIRECTIONS ARE UNKNOWN. (Iterations = 10)

Mean absolute The diffuse | The specular | The hybrid |The proposed
depth error and Lights reflectance | reflectance | reflectance | reflectance
CPU time model ([11]) | model ([37]) | model ([31]) model

S1, 84,87 0.1738 0.5542 0.5270 0.153
S2, S5, S8 0.1699 0.6079 0.6300 0.151
Sphere with S3, S6, S9 0.1730 0.5555 0.5337 0.154
Variant albedo|  S1, S5, S9 0.1669 0.5584 0.6031 0.148
S3, S5, 87 0.1669 0.5944 0.6073 0.148
CPU time (Avg.) 50.102 sec | 309.325 sec | 405.283 sec | 58.885 sec
S1, S4, S7 0.4125 0.4319 0.4034 0.1396
S2, S5, S8 0.4125 0.4446 0.4334 0.1395
Sombrero S3, S6, S9 0.4124 0.4421 0.4086 0.1399
S1, S5, 89 0.5126 0.4320 0.4161 0.1514
S3. 85,87 05124 0.4319 0.4130 0.1516
(CPU time (A’vg;)  50.953 sec | 310.667 sec | 410.490 sec | 60.067 sec
S1, 84,87 1.3145 0.982 0.854 0.1808
S2, S5, S8 1.3077 1.018 0.920 0.1859
Vase S3, S6, S9 1.3103 1.010 0.887 0.1886
S1, S5, 89 1.3055 1.004 0.887 0.1861
S3, S5, 87 1.3207 0.725 0.595 0.1877
CPU time (Avg.)| 52465 sec | 316.055 sec | 412.783 sec | 60.798 sec

Asp (B + 1) = Ag, (1) + AN, (2)
=Xs (t) + 20 (D (t) — Ruybria, (t)) R, (1),

(18)
where Dj,(t) denotes the kth desired output; Ryypria, () de-
notes the kth system output; R4, (¢) denotes the kth diffuse in-
tensity obtained from the up subnetwork; R, (¢) denotes the kth
specular intensity obtained from the low subnetwork (as shown
in Fig. 1); m denotes the total number of pixels in a 2-D image,
and 7 denotes the learning rate of the neural network.

For a gray image, the intensity value of a pixel is in the in-
terval [0, 255]. To prevent the intensity value of Ryybrid , from
exceeding the interval [0, 255], then the rule

A+ A =1

k=1,...,m,

19)

where Ay > 0 and \; > 0, must be enforced. Therefore, the
combination ratio A4, and A, is normalized by

)\d,‘(t—}—l)
Mg, (t+1)= k k=1,.
dk( + ) /\dk(t+1)+ksk(t+l)7 ) ,m
As, (t4+1)
A, (t4+1)= b , k=1,....m. (20
) e ) 20

Subnetworks: The normal vector calculated from the sub-
network corresponding to the diffuse component is denoted as
ng, = (Vd,, , Vdyy s Vds, ) for the kth point on the surface, and the
normal vector calculated from the subnetwork corresponding to
the specular component is denoted as ns, = (Vs,, , Vssy s Usgy )
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TABLE 1I
THE MEAN ERRORS BETWEEN THE ESTIMATED DEPTHS AND DESIRED DEPTHS OF THE 3-D FACE SURFACES IN FIG. 5. (Iterations= 20)
The proposed

Mean The diffuse | The specular | The hybrid reflectance | The proposed

error reflectance reflectance reflectance model with reflectance
(Eq. 29) | model ([11]) | model ([37]) | model ([31]) |const of hybrid model

ratio

Fig. 5(a) 1.5524 1.5268 1.5259 1.1586 1.0992
Fig. 5(b) 1.3517 1.3550 1.3533 1.0358 0.9644
Fig. 5(c) 1.9476 1.9542 1.9546 1.5963 1.5348
Fig. 5(d) 1.6007 1.6018 1.6039 1.2913 1.2243
Fig. 5(e) 1.2396 1.2457 1.2443 0.9576 0.9060
Fig. 5()
Average |

(®)

(@

Six individuals in the Notre Dame Biometrics Database D used to test the proposed approach (these images include both males and females).

©
Fig. 5.

Diffuse Intensity Specular Intensity

Hybrid Intensity

@

Fig. 6. Estimated reflection components and normal vectors of a human face
in the Yale Face Database B by the proposed approach. (a) The diffuse intensity.
(b) The specular intensity. (c) The hybrid intensity. These three images are the
estimated results of the proposed approach. (d) The X-component of the normal
vector. (e) The Y-component of the normal vector.

for the kth point. The normal vectors ng, and n,, are updated
iteratively using the gradient method as

v, (t + 1) =va;, () + Avg,,
=va,, (t) + 205;(t) (Dr(t) — Ruybria, (t)) .
71=12,3,
Ve, (E+ 1) =ws,, (1) + Avs,,
=, (t)+2nr hj(t) (Dk(t) — Rhybrid,c (t)) )
7=123 (21)

where s;(t) denotes the jth element of illuminant direction s;
hj(t) denotes the jth element of the halfway vector h, and r

e) )

denotes the degree of the specular equation in (14). The updated
vd; ,, and v, , should be normalized as follows:

v, (t+1)
(1) =T
v+ 1) = o ]
vg., (4 1)
o (t+1) = —2& . j=1,23. 22
R WY N -

To obtain the reasonable normal vectors of the surface from
the adaptive hybrid-reflectance model, n4, and ng, are com-
posed from the hybrid normal vector nj of the surface on the
kth point by

ng(t+1) = Ag, (t+1)ng, (t+1)+ A5, ((+1D)ng, ((+1) (23)

where A4(¢t+ 1) and As(t + 1) denote the combination ratios for
the diffuse and specular components.

Since the structure of the proposed neural networks is like
a mirror in the center layer, the update rule for the weights
between Layers 2 and 3 of the two subnetworks denoted as
W, and Wy (see Fig. 2) can be calculated by the least square
method. Hence, W, and W at time ¢+ 1 can be calculated by

Wa(t+1) -

W, (t+1)

Va(t+1)T (24)
V.(t+1)T (25)

(Va(t+1)"Va(t+1))

(Vo(t+ 1TV (t4+1)) 7"

where V4(t+1) and V4 (¢+ 1) denote the weights betweens the
output and central layers of the two subnetworks for the diffuse
and specular components, respectively.

Additionally, for fast convergence, the learning rate n of the
neural network is adaptive in the updating process. If the current
error is smaller than the errors of the previous two iterations,
then the current direction of adjustment is correct. Thus, the
current direction should be maintained, and the step size should
be increased, to speed up convergence. By contrast, if the current
error is larger than the errors of the previous two iterations, then
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Fig. 7.

Reconstructed surfaces of the proposed algorithm compared with three existing approaches. (a) The original 2-D facial image. (b) The recovered result

by the diffuse reflectance model [11]. (¢) The recovered result by the specular reflectance model by [37]. (d) The recovered result by the hybrid reflectance model

[31]. (e) The recovered result by the proposed approach.

(b) (©)

Fig. 8. Reconstructed results from two different approaches. (a) The original
2-D image of the human face. (b) The reconstructed result of the diffuse
reflectance model [11]. (c) The reconstructed result of the proposed approach.

the step size must be decreased because the current adjustment is
wrong. Otherwise, the learning rate 1 does not change. Thus, the
cost function E7 could reach the minimum quickly and avoid
oscillation around the local minimum. The adjustment rule of
the learning rate is given as follows:

If (Err(t—1) > Err(t) and Err(t—2) > Err(t))

n(t+1) =n(t) +¢,
Else If (Err(t—1) < Err(f) and Err(t—2) <
Err(t))
n(t + 1) = n(t) — &, where { denotes a

given scalar.
Else n(t+1) = n(t).

Additionally, the prior knowledge was used as the initial
values of the proposed neural network for specific object classes
to enhance the results of 3-D surface reconstruction and reduce
the learning time. For example, for the face surface reconstruc-
tion problem, the normal vectors of a sphere’s surface were
used as the initial values of the proposed neural network due to
their similar structures.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, four experiments were performed to demon-
strate the proposed approach. In these experiments, both the di-
rection of the light and the observer’s viewing direction were
unknown. The experiments were intended to test whether the
proposed algorithm can reconstruct the objects well even when
the lighting and viewing directions are not known in advance.
The first experiment used images of the synthetic objects used
for testing. The estimated depth map was compared with the
true depth map to examine the reconstruction performance. The
second experiment used several images corresponding to real

surfaces of human faces for testing. These images were down-
loaded from the Yale Face Database B! under different lighting
conditions with variant albedos. In the third and fourth experi-
ments, images of human faces and general objects captured in
our photographing environment were used to demonstrate the
generality of the proposed approach.

A. Experiment on Images of Synthetic Objects

This section presents quantitative results of synthetic-object
reconstruction. The results of the proposed approach were
compared with those of three existing approaches: the diffuse
[11], specular [37], and hybrid models [31]. Three synthetic ob-
jects—sphere, sombrero, and vase, which were mathematically
generated by (26)—(28), respectively—were used for testing

2_2__ 02 : 2 2 < 2
2ay) = § Vel Tttt g
0, otherwise
2 2
A(oy) =15 4 15c0s <_v17+y ) en
z(z,y) =V f(y)? — 22 (28)

In (26), r = 45,0 < z, y < 100, and the center is located at
(z,y) = (50,50). In (28), f(y) = 0.6 — 0.3y(6y + 1)%(y —
1)2(3y — 2). The shaded images of the sphere were synthe-
sized with different albedo values and directions as shown in
Fig. 3. The different albedos were 0.6 for the bottom right of
the sphere, 0.8 for the top left of the sphere, and 1 for the rest
part. The locations of light sources in Fig. 3(a)—(i) are S1 =
(60,135), S2 = (60,180), S3 = (60, —135), S4 = (60, 90),
S5 = (90,0), S6 = (60, —90), S7 = (60,45), S8 = (60,0),
and S9 = (60, —45), where the first component is the degree of
tilt angle and the second component is the degree of pan angle.
The center of image is set as the origin of the coordination. The
z-y plane is parallel to the image plane. The z axis is perpen-
dicular to the image plane.

Fig. 4 and Table I show the experimental results. Table I
presents five groups of images with different illuminant angles
from the left, right, and front for 3-D reconstruction. Both the
estimated and synthetic surfaces were normalized within the in-
terval [0, 1]. The first row (sphere object) of Fig. 4 indicates that
the surface with variant albedo is difficult to handle by conven-
tional approaches and that the proposed approach performs best.
Table I indicates that the proposed approach achieves the lowest
mean errors in all illumination conditions.

Thttp://cve.yale.edu/projects/yalefacesB/yalefacesB.html.
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Fig. 9. More reconstructed results of human faces in Yale Face Database B by using the proposed approach.

Fig. 10. Photographing environment with eight electronic flashes used to
capture images under variations in illumination set up in our lab.

For the sombrero object, the experimental results from the
diffuse reflectance model and the proposed approach are very
similar to the results for original shape, and the specular and
hybrid reflectance models did not yield very good results. The
sombrero object had a very sharp shape and many shadows (both
cast and attached). Cho’s approaches (the specular [37] and hy-
brid reflectance models [31]) are very likely to cause distortion
because they use a single image to recover the shape. The image
may have invalid pixel values because of saturated pixels in
shadows, and therefore the information from single image may
not be sufficient.

For the vase object, the proposed approach reconstructs the
synthetic vase very successfully, but the result of the diffuse
reflectance model caused clear distortion, which may be due
to the convex of the vase. When the vase was illuminated, the
convex of the vase was shiny, and the Lambertian assumption
could not approximate it well.

Additionally, Table I includes the CPU time used by each
approach for shape reconstructions. Each approach was imple-
mented using Matlab 6.1 software on a 1.2 GHz Pentium III-

based PC with 256 MB RAM. The analytical results demon-
strate that the CPU time used by the proposed approach is sim-
ilar to that used by the Lambertian model [11] and is much lower
than that used by the specular [37] and hybrid reflectance ap-
proaches [31].

These experiments also employ the data set in the University
of Notre Dame Biometrics Database? for objective comparison.
The database comprises 3-D face coordinate data and their cor-
responding 2-D front view. Fig. 5 shows six images of size 160
x 160 from the database. Unlike with the synthetic objects, nei-
ther the estimated surface nor the 3-D face surface of these im-
ages are normalized within the interval [0, 1]. To evaluate the
performance of the proposed approach and other approaches, a
function was defined to use the z- and y-partial derivatives of
z(x,y) instead of the absolute mean error to calculate the error
between the estimated depths and desired depths of 3-D face
surfaces as

M N 2 2
0z(z,y) 9z(z,y) dz(z,y) 0z(z,y)
Z 1\/( Bzy - Bxy ) +( 8yy - 8yy )

M- N

(29)
where Jz(x,y)/0r and 0%(x,y)/Ox denote the z-partial
derivatives of z(z,y) and Z(z,y), respectively; 0z(z,y)/dy
and 0%(z,y)/0y denote the y-partial derivatives of z(z,y)
and 2(z,y), respectively; and M and N denote the z and y
lengths, respectively. Table II shows the mean errors between
the desired depths of 3-D face surfaces and the estimated
depths using different approaches. According to the experiment
on the images of the three synthetic objects and the dataset
in the University of Notre Dame Biometrics Database, the
proposed approach can be applied to more general objects and
can perform better than existing approaches.

To evaluate the impact of adaptive hybrid ratio on the per-
formance of the proposed network, the performance of the pro-

2Univcrsity of Notre Dame Biometrics Database Distribution,

http://www.nd.edu/~cvrl/UNDBiometricsDatabase.html.
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(e)By ss (HBy s6

Fig. 11.

(8)By s7 (h)By sg

Images of an object illuminated by the eight different light sources, respectively. These images can be categorized into three groups: left-hand-side

illuminated images (by s1, s2, s3), right-hand-side illuminated images (by s6, s7, €8), and front illuminated images (by s3, s4, s5).

(b) (©)

Fig. 12. Reconstructed results of the object obtained from images in Fig. 11. (a) From the images illuminated by s1, s, and s3. (b) From the images illuminated

by se, s7, and ss. (c) From the images illuminated by s3, s4, and s5.

(a) (b) (c) (d (e)

Fig. 13.

Better reconstructed results of the object from the images in Fig. 11. (a) From the images illuminated by s», s4, and s7. (b) From the images illuminated

by s», s3, and s7. (¢) From the images illuminated by s, s5, and s¢. (d) From the images illuminated by s, s3, and ss. (¢) From the images illuminated by s,

s3, and sg.

posed neural network with constant hybrid ratio was also de-
termined. Table II clearly indicates that the mean errors of the
proposed network with constant hybrid ratio are less than those
of other approaches and can be further decreased if the hybrid
ratio is adjusted in the learning process.

B. Experiment on Yale Face Database B

This experiment employed face images downloaded from
the Yale Face Database B for testing. For each person, three
images were taken in which their pose is fixed and they are
illuminated by three different light directions. After pro-
cessing with the proposed algorithm, the diffuse, specular,
and hybrid intensity values. Additionally, the surface can be
reconstructed using the surface normal vectors. Fig. 6 shows
an example using the proposed approach to estimate different
reflection components and normal vectors of a human face

in the Yale Face Database B. Fig. 7 shows the comparison
between three existing approaches and the proposed human
face reconstruction approach. Fig. 7(b)—(d) illustrates the re-
constructed results of the diffuse [11], specular [37], and hybrid
reflectance models [31], respectively. Fig. 7(e) illustrates the
reconstructed results of the proposed approach, which clearly
indicate that the proposed algorithm performs better than the
three conventional approaches. Fig.7 (b) and (e) shows that the
reconstructed shape from the proposed approach is sharper and
more apparent, especially on part of the nose, than that from
the specular reflectance model. The reconstructed results of the
specular reflectance model by [37] and the hybrid reflectance
model by [31], as shown in Fig. 7(c) and (d), exhibit serious
distortions.

The above reconstructed results clearly show that the recon-
structed performance of the specular model [37] and the hybrid
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(b) By 1,88

(€) By $1,82,53,54,
$6,58

(a) By s;

(d) By s1,52,83,88
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(c)By s1.85,56

() By 51,852,834,
$6,57,58

Fig. 14. Results of 3-D object reconstruction from Fig. 11 using different numbers of images (light sources). (a) The reconstruction uses one 2-D image. (b) The
reconstruction uses two 2-D images. (c) The reconstruction uses three 2-D images. (d) The reconstruction uses four 2-D images. (e) The reconstruction uses seven

2-D images. (f) The reconstruction uses eight 2-D images.

Original 2-D
images

3-D surfaces

reconstructed

by the diffuse
reflectance
model [11]

3-D surfaces
reconstructed

by the proposed
hybrid model

Fig. 15. Reconstructed 3-D facial surfaces from the 2-D pictures of our laboratory team members by the diffuse reflectance model [11] and the proposed approach.

reflectance model [31] do not work well on human faces. There-
fore, the following experiment only compared the diffuse re-
flectance model [11] with the proposed approach. Fig. 8§ com-
pares the reconstructed results between the diffuse reflectance
model [11] and the proposed approach. The experiments indi-
cate that the reconstructed results of the two approaches are sim-
ilar. Finally, Fig. 9 shows more reconstructed results of human
faces from Yale Face Database B. To compare the results easily,
the angles of the faces were set to be equal. The reconstructed
results demonstrate that the proposed approach performs well
on different human faces in Yale Face Database B.

C. Experiment on Images of Human Faces Captured in Our
Photographing Environment

To test and verify the performance of the proposed approach
on the facial images of our laboratory members and other im-

ages of general objects, a photographing environment was de-
signed as shown in Fig. 10. To equalize the strength of dif-
ferent light sources to photographed objects, the photographic
environment was constructed as a hemisphere. The radius of
the hemisphere was 2 m. Eight computer-controlled electronic
flashes (Mikona MV-328) were placed on the hemisphere at po-
sitions 51 = (53,30), s2 = (30,63), s3 = (20,30), s4 =
(15,45), s5 = (—20,30), s¢ = (—30,63), s; = (—53,60),
and ss = (—53,30), respectively. The light position is repre-
sented as (degree of pan angle, degree of tilt angle), where the
center of the hemisphere is the same as the origin of the coordi-
nate. Fig. 11 shows the captured images of a bear pottery illu-
minated by the eight light sources. The images of Fig. 11(a)—(d)
were illuminated by the light sources on the right-hand side of
the object, while those of Fig. 11(e)—(h) were illuminated by the
light sources on the left-hand side of the object with slightly dif-
ferent angles and positions.
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Reconstructed by [11]
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Reconstructed by our
method

Fig. 16. Reconstructed 3-D surfaces of general objects by the diffuse reflectance model [11] and the proposed approach. The left side of each raw image denotes
the 2-D image of the object; the center part denotes the reconstructed surface by the diffuse reflectance model [11]; and the right side denotes the reconstructed
surface by the proposed approach. (a) A pottery bear. (b) A dummy head. (c) A toy figurine. (d) A basketball. (e) An octagon iron box.

To understand the influence of illuminant positions and an-
gles on the performance of the proposed approach, the proposed
approach was tested on three groups of images: left-hand-side
(by sl, s2, s3), right-hand-side (by s6, s7, s8), and front
illuminated images (by s3, s4, s5). The illuminant direction
was based on the viewpoint of the photographed objects.
Fig. 12 shows the reconstructed results calculated from the
images corresponding to these three groups, respectively. The
reconstruction in Fig. 12(a) was calculated from the images of
Fig. 11(a)—(c); the reconstruction in Fig. 12(b) was calculated
from the images of Fig. 11(f)—(h), and the reconstruction in
Fig. 12(c) was calculated from the images of Fig. 11(c)—(e).

In Fig. 12(a), the object is illuminated from the right-hand
side, so its variant intensities are most obvious on the left
part of the object’s surface. Therefore, the left side of the
reconstructed object is better than its right part. Similarly, in
Fig. 12(b), the object is illuminated from the left-hand side,
so the reconstructed result is better in the right side of the
object. The result in Fig. 12(c) is calculated from the images
in Fig. 11(c)—(e). These images are illuminated from the front
and have very similar image intensities. Therefore, the image
information is insufficient to reconstruct the 3-D surface well. If
the input images are too similar, then the least square problem
in the irradiance equation is difficult to solve. The experimental
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results indicate that the information of images illuminated on
only one side is (not enough or insufficient) for 3-D reconstruc-
tion. Therefore, for better recovery, more different illumination
conditions should be used to obtain more data on the object’s
surface.

Fig. 13 shows better reconstructed results of the objects, cal-
culated using different combinations of the left-hand-side illu-
minated, right-hand-side illuminated, and front illuminated im-
ages. Therefore, to obtain better reconstructed results, images
should be taken with different illuminant angles from the left,
right, and front to provide sufficient surface data for 3-D recon-
struction.

To verify the performance of the proposed reconstruction ap-
proach under different numbers of light sources, Fig. 14 shows
the experimental results using one, two, three, four, seven, and
eight images (light sources). Clearly, the results in Fig. 14(a)
and (b), using one and two images, are not good, since they
overlook many features of the bear. By contrast, the results in
Fig. 14(c)—(f) using more than two images are better than those
in Fig. 14(a) and (b). The bear retains its key features and shape
details. The experimental results in Fig. 14 show that at least
three images should be used for fine reconstruction. However,
the reconstructed results using more than three images are not
necessarily better than the reconstructed result using three im-
ages. This experimental result is consistent with the theoretical
basis of the proposed approach, which requires evaluating three
sets of variables. Hence, using two images only leads to an un-
derdetermined problem, while using more than three images
leads to an overdetermined problem. Therefore, three 2-D im-
ages were used to reconstruct the surface of a 3-D object using
the proposed approach and avoid unnecessary calculation.

Consequently, the influence of the illuminant angles and po-
sitions is very significant. Since the proposed approach is based
on the shape from the shading approach, the results depend on
the reconstructed information from 2-D images. The experi-
mental results demonstrate that the illuminant positions and an-
gles should not be too close.

Fig. 15 shows the reconstructed results of human faces of
the laboratory members using the diffuse reflectance model [11]
and the proposed approach. For comparison, all angles of the
faces were set to be similar. The reconstructed faces from the
proposed approach are sharpest and have the strongest facial
features. For example, the noses of the reconstructed results are
more conspicuous by the proposed approach than by the diffuse
reflectance model.

D. Experiment on Images of General Objects Captured in Our
Photographing Environment

In the final experiment, images of a pottery bear, a dummy
head, a toy figurine, a basketball, and an octagon iron box cap-
tured in the photographing environment were used for testing.
Fig. 16 shows the 2-D images and the results of 3-D reconstruc-
tions using the diffuse reflectance model [11] and the proposed
approach. The reconstructed results by the proposed approach
seem good. In Fig. 16(d), the imprint of the English words of
the basketball clearly appears on the reconstructed surface. In
Fig. 16(e), the details of the box such as the ridge and the edge
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are also reconstructed well. However, the reconstructed results
by the diffuse reflectance model [11] are not as good as those by
the proposed approach, and the diffuse reflectance model cannot
reconstruct the surfaces of objects, as shown in Fig. 16(e). The
experimental results indicate that the proposed approach can re-
construct not only the rough sketch but also the surface detail.

VI. CONCLUSION

This paper proposed a novel 3-D image reconstruction
approach, which considers both the diffuse and specular re-
flection components of the reflectance model simultaneously.
Two neural networks with symmetric structures were used to
estimate these two reflection components separately and to
combine them with an adaptive ratio for each point on the
object surface. Additionally, this paper attempted to reduce
the distortion caused by variable albedo variation by dividing
each pixel’s intensity by the corresponding rough-albedo value.
Then, these intensity values were fed into the neural network
to learn the normal vectors of the surface by the back-prop-
agation learning algorithm. The critical parameters, such as
the light source and the viewing direction, were also obtained
from the learning process of the neural network. The normal
surface vectors thus obtained can then be applied to 3-D surface
reconstruction by enforcing integrability method. Extensive
experimental results based on a public image database, and
the images captured in the photographing environment built
in the lab, have demonstrated that the proposed approach can
reconstruct the 3-D surfaces of more general and real-world
objects better than several existing approaches.

The contributions of this paper can be summarized as follows.

1) Images caught under three different light sources were
used to solve the SFS problem without exact light source lo-
cations.

2) The proposed approach considers the changes in albedo
on the object surface, so that good reconstruction results
could be obtained not only for human faces but also for
general objects with variant albedo.

3) The proposed symmetric neural network structure with
adaptive learning procedure does not require any special
parameter setting or smoothing conditions. The system also
converges easily and is stable.

4) The proposed network estimates the point-wise adaptive
combination ratio of diffuse and specular intensities such that
the different reflecting properties of each point on the object
surface are considered to achieve better surface reconstruc-
tion performance.
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