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A 3-D Surface Reconstruction Approach Based on
Postnonlinear ICA Model

Chin-Teng Lin, Fellow, IEEE, Wen-Chang Cheng, and Sheng-Fu Liang

Abstract—Photometric stereo technique deals with the recon-
struction of three—dimensional (3-D) shape of an object by using
several images of the same surface taken from the same viewpoint
but under illuminations from different directions. In this paper,
we propose a new photometric stereo scheme based on a new re-
flectance model and the postnonlinear (PNL) independent compo-
nents analysis (ICA) method. The proposed nonlinear reflectance
model consists of diffuse components and specular components for
modeling the surface reflectance of a stereo object in an image. Un-
like the previous approaches, these two components are not sepa-
rated and processed individually in the proposed model. An un-
supervised learning adaptation algorithm is developed to estimate
the reflectance model based on image intensities. In this algorithm,
the PNL ICA method is used to obtain the surface normal on each
point of an image. Then, the 3-D surface model is reconstructed
based on the estimated surface normal on each point of image by
using the enforcing integrability method. Two experiments are per-
formed to assess the performance of the proposed approach. We
test our algorithm on synthetically generated images for the recon-
struction of surface of objects and on a number of real images cap-
tured from the Yale Face Database B. These testing images contain
variability due to illumination and varying albedo in each point of
surface of human faces. All the experimental results are compared
to those of the existing photometric stereo approaches tested on
the same images. The results clearly indicate the superiority of the
proposed nonlinear reflectance model over the conventional Lam-
bertian model and the other linear hybrid reflectance model.

Index Terms—Enforcing integrability, Lambertian model,
neural network, photometric stereo, reflectance model, surface
normal.

I. INTRODUCTION

ETERMINING the shape of objects from an image in a
D scene is extremely difficult. The image typically exhibits a
smooth variation in brightness from one point to another, which
is known as shading. This perception of shape from gradual
changes in brightness is denoted as shape from shading (SfS).
It was one of the first areas of study in computer vision and
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was proposed by Horn [1] in the early 1970s. Unfortunately,
measurements of brightness at a single point in the image only
provide one constraint, whereas describing surface orientation
requires two variables. Therefore, it is an ill-posed problem. In
addition, the method must have knowledge of the reflectance
properties of the surface.

Photometric stereo approach is able to estimate local surface
orientation by using several images of the same surface taken
from the same viewpoint but under illuminations from different
directions. It was first introduced based on the Lambertian re-
flectance model by Woodham [2]. It has received wide attention
and several efforts have been made to improve the performance
of recovery [3]-[21]. The main limitation of classical photo-
metric stereo approach is that the light source positions must
be accurately known and this necessitates a fixed, calibrated
lighting rig. Hence, an improved photometric stereo method for
estimating the surface normal and the surface reflectance of ob-
jects without a priori knowledge of the light source direction or
the light source intensity is proposed by Hayakawa [20]. The
method used the singular-value decomposition (SVD) method
to factorize image data matrix of three different illuminations
into surface reflectance matrix and light source matrix based on
the Lambertian model. However, they still used one of the two
added constraints (i.e., at least 6 pixels in which relative value of
the surface reflection is constant or known and at least 6 frames
in which the relative value of the light-source intensity is con-
stant or known) for finding the linear transformation between the
surface reflectance matrix and the light source matrix. McGun-
nigle [7] introduced a simple photometric stereo scheme which
only considered a Lambertian reflectance model, where the self
and cast shadow as well as inter-reflections were ignored. Three
images at tilt angle of 90° increments were captured. He sug-
gested using his method as a first estimate for an iterative proce-
dure. In fact, this method is a simplified version of Woodham’s
method in which the illumination directions are chosen by math-
ematics simplification. Belhumeur, etc. [10] showed that a gen-
eralized bas-relief transformation is a transformation of both the
surface shape and the surface albedo for an arbitrary Lambertian
surface. The set of images of an object in fixed post but under all
possible illumination conditions is a convex cone (illumination
cone) in the space of images. When the surface reflectance can
be approximated as Lambertian, this illumination cone can be
constructed from a handful of images acquired under variable
lighting. They used as few as seven images of a face seen in a
fixed pose, but illumination by point light sources at varying,
unknown position, to estimate its surface geometry and albedo
map up to a generalized bas-relief transformation. Despite they
announced their success under unknown light source directions,
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Illustration of diffuse reflection. s is a point light source, n is the normal vector of surface on point P, € is the angle between light source and the normal.

The diffuse reflection scatters incoming light equally in all directions. (b) Illustration of specular reflection. It obeys Shell’s law, that is, 8; = 6,..

the estimation of surface methods still need to be assisted with
some added constraints or more images.

Another more difficult problem is estimating a surface with an
unknown reflectance map. Cho and Minamitani [4] tried to re-
duce three—dimensional (3-D) reconstruction errors due to spec-
ularities. Since the specular reflection produced incorrect sur-
face normal by elevating the image intensity, they readjusted the
pixel with greatest intensity by re-scaling with a modified reflec-
tivity. Kay and Caelli [6] used the photometric stereo method to
estimate not only the surface normal but also the roughness pa-
rameters associated with the Torrance-Sparrow (TS) reflectance
model. The basis they used was to apply nonlinear regression
techniques to the photometric stereo method. Nayar [8] used a
linear combination of Lambertian and an impulse specular com-
ponent. He used distributed light sources for photometric stereo
of surface whose reflection is a linear sum of specular and Lam-
bertian components.

In this paper, we propose a novel postnonlinear (PNL) ICA-
based reflection model that consists of the diffuse components
and the specular components. We do not need to separate the
two components from the novel nonlinear reflection model. An
unsupervised learning adaptation algorithm is used to tune up
the proportion of hybrid automatically based on image intensi-
ties. The technique of the PNL independent components anal-
ysis (ICA) [22], [23] is used to solve the surface normal on each
point of an image. The goal of PNL ICA is to nonlinearly trans-
form the data such that the transformed variables are as statisti-
cally independent from each other as possible. Finally, the 3-D
surface model is reconstructed from the surface normal on each
point of an image, obtained by the PNL ICA technique, using
the method of enforcing integrability [24]. The reason is that it
is easy to implement.

The rest of this paper is organized as follows. Section II de-
scribes the basic reflectance models, including the Lambertian
model and non-Lambertian. The details of the proposed PNL
ICA-based reflectance model and its derivations are presented
in Section III. Extensive experiments have been performed to
evaluate the performance of the proposed approach, and parts
of the results are presented in Section VI. Conclusions are sum-
marized in the last section.

II. THE BASIC REFLECTANCE MODELS

There are mainly two kinds of light reflection components
considered in computer vision: diffuse reflection and specular
reflection. Diffuse reflection is a uniform reflection of light with
no directional dependence for the viewer. The phenomenon of

diffuse reflection is illustrated in Fig. 1(a). s is a point light
source, n is the normal vector of the surface on point P,  is the
angle between light source direction and the normal vector of
the surface. When s illuminates straightly to the surface, the dif-
fuse reflection scatters incoming light equally in all directions.
Thus we have identical reflected energy for all viewing direc-
tions. The light reaching the surface is reflected in the reflected
direction with the same angle. The phenomenon of specular re-
flection is illustrated in Fig. 1(b). It means if a point light source
s illuminates to the surface, the reflected light is visible only at
the reflected direction r, where 6; = 0,..

It is important that a good reflectance model should be able
to describe the surface shape accurately from the image inten-
sity [8]. Basically, the reflectance surface can be categorized to
be Lambertian or non-Lambertian. The Lambertian surfaces are
surfaces that only have diffuse reflectance, which implies that
the surface reflects light equally in all direction. On the other
hand, the non-Lambertian model considers the specular com-
ponent in addition to the diffuse component in the Lambertian
model.

A. Lambertian Model

Suppose that the recovering of surface shape, denoted by
z(x,y), from shaded images depends upon the systematic
variation of image brightness with surface orientation, where
z is the depth field, and z and y form the 2-D grid over the
domain D of the image plane. Then, the Lambertian reflectance
model used to represent a surface illuminated by a single point
light source is written as

Ry (n(z,y),a(z,y)) = La(z,y)s"n(z,y), Yo,y € D (1)

where R4(-) is diffuse component intensity, a(x,y) is diffuse
albedo on position (z,y) of surface, s is a column vector indi-
cating the direction of point light, and L is light strength. The
surface normal on position (x,y), denoted by n(z,y), can be
represented as
T
n(a:,y) _ [—p(:v,y) — Q(xvy) 1] (2)
VP (@ y) + ¢*(z,y) + 1

where p(z,y) = 0z(z,y)/0z and q(z,y) = dz(x,y)/dy are
the surface gradients [2].

The Lambertian model describes a simple nonshiny surface
where any incident light is reflected evenly in all directions after
modulation by the surface’s reflectivity. It is a simple but useful
reflectance model. It is commonly adopted in the field of com-
puter vision as a model of the ideal surface. Despite the sim-
plicity and the popularity of the Lambertian model, it is quite
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well known that this model is unable to generalize with strong
specular components. However, in most cases, the reflectance of
objects does not always follow the Lambertian model. Consid-
ering only the diffuse component is not enough for practical ap-
plications, so a more general non-Lambertian reflectance model
is required.

B. Non-Lambertian Model

In order to effectively exhibit the reflectance model, both the
diffuse component and specular component should be consid-
ered for reconstructing the surfaces of 3-D objects. The kind of
hybrid model is called non-Lambertian model. Specular com-
ponent occurs when the incident angle of the light source is
equal to the reflected angle and this component is formed by two
terms: the specular spike and the lobe. The specular spike is zero
in all directions except for very narrow range around the direc-
tions of specular reflectance. The specular lobe spreads around
the direction of specular reflectance. The specular components
used to represent a surface illuminated by a single point light
source is written as:

R, (n(z,y), B(z,y)) = LB(z,y) (hTn(z,y))" , Yo,y € D

3)
where Rs(+) is specular component intensity, 3(x, y) is specular
albedo on position (z,y) of surface, and the vector h = (s +
v)/||s + V|| is usually called the halfway-vector and represents
the normalized vector sum between the light source direction
s and the viewing direction v. With the specular component
described in (3), the non-Lambertian model proposed in [8] can
be represented as following linear combination equation

Rhybrid(x?y) = )‘Rd($7y)+(1_)‘)Rs(x/y)7 Vfb/y €D (4)

where Rpybriq is the total intensity of the hybrid surface, and
R, and R are the diffuse intensity and the specular intensity,
respectively, and ) is the weight of the diffuse component. How-
ever, the existing approach considers only the linear hybrid com-
bination as described by (4). It is not enough to model a non-
linear hybrid reflectance model. Therefore, in this paper, we
propose a novel nonlinear reflection model that consists of the
diffuse components and the specular components. We do not
need to separate the two components from this novel nonlinear
reflection model, because an unsupervised learning adaptation
algorithm based on images intensities can help to tune up the
proportion of hybrid. In the next section, we shall give more
discussions in the novel nonlinear reflection model.

C. The Proposed Nonlinear Reflectance Model

In this paper, we propose a new nonlinear reflectance model;
it can model both the diffuse components and specular compo-
nents into a single model. This model is described by

2
) 4)

where R, onlinear(-) denotes the nonlinear reflectance intensi-
ties, a is a 3 x 1 column vector and it represents to the light

Ruontineas (0(%,9), (%, 9),7(#,))
= Ly(z,y) exp (_ (cos™ (a7 n(@. 1)

20%(z,y)
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Fig. 2. Normalized exponential functions with different sigma values (Angle:

—(x/2) ~ (x/2).

direction and viewing direction, L is light strength, and (z, y)
is composite albedo on position (z, y) of surface. o(z,y) is the
variance of exponential function. Fig. 2 shows the normalized
exponential functions with different sigma values, where angle
is from —7/2 to /2. When o(z, y) is large, the Ryonlinear (")
models more the diffuse component intensity. When o(x,y)
gets smaller, R, onlinear (-) models more the specular component
intensity. So, we can obtain the best approximation by the ad-
justment of o (z, y). However, the following task is to solve the
surface normal, n(x, y) for all z and y, of (5) from 2-D intensi-
ties images. Since the n(z, y) vectoris a3 x 1 column vector, it
is a limit that we need at least three images under different light
directions. If the location of light sources were given, we could
solve the normal vector on surfaces of every location (z,).
But unfortunately, light sources could not be known in the gen-
eral applications. Because the problem of solving (5) is a blind
source separation problem [25]-[33], an unsupervised learning
adaptation algorithm based on images intensities can be used in
solving (5). The technique of the PNL ICA is used to solve the
surface normal on each point of image. The PNL ICA is a tech-
nique that exploits higher-order statistical structure in data. The
goal of PNL ICA is to nonlinearly transform the data such that
the transformed variables are as statistically independent from
each other as possible. The detail for how to find n(z, y) of each
point in image is showed in the following PNL ICA model.

III. DETERMINING THE SURFACE NORMAL OF OBJECTS BY
PNL ICA MODEL

In this section, we shall introduce the PNL ICA model and
explain how to use this model to solve the normal vectors on
surfaces of the objects in an image based on the nonlinear re-
flectance model that we proposed.

A. PNL ICA Model

In this section, we introduce the particular nonlinear
mixtures, which can be considered to be a hybrid struc-
ture consisting of a linear stage followed by a nonlinear
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Fig. 3. PNL mixing ICA model (n = 3).

gl(e Xl(t)) B

Fig. 4. Separation architecture of the PNL ICA model (n = 3).

stage. It is shown in Fig. 3. This structure, which was in-
troduced by Taleb and Jutten [23], provides the observation
x(t) = (21(t),22(t),...,2,(t))T, which is the unknown
nonlinear mixture of the unknown statistically independent
source s(t) = (s1(t), s2(t),...,5,(t))T

n

xl(t) = fz Zaiij(t) s 1= 1,2,...,71 (6)

=1

where f;(-) are unknown invertible derivable nonlinear func-
tions, and a;;(i,j = 1,2,...,n) denote the scalar elements of
a regular mixing matrix A. In the following, the mixture vector
x(t), and by extension the pair (A, f), will be called a PNL
model.

Contrary to general nonlinear mixtures, the PNL model has
a favorable separability property. That is, using the separation
structure (g, B) shown in Fig. 4, it can be demonstrated, under
weak conditions on the mixing matrix A and on the source dis-
tribution, that the output independence can be obtained if and
only if f; e g; are linear for all index 7 from 1 to n. This means
that the sources y(t) = (y1(t),y2(t), ..., yn(t))T, which was
estimated using an independence criterion on the outputs, are
equal to the unknown sources with the same indeterminacies
noted in linear mixture model.

B. PNL ICA Model by Maximum Likelihood (ML) Estimation

A very popular approach to estimating the ICA model is the
ML estimation. ML estimation is a fundamental method of sta-
tistical estimation. One interpretation of ML estimation is that
we take those parameter values as estimates that give the highest
probability for the observations. In following section, we show
how to apply ML estimation technique to PNL ICA estimation.

1641

The similar derivations of (7)—(17) based on the mutual infor-
mation as a cost function are shown in the paper by Taleb [22],
[23].

1) Independence Criterion and Deriving the Likeli-
hood: The statistical independence of the sources is the
main assumption. Then, any separation architecture is tuned
so that the components of its output y become statistically
independent. This is achieved if the joint density factorizes as
the product of the marginal densities

p(y) = Hpi(yi)- @)

According to this result, the density p,(x) of the mixture
vector x = f(As) can be formulated as

pa(x) =|det B[] lg'(8:, )| p(y)

=1

:|detB|H|g/(9i7l’i)| Hpj(yj> ®)
i=1 J=1

where B = A~1, g(-) is the inverse function of f(-), the pa-
rameters @; are adjusted to cancel the effect of nonlinear func-
tion f(-), and the p;(y,) denote the densities of the indepen-
dent components. Equation (8) can be expressed as a function
of B = (by,bs,...,b,)T and x, giving

pz(x) = | det B| H lg'(8;, ;)] Hpj (b7g(0,x)) (9
i=1 j=1
where g(6,x) = (91(61,21),92(02, %2), - . -, g (B, 24))"
Assume that we have T observations of x, denoted by x(1),
x(2),...,x(t),...,x(T). Then the likelihood can be obtained
as the product of this density evaluated at the 7" points. This is
denoted by L(B, #) and we have

L(B.6) =[] |det BIT] lg'(8:, )| [ s (bTg (8.x(1))) -

t=1 i=1
(10)
In general, it is more practical to use the logarithm of the like-
lihood, since it is algebraically simpler. This does not make
any difference here since the maximum of the logarithm is ob-
tained at the same point as the maximum of the likelihood. The
log-likelihood is given by

i=1

log L(B, 6)

T n n
= log H lg'(8:,x:)] [] s (b] & (8,%(t)))| det B

J=1

+> log [p; (b g (8,x(t)))] + log| det B

Y
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To simplify notation and to make it consistent to what can denote
the sum over the sample index ¢ by an expectation operator, thus,
we have

logLB 9) {Zlog|g (0;,2:) }

+FE Zlog[pj(bjrg(ﬂ,x(t)))] +log|det B| (12)

i=1

where the expectation operator here is an average computed
from the observed samples.

2) The Derivation of Adaptation Rules With ML Esti-
mation: To perform maximum log-likelihood estimation in
practice, we need an algorithm to perform the numerical
maximization of log-likelihood. In this section, we perform
the numerical maximization of log-likelihood by gradient
methods. First, the maximization of the log-likelihood requires
the computation of its gradient with respect to the separation
architecture parameters B and 8;,7 = 1,2,...,n.

The first layer: To estimate the hnear stage parameters, we
must compute the gradient of log-likelihood of (12) with respect
to the separation architecture parameters B. Therefore, we have

1 0log (B, )

T 9B
=b Xn:hj (bTg (8.x(t))) g (8, x(t))" 3 + (BT) ™"
B (13)
where
hj(y;) = moga]z;’; ;) _ Zj E‘Zj; and y; = bTg (,x(t)).

Therefore, this immediately gives the following adaptation rule
for ML estimation

ABxE{Y h; (bTg(8.x(1)) g (8.x(1)"

j=1
+ B! and
B+ —gk) 4 ns(AB)

(14)
15)

where 7p is the learning rate for adapting B. This result has
the same expression as in the linear source separation. This al-
gorithm is often called the Bell-Sejnowski algorithm [25]. It is
the simplest algorithm for maximizing likelihood by gradient
methods. However, due to the inversion of the matrix B in (14)
is needed in every step, it converges very slowly. The conver-
gence can be improved by whitening the data, and especially by
using the natural gradient [26] that is based on the geometrical
structure of the parameter space. Therefore, (16) is used to esti-
mate the linear stage instead of (14).

ABox | B3 hy (v(0)y(t)"

+I|B  (16)
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where y(t) = b} g(6,x(t)).
The second layer: The derivation of the log-likelihood with
respect to parameters 8; of the nonlinear function g;(0;, x;) is

10logL(B,6) _ . [9loglg;(8i, )]
T 08; B 08;

- ) 99i(0;, ;)

+E blg (8,x(t)) bji | — 9, (17)

J=1

From the derivation of the log-likelihood with respect to pa-
rameters #;, we update the parameters 8; of the g;(8;,x(t))
function by the following adaptation rule

, dlog |g;(6i, ;)|
A8, x E {—aoi

+ FE z": h; (b?g (0, X(f))) b,
j=1

x 7391'(8901‘.,331‘)} and (18)
8t =0 1 0, (08;) (19)

where 7jp, is the learning rate of adapting 6;.
3) Estimation of the Source Densities: Denoted by py(y)
the assumed densities of the independent components, and

_ Py, ()
Dy, (y])

dlogpy, (v;)

20
y; 20

hi(y;) =

Constrain the estimates of independent components y; =

Te(6,%(t)) to be uncorrelated and to have unit variance.
Then the ML estimator is locally consistent, if the assumed
densities p,, (y;) fulfill

E {y;h;(y;) h;(y])} > 0, Vj.

The proof can be found in the [27]. Therefore, the limitation
shows how to construct families consisting of only two densi-
ties, so that the condition in (21) is true for one of these densities.
For example, consider the following log-densities

2y

logp™(s) = a1 — 2logcosh(s) (22)

2
logp™(s) =ag — <% - logcosh(s)) (23)
where o, o are positive parameters that are fixed so as to
make these two functions logarithms of probability densities.
Actually, these constants can be ignored in the following. Then,
for super-Gaussian independent components, the pdf defined by
(22) is usually used. This means that the nonlinear function h(-)
is the tanh function

h*(y) = —2tanh(y). (24)

For sub-Gaussian independent components, the other pdf de-
fined by (23) is used. Then the nonlinear function h(-) can be
written as

h~(y) = tanh(y) —y. (25)
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Finally, the choice between the two nonlinearities in (24) and
(25) can be made by computing the nonpolynomial moment

k; = sign {E [— tanh(y;)y; + (1 - tanh(yj)z)] }
1=12,....,n (26)

using some estimates of the independent components. Then, the
source distribution is super-Gaussian when k; = 1 and sub-
Gaussian when k; = —1, where the expectation value in the
formulas is for all ¢, ¢t = 1,2,...,T.

C. Solving the Proposed Nonlinear Reflectance Model by PNL
ICA Model

In this section, we shall describe the way of applying the
PNL ICA model to estimate the normal vector n(z,y) on the
object surface corresponding to each pixel in the image. Since
the n(x,y) vector is a 3 x 1 column vector, it is required that
we need at least three images under different light directions for
its estimation. Hence, to reconstruct the 3-D surface of an ob-
ject through its images, we have to take three gray-value images
under three different illuminants. Assuming an image contains
T pixels in total, then we can rearrange all the gray values of the
three images into a 3 x T' matrix, with each row representing an
image, and each column the gray values of a single pixel under
three different illuminants. Putting this matrix into (5), and com-
paring (5) with (6), we can define the nonlinear function in the
PNL ICA model as

5 (03(6)) = I (t) exp &%)

t=1,2,...,T, andj = 1,2,3 (27)
where o(t) = Zf’zl a;s;(t) and s(t) is the n(z,y) vector that

we are looking for. From (27), we can obtain the inverse non-
linear f(-) function as

g (o(2), 1;(8)) = cos <\/_2”2(t) " <Ivj<(:>)))

t=1,2,...,T, and j =1,2,3 (28)

where I(t) is the input vector, i.e., the three gray values of the
tth pixel of the three images with different illuminants, and o (¢)
is the variant of the ¢th pixel in the exp() function in (27). We
shall feed the input vectors, I(¢), ¢ = 1,2,...,T, to the input
of the network shown in Fig. 4. Because all these input vectors
come from the images belonging to the same object, the esti-
mated reflectance model should be exactly the same for each of
the three images; i.e., all the g;(-), i =1, 2, 3 are the same. With
such setting, we can obtain the final outputs through the net-
work computations shown in Fig. 4. To ensure the final outputs
to be independent components, we apply the unsupervised adap-
tation rules derived in Section III-B-2 to tune o(t) and B ma-
trix. Upon convergence, the final output is the estimated normal
vector n(z,y) on the object surface corresponding to the tth
pixel in the image for ¢t = 1,2,...,T. The complete algorithm
for the above computation is shown in Fig. 5, which consists of
9 steps.
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Algorithm:

1. Set k=1 and arbitrarily assign the initial values of o(¢) and ¥(¢),
t=1,...,7,and B,

2. Set sampling index ¢=1.

3. Compute e(z) from Eq. (27),

ei(t) = cos[\/— 262 (1) In(’i (%( t))J’ i=1,2,3.

4. Compute y(7) as follows:
y(©)=Be(1).

5. Calculate the normal vector of surface n(¢) =

RO
vl

and the surface

albedo 7(t)=||y(t)|, vit.

6. Update B matrix by

B =Y fi+ by [BY.
where 775 is the learning rate of B.
7. Update o(#) value using the following equation:

10

where 7, is the learning rate of o.

U;(f)(kﬂ) = O'f(t)(k) + T]o‘{i-'— 40'1'(I)IOg(xi(t)>|:ihj(yj)bﬁi|} ,

8. Repeat Step 3~Step 7, until 7 equal to 7.
9. Set k=k+1 and repeat Step 2~Step 8, until convergence.

Fig. 5. Unsupervised updating rules for the proposed 3-D surface
reconstruction scheme.

A8
.

Fig. 6. Shadow images of sphere object with different light directions.

The separation architecture of the PNL ICA model can be
considered to be a hybrid structure consisting of a nonlinear
stage followed by a linear stage. Therefore, after compensating
for the postnonlinearities, the problem is essentially reduced to
a linear mixture of the form [matrix depending on lighting and
viewing directions] * [surface normal vector]. Using the ICA
decomposition, we rewrite the equation in Step 4 in Fig. 5 as

y(t) = Be(t), ore(t) = B7'y(1) = y()ATa(t)  (29)

where AT = [aj,ay,a3]7 = B! is the matrix depending
on lighting and viewing directions and has unit length, n(¢) is
the estimated normal vector corresponding to the #th pixel, £ =
1,2,...,T, and ~(t) is albedo of the ¢th pixel. However, the
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Fig. 7. The estimated normal vectors of sphere object by our approach. (a) The true normal vectors. (b) The estimated normal vectors from the first row of Fig. 5.

(c) The estimated normal vectors from the second row of Fig. 5.

decomposition in (29) is not unique. If there is an invertible
matrix G, which satisfies

AT =ATG and n=G 'a (30)

where A and n(t) are, respectively, the true matrix depending
on lighting and viewing directions of images I, and the normal
vector of the ¢th pixel in the standard XYZ coordinates, then
the linear ambiguity is belonging to a generalized bas-relief
(GBR) [10]-[12] transformation. A GBR transformation scales
the surface and introduces an additive plane. There is an inherent
nine-parameter ambiguity in the surface normals, light source
and viewing directions of images. According to Georghiades’s
[12] studies, if the surface of an object is seen under variable
light direction, but with fixed viewpoint, then the linear ambi-
guity can be reduced to three GBR parameters. As far as the
surface normal vectors are concerned, we can only recover

n~ G la
and
1 g3 0 0
Gl=_— 0 gs O 3D
91 -g —g2 1

where g; are the three GBR parameters. On the other hand, the
three light sources corresponding to the three images do not lie
in the same plane (noncoplanar), so the columns of matrix A are
linearly independent. In addition, using the ICA decomposition
in (29), we can obtain an independent basis matrix A, so the
ambiguity can further be denoted a diagonal matrix, i.e., g1 = 0
and go = 0. So, the relation between the normals in the stan-
dard XYZ coordinates and those in the most independent coor-
dinates system is only by g3 factor. For the performance eval-
uation of 3-D image reconstruction, both estimated surface and
synthetic one are normalized within the interval [0, 1]. There-
fore, the influence of g3 factor on the estimated 3-D surface can
be removed.

Fig. 6 shows a simple example of a sphere object. The first
row shows a set of shadow images and the second row shows
the other set of shadow images. This synthetic image was gen-
erated using the depth function of a sphere object with dif-
ferent light directions. So the content of the images is different.
Fig. 7(a) shows the true normal vectors of the sphere. The es-
timated normal vectors in Fig. 7(b) and (c) were generated by

using our approach corresponding to the two sets of shadow im-
ages in the first row and second row of Fig. 6. According to the
estimated normal vectors in Fig. 7(b) and (c), it is obvious that
the waveforms are similar to the true normal vectors. So, the es-
timated normal vectors do not depend on the content of the im-
ages. Furthermore, as far as the order of the sources being con-
cerned, the similarity between human face and sphere is adopted
in the supervised ICA algorithm to find the order of sources in
the proposed scheme. We compute the correlation between the
estimated normal vectors of surface of faces and the normal vec-
tors of a sphere due to their similar structure, so the order of
normal components can be identified.

IV. 3-D SURFACE RECONSTRUCTION FROM THE SURFACE
NORMAL BY ENFORCING INTEGRABILITY

In this section, we use the enforcing integrability approach to
obtain the deeper information for reconstructing of the surface
of an object by its normal vectors. This approach was proposed
in the earliest stage by Frankot and Chellappa in 1988 [24]. Sup-
pose that we represent the surface z(z, y) by a finite set of inte-
grable basis functions ¢(z,y,w) so that

2(w,y) = Y c(w)d(z,y,w)

weN

(32)

where w = (u,v) is a 2-D index, 2 is a finite set of indexes, and
{¢(z,y,w)} is a finite set of integrable basis functions which
are not necessarily mutually orthogonal. We chose the discrete
cosine basis so that {c¢(w)} is exactly the full set of discrete
cosine transform (DCT) coefficients of z(x, y). Since the partial
derivatives of the basis functions, ¢,.(z,y,w) and ¢, (z,y,w),
are integrable, the partial derivatives of z(z,y) are guaranteed
to be integrable as well; that is, 2., (z,y) = 2zy.(x,y). Note that
the partial derivatives of z(xz, y) can also be expressed in terms
of this expansion, giving

el y) = Y c(w)da(z,y,w) (33)
zy(x,y) = Z c(w)py(z,y,w) 34)

where ¢..(z,y,w) = 9¢(-)/0x and ¢, (z,y,w) = d¢P(-)/y.
Suppose we now have the possibly nonintegrable estimate
n(z,y) from which we can easily deduce from (2) the possibly
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Fig. 8. Synthetic sphere surface object.

TABLE 1

(@) (b)
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Fig. 9. The 2-D sphere images generated with varying albedo and different
lighting directions (the degree of tilt angle, the degree of pan angle). (a) S1 =
(30,140). (b) S2 = (30,90). (c) S3 = (30,40). (d) S4 = (30,180). (e)
S5 = (0,0). () S6 = (30,0). (g) ST = (30, —140). (h) S8 = (30, —90). (i)
S9 = (30, —40).

nonintegrable partial derivatives 2, (z,y) and Z,(z,y). These
partial derivatives can also be expressed as a series, giving

a(@,y) = Y E1(w)a(z, y,w) (39)
we
Zy(z,y) = Z Co(w)y(z,y,w). (36)

weN

THE ABSOLUTE MEAN ERRORS BETWEEN ESTIMATED DEPTHS AND DESIRED
DEPTH OF SYNTHETIC OBJECT’S 3-D SURFACES. (BOTH LIGHT AND VIEWING
DIRECTIONS ARE UNKNOWN IN THE EXPERIMENT)

Mean absolute Lights Georghiades’s| Hayakawa’s | Our proposed
depth error e method ([11]) | method ([20]) method
S1,S2,S83 | 0.048875 0.07688 0.02025
Sphere with S7,S8,S9 | 0.050316 0.07924 0.02687
Variant albedo S1,S5,S3 | 0.033133 0.07279 0.02055
S1, S8, S6 0.033529 0.07869 0.01837
S1,85,87 | 0.031729 0.07621 0.01829

A method has been proposed for finding the expansion coef-
ficients ¢(w) given a possibly nonintegrable estimate of surface
slopes 2, (z,y) and 2, (z,y)

Pe(W)e1 (W) + py(w)e
pe(w) + py (W)

where p,(w) = [ [|¢z(z,y,w)|’dzdy and p,(w) =
J [ ¢y (2, y, w)|*dzdy. Finally, we can reconstruct the object’s
surface by performing the inverse 2-D DCT on the coefficients
c(w).

c(w) =

2@) o= (u,v) € Q (37)

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, two experiments are performed to assess the
performance of the proposed approach. In the first experiment,
we test the algorithm on synthetically generated images for
the reconstruction of surface of objects. The light direction
and viewing direction are unknown. In the second experiment,
we test the algorithm on a number of real images captured
from the Yale Face Database B [34] showing the variability
due to illumination and there is varying albedo in each point
of surface of human faces. All the experimental results are
compared to those of the Georghiades’s approach in [11] and
the Hayakawa’s approach in [20] tested on the same images.



1646

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 6, NOVEMBER 2005

Fig. 10.

Fig. 11. Three training images with differ light source positions from Yale
Face Database B in frontal. (b) Surface normal corresponding to the three source
images.

A. Quantitative Experimental Results by Reconstructing a
Synthetic Sphere Object

Quantitative experimental results have been obtained by re-
constructing a synthetic sphere object. The true depth map of
the synthetic sphere object is generated mathematically as

2 _ 2 _ 2
o) = { V7P

where r = 48,0 < =z, y < 100, and the center is located
at (z,y) = (51,51). The sphere object is showed in Fig. 8.
This synthetic image was generated using the depth function in
(38) and the surface gradients were computed using the discrete
approximation. Fig. 9 shows the synthetic images generated
according to the non-Lambertian model with varying albedo
and different directions. The different albedos are, 0.6 for right-
bottom of the sphere, 0.8 for left-top of the sphere, and 1 for
the rest part. The locations of light sources in Figs. 9(a)—(i) are
S1 = (30,140), S2 = (30,90), S3 = (30, 40), S4 = (30, 180),
S5 = (0,0), S6 = (30,0), S7 = (30,—140), S8 = (30, —90),
and S9 = (30, —40), where the first component is the degree of
tilt angle and the second component is the degree of pan angle.
The center of image is set as the origin of the coordination. The

if 22 + 92 < r?

38
otherwise (38)

10 individuals from the Yale face database B used to test our algorithm.

il
i ““{‘}n‘n\\
&\\ \I\‘“ 5
\1\\‘\'}}{}\\\\\\‘“‘“ =

Fig. 12. The surface albedo of human face in Fig. 11. The results of 3-D model
reconstruction by (b) our proposed algorithm, (c) Georghiades’s approach in
[11], and (d) Hayakawa’s approach in [20].

x-y plane is parallel to the image plane. The z-axis is perpen-
dicular to the image plane. The experimental results are shown
in Table I and the proposed method is compared with two pho-
tometric stereo algorithms, Hayakawa’s method and Georghi-
ades’s method. In Table I, we take five groups of images with
different illuminant angles from the left, the right, and the front
for 3-D reconstruction. Both estimated surface and synthetic one
are normalized within the interval [0, 1]. According to Table I, it
is found that the proposed method can achieve the lowest mean
errors compared with the other methods in all illumination con-
ditions.

B. Experimental Results on Real Images With Varying Albedo

In the second experiment, we test the algorithm on a number
of real images from the Yale Face Database B [34] showing
the variability due to illumination and there is varying albedo
in each point of surface of human faces. This subset contains
444 viewing conditions (1 pose x 37 illumination conditions,
where these illumination conditions contain Subsetl (12°) and
Subset2 (25°) in the Yale Face Database B.) for 10 individuals.
Fig. 10 shows the 10 individuals from the Yale Face Database B
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(@) (b)

Fig. 13.

used to test our algorithm, where each image size is 100 x 100
in pixels.

First, we take the images of the same person that was pho-
tographed under three different light sources from these testing
images arbitrarily shown in Fig. 11. We feed the normalized
images into our algorithm. After updating the parameters by
several iterations, we can get the normal vector of the surfaces
of human faces corresponding to each pixel in an image in
the output nodes. The results are shown in the second row in
Fig. 11, which are the first component, the second component,
and the third component of the surface normal vector in order.
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The results of 3-D model reconstruction by (b) our proposed algorithm, (c) Georghiades’s approach in [11], and (d) Hayakawa’s approach in [20].

Fig. 12 presents the results of 3-D human face reconstruction.
Fig. 12(a) shows the surface albedo of human face in Fig. 11.
Fig. 12(b) shows the result with our proposed algorithm. By
using the Georghiades’s approach [11] and the Hayakawa’s
approach [20], the reconstructed results are demonstrated in
Fig. 12(c) and (d), respectively. The results clearly indicate
that the performance of our proposed nonlinear reflectance
model is better than that of the Georghiades’s approach and
the Hayakawa’s approach. Comparing to the results obtained
by the Georghiades’s approach, the reconstructed surfaces with
the consideration of specular components in our algorithm,
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(a) (b) (c) (d)

Fig. 14.  The results of 3-D model reconstruction by (b) our proposed algorithm, (c) Georghiades’s approach in [11], and (d) Hayakawa’s approach in [20].

are obviously better in high-gradient parts such as the nose. VI. CONCLUSIONS

Besides, the Hayakawa’s approach did need added constraints,

it could reconstruct the 3-D model of human face similar as It has been claimed that methods based on reconstructing 3-D

our approach, but when the constraints is unavailable, then it face model for face recognition are quite successful. When we
could not reconstruct the 3-D model of human face. Finally, are estimating the surface shape, the success of the reflectance
the reconstructed results for the testing patterns are shown in  model for surface reconstruction of objects depends on two
Fig. 13 and Fig. 14. major components: the diffuse component and the specular
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component. Therefore, in this paper, we proposed a new non-
linear reflection model consisting of the diffuse components
and the specular components. The past researches only con-
sidered the linear combination of the diffuse components and
the specular components. We do not need to separate the two
components in the proposed novel nonlinear reflection model.
In addition to this major contribution, several contributions of
the proposed algorithm are listed.

1)  In the past, we have to know the locations of light
sources first for solving the photometric stereo prob-
lems. But this is not practical in the real situations. In
this paper, we used the images under three different
light source locations to solve this problem. In our
method, we can still obtain a very good result even if
the locations of light sources are not given.

2)  Using the unsupervised nonlinear ICA network for
solving photometric stereo problems does not need
any desired output value and the smoothing condi-
tions. It is easier to converge and make the system
stable.

The performance comparisons of our proposed nonlinear re-
flectance model to the Georghiades’s approach in [11] and the
Hayakawa’s approach in [20] were made. In the first experi-
ment, we test the algorithm on synthetically generated images
for the reconstruction of surface of objects. The results clearly
indicate that the performances of our proposed nonlinear re-
flectance model are better than that of the Georghiades’s ap-
proach in [11] and the Hayakawa’s approach in [20]. In the
second experiment, we test the algorithm on a number of real
images from the Yale Face Database B containing the variability
due to illumination and varying albedo in each point of sur-
face of human faces. All the experimental results showed that
the performance of the proposed nonlinear reflectance model is
better than those of the two proposed existing photometric stereo
methods.
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