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Designing Structure-Specified Mixed H2=H Optimal Controllers
Using an Intelligent Genetic Algorithm IGA

Shinn-Jang Ho, Shinn-Ying Ho, Ming-Hao Hung, Li-Sun Shu, and Hui-Ling Huang

Abstract—This brief proposes an efficient method for designing
accurate structure-specified mixed H2 H optimal controllers
for systems with uncertainties and disturbance using an intelligent
genetic algorithm (IGA). The newly-developed IGA with intelli-
gent crossover based on orthogonal experimental design (OED)
is efficient for solving intractable engineering problems with
lots of design parameters. The IGA-based method without using
prior domain knowledge can efficiently solve design problems of
multi-input–multi-output (MIMO) optimal control systems, which
is very suitable for practical engineering designs. High perfor-
mance and validity of the proposed method are evaluated by two
test problems, a MIMO distillation column model and a MIMO
super maneuverable F18/HARV fighter aircraft system. It is
shown empirically that the IGA-based method has good tracking
performance, robust stability and disturbance attenuation for
both controllers, compared with the existing methods.

Index Terms—Intelligent genetic algorithm (IGA), mixed
H2 H optimal control, orthogonal experimental design (OED).

I. INTRODUCTION

M IXED optimal control design for systems
with uncertainties and disturbance is an active area of

research [1]–[10]. There are mainly two approaches to dealing
with the mixed optimal controller design problem;
one is the structure-specified controller [1]–[7] and the other
is the output-feedback controller [8]–[10]. The problem of de-
signing a globally optimal full-order output-feedback controller
for polytopic uncertain systems is known to be a nonconvex
NP-hard optimization problem [10]. The techniques available
in the literature for the output-feedback approach include
branch-and-bound [8], convex upper bounds using semidefinite
programming [9], bilinear matrix inequalities (BMIs) [10], etc.
A new approach to the design of locally optimal output-feed-
back controllers via local BMI optimization is proposed in [10].

Since the order of the output-feedback controller is much
higher than that of the plant, it is not easy to implement the
controller for high-order systems in practical engineering appli-
cations [2]. To cope with this difficulty, the structure-specified
approach solves the mixed optimal control problem
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TABLE I
HISTORY CHAIN OF RESEARCHES ON STRUCTURE-SPECIFIED

MIXED H =H OPTIMAL CONTROL PROBLEMS

from suboptimal perspective. The investigated problem of struc-
ture-specified mixed optimal control design is char-
acterized by 1) nonlinear multimodal search space, 2) large-
scale search space, 3) tight constraint, and 4) expensive objec-
tive function evaluation. This brief aims to develop a practical
and efficient method for economically obtaining a potentially
good approximation to a globally optimal solution to the inves-
tigated problem.

Evolutionary computation is a robust search and optimization
methodology, which is able to cope with ill-behaved problem
domains, exhibiting attributes such as multimodality, disconti-
nuity, time-variance, randomness, and noise [11]. A survey of
evolutionary algorithms in control system engineering can be
found in [12]. Recently, researchers have become increasingly
interested in the use of genetic algorithm (GA) as a means to
design various classes of control systems [1]–[4], [6].

The history chain of researches on structure-specified
mixed optimal control problems is shown in Table I.
Chen and Cheng [2] used simple GA (SGA) to design
multi-input–multi-output (MIMO) optimal controllers for
practical applications, but their procedure needs prior domain
knowledge, i.e., the Routh–Hurwitz criterion for decreasing
the domain size of each design parameter. Kitsios [4] used a
GA-based method blended with multiobjective characteristics
to improve the method of [2]. Tan et al. [5] investigated the
problem of mixed MIMO optimal control design and
proportional-integral derivative (PID) tuning for multivariable
processes by Riccati equations and -based method. Re-
cently, Ho et al. [7] used an orthogonal simulated annealing
algorithm (OSA) to design MIMO optimal controllers. The
performance of the OSA-based method is superior to those of
MIMO optimal controllers [2], [4].

A newly-developed intelligent genetic algorithm (IGA) [13]
with intelligent crossover based on orthogonal experimental de-
sign (OED) [14], [15] can effectively solve intractable engi-
neering problems with lots of design parameters, such as com-
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Fig. 1. Control system with plant perturbation and external disturbance.

binatorial optimization problem [16] and fuzzy classifier de-
sign [17]. The contribution of the brief is to propose an IGA-
based method to obtain a near-optimal solution to the problem
of designing structured-specified mixed optimal con-
trollers for systems with uncertainties and disturbance without
domain knowledge and differentiability assumption. The pro-
posed method is evaluated by two test problems, a MIMO dis-
tillation column model [5] and a MIMO super maneuverable
F18/HARV fighter aircraft system [2], [4], [7]. It is shown em-
pirically that the IGA-based method has good tracking perfor-
mance, robust stability and disturbance attenuation, compared
with the existing methods for MIMO optimal controllers [2],
[4], [5], [7].

The remainder of this brief is organized as follows. Section II
presents a problem description. Section III gives the IGA-based
design method. Section IV gives two test problems to evaluate
the proposed method. Finally, Section V concludes this brief.

II. PROBLEM DESCRIPTION

Consider a MIMO control system with inputs and out-
puts as shown in Fig. 1, where is the nominal plant,
is the plant perturbation, is the controller, is the ref-
erence input, is the control input, is the tracking error,

is the external disturbance, and is the output of the
system [2]. Without loss of generality, the plant perturbation

is assumed to be bounded by a known stable function
matrix

(1)

where denotes the maximum singular value of a matrix .
If a controller is designed so that 1) the nominal closed-

loop system ( 0 and 0) is asymptotically
stable, 2) the robust stability performance satisfies the following
inequality:

(2)

and 3) the disturbance attenuation performance satisfies the fol-
lowing inequality:

(3)

then the closed-loop system is also asymptotically stable with
and . Where is a stable weighting function

matrix specified by designers. and are
the sensitivity and complementary sensitivity functions of the
system, respectively

(4)

and the -norm in (2) and (3) is defined as

(5)

A balanced performance criterion to minimize both and
simultaneously is to minimize the norm value [2], [4]:

. For advancing the system performance,
robust stability and disturbance attenuation are often not enough
in the control system design. The minimization of tracking error

(i.e., norm) should be taken into account

(6)

Where is the error which can be obtained from
the inverse Laplace transformation of with 0
and 0

(7)

In the proposed method, the handling of constraints (2) and (3)
is to recast the constraints as objectives to be minimized and,
consequently, a weighted-sum approach is conveniently used.
Therefore, the objective function of the investigated problem of
designing mixed optimal controllers is as follows:

(8)

A structure-specified controller of the following form [2]:

(9)

is assigned with some desired orders and to minimize ,
where

...
. . .

... (10)

for . Most of the conventional controllers used
in industrial control systems have fundamental structures such
as PID and lead/lag configurations. Such controllers are special
cases of the structure-specified controllers. A PI controller is a
special case of the PID controller where 0. For the PID
controller, we have 1, 2 and 0, i.e.

(11)

III. IGA-BASED DESIGN METHOD

The proposed design method uses IGA with intelligent
crossover based on OED. The used OED is briefly introduced
in Section III-A. The intelligent crossover operation of IGA is
described in Section III-B. Section III-C gives the IGA-based
design method. The superiority of IGA and how to efficiently
use IGA for solving various optimization problems can be
referred to [13].

A. Used OED

An efficient way to study the effect of several factors simul-
taneously is to use OED with both orthogonal array (OA) and
factor analysis [14], [15]. OED utilizes properties of fractional
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factorial experiments to efficiently determine the best combina-
tion of factor levels to use in design problems. OA is an array of
numbers arranged in rows and columns where each row repre-
sents the levels of factors in each combination, and each column
represents a specific factor that can be changed from each com-
bination. The term “main effect” designates the effect on re-
sponse variables that one can trace to a design parameter.

The two-level OA used in intelligent crossover is described
in the following. Let there be factors with two levels for each
factor. The total number of level combinations is for a com-
plete factorial experiment. To use an OA of factors, we ob-
tain an integer where the bracket represents
a ceiling operation, build a two-level OA with
rows and columns, use the first columns, and ignore
the other columns. OA can reduce the number of
combinations for factor analysis. The number of OA combina-
tions required to analyze all individual factors is only where

. Algorithm of constructing the two-level
OA can be found in [13].

For intelligent crossover, levels 1 and 2 of a factor represent
selected genes from parents 1 and 2, respectively. After evalua-
tion of the combinations, the summarized data are analyzed
using factor analysis. Factor analysis can evaluate the effects of
individual factors on the objective (or fitness) function, rank the
most effective factors, and determine the better level for each
factor such that the function is optimized. Let denote a func-
tion value of the combination , where . Define the
main effect of factor with level as where
and 1, 2

(12)

where 1 if the level of factor of combination is ;
otherwise, 0. Considering the case that the optimization
function is to be minimized, the level 1 of factor makes a better
contribution to the function than level 2 of factor does when

. If , level 2 is better. If , levels
1 and 2 have the same contribution. The main effect reveals the
individual effect of a factor. The most effective factor has the
largest main effect difference . Note that
the main effect holds only when no or weak interaction exists,
and that makes the experiment meaningful. After the better one
of two levels of each factor is determined, a reasoned combi-
nation consisting of factors with better levels can be easily
derived.

B. Intelligent Crossover

In the conventional crossover operations of GA, two parents
generate two children with a random recombination of their
chromosomes. The merit of intelligent crossover is that the
systematic reasoning ability of OED is incorporated in the
crossover operation to economically estimate the contribution
of individual genes to a fitness function, and consequently
intelligently pick up the better genes from two parents to form
the chromosomes of children. The high performance of intel-
ligent crossover arises from that intelligent crossover replaces
the random recombination and generate-and-test search for

children with the intelligent recombination using the systematic
reasoning method.

A candidate solution consisting of design parameters of an
optimization problem is encoded into a chromosome using bi-
nary codes. If values of a specific parameter in two parent chro-
mosomes are the same, this parameter is temporally unneces-
sary to participate in the intelligent crossover operation resulting
in a smaller number of participated parameters. Let be
the number of participated parameters in a parent chromosome.
Using the same division scheme, divide two chromosomes of
nonidentical parents into pairs of nonoverlapping gene
segments. The cut points are randomly specified from
the candidate cut points which separate individual pa-
rameters. One gene segment of a chromosome is regarded as a
factor of OED. To efficiently use all columns of OA excluding
the study of intractable interactions among design parameters,
the commonly used OA is and the largest value of

is equal to where the bracket represents a
floor operation. One intelligent crossover operation takes
(linear) fitness evaluations to efficiently explore the search space
of (exponential) combinations.

Two parents and breed two children and using
intelligent crossover at one time. How to use OED with pa-
rameters to achieve intelligent crossover is described as the fol-
lowing steps.

Step 1) Use the OA where
Step 2) Let levels 1 and 2 of factor represent the th pa-

rameter of a chromosome coming from parents
and , respectively.

Step 3) Evaluate the fitness values for experiment
where . Note that is the fitness
value of .

Step 4) Compute the main effect where
and 1, 2.

Step 5) Determine the better level for each factor. Select
level 1 for the th factor if . Otherwise,
select level 2.

Step 6) The chromosome of is formed from the intelli-
gent combination of the better genes from the de-
rived corresponding parents.

Step 7) Rank the most effective factors from ranks 1 to .
The factor with a large main effect difference has a
high rank.

Step 8) The chromosome of is formed similarly as
except that the factor with the lowest rank adopts
the other level.

Step 9) Verify that and are superior to the combi-
nations and parents according to the fitness perfor-
mance. If it is not true, select the best two combina-
tions from these combinations and parents as
the final children and for the elitist strategy.

C. Design of Controllers Using IGA

For convenience and simplicity, from the controller with (10),
we denote

(13)
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as the controller parameter vector, where
is the number of total design parameters. The fea-

sible solution is encoded using a binary string where
, [2], [4], [7]. The proposed IGA-

based design method is described as follows.

Step 1) For a given plant , specify the bound ,
weighting function matrix , and the controller
structure .

Step 2) Initialization: Randomly generate an initial popula-
tion of individuals.

Step 3) Evaluation: Compute fitness values of all
individuals.

Step 4) Selection: A conventional truncation selection is
used that the best individuals are
selected to form a new population, where is a se-
lection probability. Let be the best individual
in the population.

Step 5) Crossover: Randomly select parents in-
cluding for performing intelligent crossover
operations, where is a crossover probability.

Step 6) Mutation: Apply a conventional bit-inverse muta-
tion operation with a mutation probability to the
population. To prevent the best fitness value from
deteriorating, mutation is not applied to the best
individual.

Step 7) Termination test: If a prespecified number of
generations are achieved, then stop the algorithm.
Otherwise, go to Step 3).

IV. EXPERIMENTS

For comparisons with existing methods, two test problems
from [2] and [5] are used to evaluate the performance of the
IGA-based method. The control parameters of IGA are specified
as follows: 10, 0.2, 0.5, and 0.005.
Note that due to the merit of intelligent crossover, IGA uses a
smaller value of than conventional GAs. Let the string
length for each of parameters be 20 and then the length of
each chromosome is . Ten independent runs are performed
for each test problem.

A. Test Problem 1

Consider a highly coupled distillation column model studied
in [5]

(14)

The bound of the plant uncertainties is

(15)

To attenuate disturbance, a weighting function consisting
of a low-pass filter is

(16)

A typical controller obtained from the IGA-based method
with 1000 as shown in (17) at the bottom of the next
page.

Fig. 2. Output responses of the system for Problem 1 using various controllers.
(a) IGA-based. (b) Riccati-based [5]. The left hand sides of (a) and (b) are the
setpoint responses when setpoint changes at the first channel, and the other sides
are those when setpoint changes at the second channel.

TABLE II
PERFORMANCE COMPARISONS OF PROBLEM 1 IN TERMS OF J AND J

This IGA-based PID controller is applied to the control
system to illustrate the performance of the proposed method.
The output responses of the system with the derived IGA-based
and Riccati-based [5] controllers are shown in Fig. 2(a) and (b),
respectively. The proposed PID controller has a smaller rising
time and smaller coupling effects than the Riccati-based PID
controller. The performance of the IGA-based method in terms
of robust stability and disturbance attenuation (described by

) and tracking error (described by ) is better than that of
the Riccati-based method [5], as shown in Table II where
denotes the number of used function evaluations.
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B. Test Problem 2

For comparison with the methods proposed in [2], [4] and
[7], the same MIMO optimal control design problem is tested.
Consider the design problem of a longitudinal control system of
the supermaneuverable F18/HARV fighter aircraft in horizontal
flight at an altitude of 15 000 (ft) with Mach number 0.24, air-
speed 238.7 (ft/s), attack angle 25 (deg), and pitch
angle 25 (deg). The trim value of the path angle is 0
(deg) and the trim pitch rate is 0 (deg/s). The longitudinal
dynamics of the system can be described as

(18)

where , , and are given as (19), shown at the
bottom of the page, and and

. Where , , , ,
, and are the perturbations in symmetric thrust vec-

toring vane deflection, symmetric aileron deflection, symmetric
stabilator deflection, symmetric leading edge flap deflection,
symmetric trailing edge flap deflection, and throttle position,
respectively. Note that the rank of the matrix is only three. By
employing the pseudo-control technique [18], we can transform
the six control inputs ( , , , , , and ) to
three linearly independent variables. Therefore, the system can
be rewritten as

(20)

where and are given as (21), shown at the bottom of the
page.

Suppose the reference inputs are
and the system is encountering with the external distur-

bance . The bound
of the plant perturbation is

(22)

To attenuate disturbance, the stable weighting function
consisting of a low-pass filter is

(23)

A typical PID controller obtained from the IGA-based
methodwith 50 is (24), shownat the topof thenextpage.
AtypicalPIcontroller obtainedfromtheIGA-basedmethod
with 150 is (25), shown at the top of the next page.

Performance comparisons of various controllers in terms of
and are shown in Table III. The best OSA-based PID con-

troller of Problem 2 has 0.4393 and 2971. The best
IGA-based PID controller has 0.1488 and 565.
Table IV shows the statistical results from the 10 runs of Prob-
lems 1 and 2. The simulation results illustrate that the IGA-
based method can provide a very good solution to the problem
of designing structure-specified mixed optimal con-
trollers for systems with uncertainties and disturbance.

(17)

(19)

(21)
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(24)

(25)

TABLE III
PERFORMANCE COMPARISONS OF PROBLEM 2 IN TERMS OF J AND J

TABLE IV
PERFORMANCE OF THE IGA-BASED CONTROLLER FROM 10 RUNS

V. CONCLUSION

This brief proposes a method for obtaining a near-optimal
solution to the problem of designing structure-specified mixed

optimal controllers for systems with uncertainties and
disturbance using an IGA. The high performance and validity
of the proposed method are demonstrated by two test problems,
a MIMO distillation column model and a MIMO super ma-
neuverable F18/HARV fighter aircraft system with PI and PID
controllers. It is shown empirically that the performance of the
IGA-based method without using specific problem-dependent
strategies and knowledge is superior to those of some existing
methods in terms of tracking error, robust stability, and distur-
bance attenuation. The IGA-based method can be most widely
used for designing high-performance optimal controllers.
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