DOI 10.1007/s10898-004-7391-z Journal of Global Optimization (2005) 33: 337–347 © Springer 2005

Supermodularity in Mean-Partition Problems

F.H. CHANG and F.K. HWANG

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, P.R. China 300 (e-mail: fei.am91g@nctu.edu.tw; fhwang@math.nctu.edu.tw)

(Received 23 November 2004; accepted 4 December 2004)

Abstract. Supermodularity of the *λ* function which defines a permutation polytope has proved to be crucial for the polytope to have some nice fundamental properties. Supermodularity has been established for the *λ* function for the sum-partition problem under various models. On the other hand, supermodularity has not been established for the mean-partition problem even for the most basic labeled single-shape model. In this paper, we fill this gap and also settle for all other models except one. We further extend our results to other types of supermodularity.

Key words: mean-partition, supermodular

1. Introduction

Given a real-value function *λ* on the subsets of {1*,...,p*} with *λ*(ϕ) = 0, each permutation $\sigma = (\sigma_1, \ldots, \sigma_p)$ of {1,..., *p*} defines a vector $\lambda_{\sigma} = ((\lambda_{\sigma})_1, \ldots, (\lambda_{\sigma})_p)$ such that

$$
(\lambda_{\sigma})_k = \lambda \left(\cup_{i=1}^k \sigma_i \right) - \lambda \left(\cup_{i=1}^{k-1} \sigma_i \right) \quad \text{for } 1 \leq k \leq p.
$$

λ is called *supermodular* if for all subsets *I* , *J* of {1*,...,p*},

$$
\lambda(I\cup J)+\lambda(I\cap J)\geqslant\lambda(I)+\lambda(J),
$$

and *strictly supermodular* if the inequality is strict for all *I* , *J* not satisfying *I* ⊂ *J* or $J \subset I$.

The *permutation polytope* induced by λ , denoted H^{λ} , is the convex hull of $\{\lambda_{\sigma} : \text{ all } \sigma\}$. These polytopes have been studied in the literature with different motivations. For example, Shapley [6] studied the case of convex p-person game. For a subset $I \subseteq \{1, ..., p\}$ let $\lambda(I)$ denote the payoff to *I* if the members of *I* form an alliance. Then stability of an alliance *I* [∪]*J* requires λ to be supermodular. If not, say, there exist *I* and *J* with

^{*}This research is partially supported by a Republic of China National Science grant NSC 92-2115-M-009-014.

$$
\lambda(I\cup J)+\lambda(I\cap J)<\lambda(I)+\lambda(J).
$$

Let y_i be the payoff of player *i* for each *i* in $I \cup J$ under the alliance $I \cup J$. Then it is easily verified that either

$$
\sum_{i\in I} y_i < \lambda(I), \qquad \text{or } \sum_{i\in J} y_i < \lambda(J).
$$

In the first(second) case, $I(J)$ will form its own alliance to obtain a larger payoff.

The *core* of a convex p-person game is the solution set of the linear inequality system

$$
\sum_{i \in I} x_i \geq \lambda(I) \quad \text{for all } I \subseteq \{1, \dots, p\} \quad \text{and} \quad \sum_{i=1}^p x_i = \lambda(\{1, \dots, p\}). (1.1)
$$

Let C^{λ} denote the polytope defined by (1.1). Among other things (See Theorem 3.2 of [2] for more details), Shapley proved

THEOREM 1. *Suppose λ is supermodular. Then*

- (1) $H^{\lambda} = C^{\lambda}$,
- (2) *the vectors of* H^{λ} *are precisely the* λ_{σ} *'s where* σ *ranges over all permutations of* {1*,...,p*}.

The importance of Theorem 1 (1) is that if an optimization problem is to maximize a linear function of $\{x_i\}$, then C^{λ} provides a suitable setting for a linear programming solution. The importance of Theorem 1 (2) is that if the objective function is convex (in fact, quasi-convex suffices, see [5]), then an optimal solution can be found among the set of vertices of H^{λ} . Gao et al. [2] studied the single-shape sum-partition problem in which the indices of a set *N* of *n* real numbers $\theta_1 \leq \theta_2 \leq \cdots \leq \theta_n$ is to be partitioned into *p* parts π_1, \ldots, π_p , where the size of π_i is given to be $n_i({n_1, ..., n_p}): \sum_{i=1}^p n_i = n$ is called a *shape*), to maximize an objective function $f(\sum_{i=1}^p n_i = \sum_{i=1}^p \theta_i)$. For La subset of $\{1, ..., p\}$ define tive function $f(\sum_{j\in\pi_1}\theta_j,\ldots,\sum_{j\in\pi_p}\theta_j)$. For *I* a subset of $\{1,\ldots,p\}$, define $n(I) = \sum_{I \in I} n_i$. They defined $\lambda(I) = \sum_{I=1}^{n(I)} \theta_I$ and proved λ is supermodu-
lar. Therefore Theorem 1 is applicable Here H^{λ} is the convex bull of all lar. Therefore Theorem 1 is applicable. Here, H^{λ} is the convex hull of all (n, \ldots, n) -partitions (each partition is a point) and C^{λ} is the polytone (n_i, \ldots, n_p) -partitions (each partition is a point), and C^{λ} is the polytope defined by

$$
\sum_{i\in I}\sum_{j\in\pi_i}\theta_j \geqslant \lambda(I) \text{ for all } I \subseteq \{1,\ldots,p\} \text{ and } \sum_{j=1}^n\theta_j = \lambda(\{1,\ldots,p\}).
$$

While the sum partition problem has been dominating in optimal partition problems, other partition problems have also been considered. Define $\bar{\theta}_{\pi_i} = \sum_{j \in \pi_i} \theta_j / n_i$, namely, the mean of θ_j 's in π_i . Anily and Federgruen [1] first studied the single-shape mean-partition problem where the objective function is $f(\bar{\theta}_{\pi_1},...,\bar{\theta}_{\pi_p})$. However, the function λ as defined in (1.1) has not been proved to be supermodular and Theorem 1 is thus not applicable. not been proved to be supermodular and Theorem 1 is thus not applicable. In this paper, we prove the supermodularity.

2. Supermodularity

For the single-shape partition case, without loss of generality, we can assume that $n_1 \leq n_2 \leq \cdots \leq n_p$.

For *I* = {*i*₁*, i*₂*,..., i_k*}⊆{1*,..., p*}, we suppose that *i_i* < *i*₂ < · · · < *i_k*. Define $N_{i_k} = \sum_{x=1}^{n}$ $\sum_{x=1}^n n_{i_x}$ for $1 \leq k \leq |I|$. Set *λ*(*I*) = $\sum_{k=1}^{|I|}$ $\sqrt{2}$ \mathbf{I} $\sum_{k=1}^{n}$ $j = N_{i_{k-1}} + 1$ ⎞ [⎠]*.* (2.1)

We first prove

k=1

LEMMA 2. *For any shape partition* $\pi = (\pi_1, ..., \pi_p), \sum_{i \in I} \bar{\theta}_{\pi_i} \geq \lambda(I)$ *.*

Proof. Define $A = \{\theta_j : j \in \pi_i, i \in I\}$ and $B = \{\theta_1, \dots, \theta_{N_{i_{|I|}}}\}$ Suppose $\lambda(I)$ is final an A but $A \neq B$. Then we can reduce $\sum \overline{\theta}$, by replacing any $\theta \in \overline{\Theta}$ defined on *A* but $A \neq B$. Then we can reduce $\sum_{i \in I} \overline{\theta}_{\pi_i}$ by replacing any $\theta_j \in A \setminus B$ with a $\theta_i \in B \setminus A$. Therefore we assume $A - B$. Note that *A**B* with a $\theta_k \in B \setminus A$. Therefore we assume *A* = *B*. Note that

$$
\bar{\theta}_{\pi_i} = \sum_{j \in \pi_i} \theta_j (1/n_i), \tag{2.2}
$$

and $\theta_1, \ldots, \theta_{N_{i_{|I|}}}$ are ordered from small to large. In $\lambda(I)$, the sequence of the multipliers for the θ_i 's is

$$
\underbrace{\frac{1}{n_{i_1}},\ldots,\frac{1}{n_{i_1}}}_{n_{i_1}},\underbrace{\frac{1}{n_{i_2}},\ldots,\frac{1}{n_{i_2}}}_{n_{i_2}},\ldots,\underbrace{\frac{1}{n_{i_{|I|}}},\ldots,\frac{1}{n_{i_{|I|}}}}_{n_{i_{|I|}}},
$$

which are ordered from large to small. Since for any π , $\sum_{i \in I} \bar{\theta}_{\pi_i}$ is com-
puted by multiplying the same set of θ ,'s with the same set of multipliers puted by multiplying the same set of θ_i 's with the same set of multipliers, except in different parings, $\lambda(I)$ achieves the minimum by pairing reversely.

Define $\Delta_I(\pi) = \lambda(I) - \lambda(I\setminus\{i_1\}).$

LEMMA 3. *Suppose* $I \subset J$ *and* $i_1 = j_1$ *. Then* $\Delta_I(\pi) \leq \Delta_J(\pi)$ *. Proof.* First assume $n_{j_1} = 1$

$$
J: \overbrace{\theta_{1}}^{\pi_{j_{1}}}, \overbrace{\theta_{2}, \ldots, \theta_{n_{j_{2}}}, \theta_{n_{j_{2}}+1}}^{\pi_{j_{2}}}, \overbrace{\theta_{n_{j_{2}}+2}, \ldots, \theta_{n_{j_{2}}+n_{j_{3}}}, \theta_{n_{j_{2}}+n_{j_{3}}+1}, \ldots}^{\pi_{j_{3}}}
$$

$$
J': \underbrace{\theta_{1}, \theta_{2}, \ldots, \theta_{n_{j_{2}}}}_{\pi'_{j_{2}}}, \underbrace{\theta_{n_{j_{2}}+1}, \theta_{n_{j_{2}}+2}, \ldots, \theta_{n_{j_{2}}+n_{j_{3}}}}_{\pi'_{j_{3}}}, \theta_{n_{j_{2}}+n_{j_{3}}+1}, \ldots
$$

Figure 2.1. $\pi'_{j_{2}}$ and $\pi'_{j_{3}}$.

Let π' represent the corresponding partition on $J' = J \setminus \{j_1\}$. We use the same subscript j_k to remind the reader that $n_{j_k} = n'_{j_k}$ for all $2 \le k \le |J|$.
Figure 2.1 illustrates $\pi(J)$ and $\pi'(J')$. Note that the components of $\overline{\theta}$

Figure 2.1 illustrates $\pi(J)$ and $\pi'(J')$. Note that the components of *θ* is the representation (2.2)) cancels with the components in *θ* is exce (as in the representation (2.2)) cancels with the components in $\bar{\theta}_{\pi'_{jk}}$ except *jk* the first one in $\bar{\theta}_{\pi_{j_k}}$ and the last one in $\bar{\theta}_{\pi'_{j_k}}$. Hence

$$
\bar{\theta}_{\pi_{j_k}} - \bar{\theta}_{\pi'_{j_k}} = \frac{(\theta_{N_{j_k}} - \theta_{N_{j_{k-1}}})}{n_{j_k}} \quad \text{for } 1 \leqslant k \leqslant |J|.
$$

Consequently,

$$
\Delta_J(\pi) = \sum_{k=1}^{|J|} \frac{\theta_{N_{j_k}} - \theta_{N_{j_{k-1}}}}{n_{j_k}}.
$$

Similarly,

$$
\Delta_I(\pi) = \sum_{k=1}^{|I|} \frac{\theta_{N_{i_k}} - \theta_{N_{i_{k-1}}}}{n_{i_k}}
$$

Suppose $i_k = j_{g(k)}$ with $k \le g(k)$, $2 \le k \le |I|$. Then

$$
G_k(J) \equiv \sum_{h=g(k-1)+1}^{g(k)} \frac{\theta_{N_{j_h}} - \theta_{N_{j_{h-1}}}}{n_{j_h}}
$$

\n
$$
\geq \sum_{h=g(k-1)+1}^{g(k)} \frac{\theta_{N_{j_h}} - \theta_{N_{j_{h-1}}}}{n_{j_{g(k)}}} = \frac{\theta_{N_{j_{g(k)}}} - \theta_{N_{j_{g(k-1)}}}}{n_{j_{g(k)}}}. \tag{2.3}
$$

Note that

$$
\Delta_J(\pi)-\Delta_I(\pi)\geqslant \sum_{x=1}^{|I|}\bigg[G_x(J)-\frac{(\theta_{N_{i_x}}-\theta_{N_{i_{x-1}}})}{n_{i_x}}\bigg].
$$

We prove for all $1 \leq k \leq |I|$,

$$
\sum_{x=1}^k \left[G_x(J) - \frac{(\theta_{N_{i_x}} - \theta_{N_{i_{x-1}}})}{n_{i_x}} \right] \geq \frac{(\theta_{N_{j_{g(k)}}} - \theta_{N_{i_k}})}{n_{i_k}},
$$

by induction on k . For $k = 1$

$$
G_1(J) - \frac{(\theta_{N_{i_1}} - \theta_{N_{i_0}})}{n_{i_1}} = \frac{(\theta_{N_{j_1}} - \theta_{N_{j_0}})}{n_{j_1}} - \frac{(\theta_{N_{i_1}} - \theta_{N_{i_0}})}{n_{i_1}} = 0
$$

since $j_1 = i_1$, $N_{i_1} = n_{i_1} = n_{j_1} = N_{j_1} = 1$, $\theta_{N_{j_0}} = \theta_{N_{j_0}} = \theta_{N_{i_0}} = 0$. For general $k > 1$,

$$
\sum_{x=1}^{k} \left[G_x(J) - \frac{(\theta_{N_{i_x}} - \theta_{N_{i_{x-1}}})}{n_{i_x}} \right] \geqslant G_k(J) - \frac{(\theta_{N_{i_k}} - \theta_{N_{i_{k-1}}})}{n_{i_k}} + \frac{(\theta_{N_{j_g(k-1)}} - \theta_{N_{i_{k-1}}})}{n_{i_{k-1}}} \geqslant \frac{(\theta_{N_{j_g(k)}} - \theta_{N_{j_g(k-1)}})}{n_{j_g(k)}} - \frac{(\theta_{N_{i_k}} - \theta_{N_{i_{k-1}}})}{n_{i_k}} \n+ \frac{(\theta_{N_{j_g(k-1)}} - \theta_{N_{i_{k-1}}})}{n_{i_k}} \n= \frac{(\theta_{N_{j_g(k)}} - \theta_{N_{i_k}})}{n_{i_k}},
$$

since $n_{j_g(k)} = n_{i_k} \ge n_{i_{k-1}}$. Lemma 3 is proved.
For $n_i > 1$, we can handle in two ways. The

For $n_j > 1$, we can handle in two ways. The first way is to notice that the only difference from the $n_{j_1} = 1$ case is that π_{j_k} and π'_{j_k} would miss each other out
in *n* elements instead of 1 in Figure 2.1. So the numerator of (2.3) would be in n_{j_1} elements instead of 1 in Figure 2.1. So the numerator of (2.3) would be
a difference between two n_{\perp} sums; but the same logic applies. The second way a difference between two n_{jk} -sums; but the same logic applies. The second way is to notice that $\bar{\theta}_{n_{j_1}}$ gets canceled out in $\Delta_J(\pi) - \Delta_I(\pi)$. So the scenario is to compare the impact on *I* and *I* when both moves back *n* a elements. But this is compare the impact on *I* and *J* when both moves back n_{j_1} elements. But this is equivalent to moving one element back n_{j_1} times. equivalent to moving one element back n_{j_1} times.

Finally, we are ready to prove the main result of this section.

THEOREM 4. *λ as defined in* (2.1) *is supermodular.*

Proof. Let *I* and *J*, be two subsets of $\{1, \ldots, p\}$. Without loss of generality, assume $I \cup J = \{1, 2, ..., m\}$. We prove Theorem 4 by induction on *m*. Theorem 4 is trivially true for $m = 1$. We prove the general $m \ge 2$ case.

Case (1) 1∈*I* ∩*J*, i.e. both *I* and *J* contain 1. Delete π_1 and the θ_i 's in it. Suppose $n_1 = k$. Then the reduced partition problem is to partition the set $\{\theta_{k+1}, \ldots, \theta_n\}$ into $p-1$ parts. Theorem 4 follows by induction.

Case (2) 1∉*I* ∩*J*. Without loss of generality, assume 1∈*I*. Let $J^* = J \cup$ {1}. By case (1),

$$
0 \leq \lambda (I \cup J^*) + \lambda (I \cap J^*) - \lambda (I) - \lambda (J^*)
$$

= $[\lambda (I \cup J^*) - \lambda (I)] + [\lambda (I \cap J^*) - \lambda (J^*)]$
 $\leq [\lambda (I \cup J) - \lambda (I)] + [\lambda (I \cap J) - \lambda (J)].$

Since the first difference is unchanged, and the second becomes larger by Lemma 3, i.e., $\lambda(I \cap J^*) - \lambda(I \cap J) = \Delta_{I \cap J^*}(\pi) \leq \Delta_{J^*}(\pi) = \lambda(J^*) - \lambda(J)$. \Box

3. Other Mean-Partition Models

In the last two sections we studied the labeled single-shape partition problem where the *λ* function is defined on a single shape. In this section we study some other partition models which have been studied before [4] for the sum-partition problem. One common feature of these models is that *λ* is defined on a given set *S* of shapes. For example, in the unlabeled single-shape model, let ${n_1, n_2, \ldots, n_p}$ denote the given single shape. Then *S* consists of all permutations of $\{n_1, n_2, \ldots, n_p\}$. In the labeled bounded-shape model, a set of lower and upper bounds $L_i \leq$ $n_i \le U_i$, $i = 1, \ldots p$, is given, and *S* consists of all shapes $\{n_1, n_2, \ldots, n_p\}$ satisfying the bounds with $\sum_{i=1}^{p} n_i = n$. In the labeled constraint-shape
model S is a given set of shapes with each summing to n. In the model, *S* is a given set of shapes with each summing to *n*. In the unlabeled version for either the bounded-shape of the constraint-shape model, *S* consists of all permutations of a shape in the labeled version.

Let $\lambda_s(I)$ denote the $\lambda(I)$ in (2.1) where *I* is taken from the shape $s \in S$. Define $\lambda(I) = \min_{s \in S} \lambda_s(I)$. Then clearly

LEMMA 5. For any partition $\pi = (\pi_1, \pi_2, ..., \pi_p)$ with shape
 $\kappa = (n_1, n_2, ..., n_p)$ $\kappa \in S$ $\sum \bar{\beta} \ge \lambda(I)$ *s* = $(n_1, n_2, \ldots, n_p), s \in S, \sum_{i \in I}$ $\sum_{i \in I} \bar{\theta}_{\pi_i} \geqslant \lambda(I)$ *.*
 *e*dularity for

Let $X \Rightarrow Y$ mean supermodularity for model *X* implies for model *Y*. Then for both the labeled and unlabeled case, clearly,

constraint-shape⇒bounded-shape⇒single-shape*.*

For the sum-partition problem, the following results have been obtained [4]:

Labeled	Shape	Η	Supermodularity
Yes	Single	General	Yes
Yes	Bounded	General	Yes
Yes	Constrained	1-side	No
No	Single	1-sided	Yes
No	Single	General	Nο
N٥	Bounded	1-sided	Nο
N٥	Constrained	1-sided	N٥

Here, 1-sided means that *θ*'s are either all nonnegative or all nonpositive. In this section, we also consider the supermodularity properties of *λ* for various mean-partition models. Note that only the ordering of *θ*'s, but not their signs, matters for the mean-partition problem. Therefore there is no need to study the 1-sided case.

LEMMA 6. Let $S = \{s\}$ denote the set of all permutations of the shape *s*. Con*sider* $s = \{n_1, n_2, \ldots, n_p\}$ *and* $I = \{1, 2, \ldots, k\}$ *, then for all* $I' = \{i_1, i_2, \ldots, i_k\}$ *with* $i_1 < i_2 < \cdots < i_k$ *, and* $\{i_1, i_2, \ldots, i_k\} \subseteq \{1, 2, \ldots, p\}$, $\lambda(I') \geq \lambda(I)$.
Proof Since θ , is increasing and $i_i > h, 1 < h < k$. We have

Proof. Since θ_j is increasing and $i_h \ge h, 1 \le h \le k$. We have $N_{i_h} \ge N_h$ and $\theta_{N_{i_h}+x} \geq \theta_{N_h+x}$ for all $x > 0$.

$$
\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \leqslant \sum_{j=N_{h-1}+1}^{N_{h-1}+n_{i_h}} \frac{\theta_j}{n_{i_h}} \leqslant \sum_{j=N_{i_{h-1}}+1}^{N_{i_h}} \frac{\theta_j}{n_{i_h}}
$$

Then,

$$
\lambda(I) = \sum_{h=1}^{|I|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \right) \leqslant \sum_{h=1}^{|I'|} \sum_{j=N_{i_{h-1}}+1}^{N_{i_h}} \frac{\theta_j}{n_{i_h}} = \lambda(I').
$$

THEOREM 7. Consider $S = \{(n_1, n_2, \ldots, n_p)\}\$. Then λ is supermodular. *Proof.*

$$
\lambda(I) = \sum_{h=1}^{|I|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta j}{n_h} \right) \text{ for all } I \subseteq \{1, 2, \dots, p\}.
$$

We may assume that $I \cap J = \emptyset$. Suppose to the contrary that $I \cap J \neq \emptyset$. We can delete *n_i*'s, for all $i \leq |I \cap J|$ and θ_i , for all $j \leq N_{|I \cap J|}$. Then the reduced partition problem is to partition the set $\{\theta_{N_{I\cap J}+1}, \ldots, \theta_n\}$ into $p-|I \cap J|$ parts

 \Box

 \Box

with $I' \cap J' = \emptyset$. Without loss of generality, let $I \cup J = \{1, 2, ..., |I| + |J|\}$, $I = \{1, 2, ..., |I| + |J|\}$ and $I = \{I | I| + 1 | I | I + 2 | I | I | I | I$ Then $\{1, 2, \ldots, |I|\}$ and $J = \{|I| + 1, |I| + 2, \ldots, |I| + |J|\}$. Then

$$
\lambda(I) + \lambda(J) = \sum_{h=1}^{|I|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \right) + \sum_{h=1}^{|J|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \right)
$$

$$
\leq \sum_{h=1}^{|I|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \right) + \sum_{h=1}^{|J|} \left(\sum_{j=N_{|I|+h-1}+1}^{N_{|I|+h}} \frac{\theta_j}{n_{|I|+h}} \right)
$$

$$
= \lambda(I \cup J).
$$
 (by Lemma 6)

For a given p-vector (a_1, a_2, \ldots, a_p) , let $a_{[i]}$ denote the i-th smallest a_j . A p-vector $A = (a_1, a_2, \ldots, a_p)$ *majorizes* another p-vector $B = (b_1, b_2, \ldots, b_p)$ if for all $1 \le k \le p-1$

$$
\sum_{i=1}^k a_{[i]} \leq \sum_{i=1}^k b_{[i]}, \text{ for all } 1 \leq k \leq p-1, \text{ and } \sum_{i=1}^p a_i = \sum_{i=1}^p b_i.
$$

For a set *S* of shapes, *A*∈*S* is a *nonmajorized shape* if there does not exist a shape $B \in S$ such that *B* majorizes *A*.

Next we show by a counterexample that for the unlabled bounded-shape model, *λ* is not supermodular. Note that we only need to consider that *λ* takes values from the set of nonmajorized shapes since if a shape *B* is majorized by another shape *A*, then $\lambda_B(I) \geq \lambda_A(I)$ and *B* would not be chosen in defining $\lambda(I)$ in defining $\lambda(I)$.

Let $p = 4, n = 19, l_1 = 1, l_2 = l_3 = l_4 = 2, u_1 = 13, u_2 = u_3 = u_4 = 6, \theta_1 = 1, \theta_2 =$ $\cdots = \theta_6 = 2, \theta_i = 5, 7 \le i \le 19, I = \{1, 2\}, J = \{1, 3\}.$ The nonmajorized shapes are $\{(1, 6, 6, 6), (13, 2, 2, 2)$ and their permutations}

$$
\lambda(I) = \left(\frac{1+2}{2} + \frac{2+2}{2}\right) \text{or} \left(\frac{1}{1} + \frac{2+2+2+2+2+5}{6}\right) = \frac{7}{2} = \lambda(J),
$$

\n
$$
\lambda(I \cap J) = \frac{1}{1} = 1,
$$

\n
$$
\lambda(I \cup J) = \frac{1+2}{2} + \frac{2+2}{2} + \frac{2+2}{2} = \frac{11}{2},
$$

\n
$$
\lambda(I) + \lambda(J) = 7 > \frac{13}{2} = \lambda(I \cap J) + \lambda(I \cup J).
$$

Next we show by a counterexample that for the labeled constrained shape model, λ is not supermodular. Let $p=4$, $n=19$, $S = \{(2, 2, 2, 13), (1, 6, 6, 6)\}$,

SUPERMODULARITY IN MEAN-PARTITION PROBLEMS 345

$$
\theta_1 = 1, \theta_2 = \dots = \theta_6 = 2, \theta_i = 5, 7 \leq i \leq 19, I = \{1, 2\}, J\{1, 3\}.
$$

$$
\lambda(I) = \left(\frac{1+2}{2} + \frac{2+2}{2}\right) \text{or} \left(\frac{1}{1} + \frac{2+2+2+2+2+5}{6}\right) = \frac{7}{2} = \lambda(J),
$$

$$
\lambda(I \cap J) = \frac{1}{1} = 1,
$$

$$
\lambda(I \cup J) = \frac{1+2}{2} + \frac{2+2}{2} + \frac{2+2}{2} = \frac{11}{2},
$$

$$
\lambda(I) + \lambda(J) = 7 > \frac{13}{2} = \lambda(I \cap J) + \lambda(I \cup J).
$$

The following table summarizes our results.

Finally, we give a sufficient condition for establishing supermodularity.

THEOREM 8. Let Π be an unlabeled (labeled) bounded-shape set. If $\lambda(I \cap$ *J*) and $\lambda(I \cup J)$ *can take values from the same shape A, then* $\lambda(I) + \lambda(J) \leq$ $λ$ ($I \cap J$) + $λ$ ($I \cup J$)*.*

Proof. $\lambda(I) \leq \lambda_A(I), \lambda(J) \leq \lambda_A(J)$. Since supermodularity holds for the single shape *A*. $\lambda(I) + \lambda(J) \leq \lambda_A(I) + \lambda_A(J) \leq \lambda_A(I \cap J) + \lambda_A(I \cup J) = \lambda(I \cap J) + \lambda(I \cup J)$. J $)+\lambda$ ($I \cup J$).

4. Stronger Supermodularites

Hwang et al. [3] defined the notion of strong supermodularity which lies between supermodularity and strict supermodularity. Let *I,J,K* be subsets of $\{1, 2, ..., p\}$ such that $I \subset K \subset J$. Define $L = I \cup (J \setminus K)$. A triplet (I, J, K) is called λ -*flat* if $\lambda(I) + \lambda(J) = \lambda(K) + \lambda(L)$. λ is *strongly-modular* if λ is supermodular and for every pair $I \subset J$ if there exists a $K, I \subset K \subset J$ such that (I, J, K) is λ -flat, then for every K', I $\subset K' \subset J$, (I, J, K') is λ -flat. Note that strict supermodularity implies there
is no λ -flat triplet, hence strict supermodularity implies strong supermois no *λ*-flat triplet, hence strict supermodularity implies strong supermodularity.

It was shown in [3] that if the *λ* function defining a permutation polytope is strongly supermodular, then the polytope has many extra nice properties. They also proved that the λ function for the single-shape sumpartition problem is strongly supermodular; if the θ 's are distinct, then it is strictly supermodular. In this section we study the stronger supermodularities for the mean-partition problem.

We first settle the easy strict supermodularity issue. If *θ*'s are not all distinct, then clearly, λ is not strictly supermodular even for the single-shape model, labeled or unlabeled. On the other hand, if *θ*'s are all distinct, then the inequalities in Theorems 4 and 7 are all strict and strict supermodularity holds.

Next we deal with the strong supermodularity case. We first show by a counterexample that for the labeled single-shape mean-partition problem, the λ function as studied in Section 2 is not strongly supermodular.

Let $(n_1, n_2, n_3, n_4) = (1, 2, 3, 4), I = \{3\}, J = \{1, 2, 3, 4\}$ and $\theta = \{\theta_1, \theta_2, \dots, \theta_{10}\}.$ It is easily verified:

(1) $K = \{1, 3, \}$, $L = \{2, 3, 4\}$. Then $\lambda(I) + \lambda(J) = \lambda(K) + \lambda(L) \Leftrightarrow \theta_1 = \theta_3, \theta_4 = \theta_{10}$, (2) $K' = \{1, 2, 3\}, L' = \{3, 4\}.$ Then $\lambda(I) + \lambda(J) = \lambda(K') + \lambda(L') \Leftrightarrow \theta_4 = \theta_{10}$.

Since the two sets of conditions are different, we can easily construct a set *θ* such that the condition in (2) is satisfied but not the condition in (1), for example, $\theta = \{1, 2, 2, 2, 2, 2, 2, 2, 2, 2\}$.

We next prove

THEOREM 9. *For the unlabeled single-shape model, λ is strongly supermodular.*

Proof. Let $I \subset J$. If $\theta_{N|I|+1} = \theta_{N|J|}$, then every triplet (I, J, K) is λ -flat. On the other hand if there is a triplet (I, J, K) which is λ -fiat, without loss of generality, let $|K| \leq |L|$, then it is easily verified that

$$
\sum_{i=0}^{|K|-|I|} \sum_{j=N_{|I|+i}+1}^{N_{|I|+i+1}} \frac{\theta_j}{n_{|I|+i}} = \sum_{i=0}^{|J|-|L|} \sum_{j=N_{|L|+i}+1}^{N_{|L|+i+1}} \frac{\theta_j}{n_{|L|+i}},
$$

and $N_{|K|} < N_{|L|}$, then $\theta_{N_{|I|}+1} = \theta_{N_{|J|}}$.
We summarize our results in the

 \Box

We summarize our results in the following table for those mean-partition models considered in Section 3 for which supermodularity holds:

References

- 1. Anily, S. and Federgruen, A. (1991), Structured partition problems, *Operational Research*, 39, 130–149.
- 2. Gao, B., Hwang, F.K., Li, W.W-C. and Rothblum, U.G. (1999), Partition polytopes over 1-dimensional points, *Mathematical Programming*, 85, 335–362.
- 3. Hwang, F.K., Lee, J.S. and Rothblum, U.G. (2004), Permutation polytopes corresponding to strongly supermodular functions, *Discrete Applied Mathematics*, 142, 52–97.
- 4. Hwang, F.K., Liao, M.M. and Chen, C.Y. (2000), Supermodularity of various partition problems, *Journal of Global Optimization*, 18, 275–282.
- 5. Hwang, F.K. and Rothblum, U.G. (1996), Directional-quasi-convexity, asymmetric Schur-convexity and optionality of consecutive partitions, *Mathematics Operational Research*, 21, 540–554.
- 6. Shapely, L.S. (1971), Cores of convex gormes, *International Journal of Game Theory* 1, 11–29.