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Abstract. Supermodularity of the λ function which defines a permutation polytope has
proved to be crucial for the polytope to have some nice fundamental properties. Supermod-
ularity has been established for the λ function for the sum-partition problem under various
models. On the other hand, supermodularity has not been established for the mean-partition
problem even for the most basic labeled single-shape model. In this paper, we fill this gap
and also settle for all other models except one. We further extend our results to other types
of supermodularity.

Key words: mean-partition, supermodular

1. Introduction

Given a real-value function λ on the subsets of {1, . . . , p} with
λ(φ) = 0, each permutation σ = (σ1, . . . , σp) of {1, . . . , p} defines a vector
λσ = ((λσ )1, . . . , (λσ )p) such that

(λσ )k =λ
(∪k

i=1σi

)−λ
(
∪k−1

i=1 σi

)
for 1 � k � p.

λ is called supermodular if for all subsets I , J of {1, . . . , p},

λ(I ∪J )+λ(I ∩J ) � λ(I)+λ(J ),

and strictly supermodular if the inequality is strict for all I , J not satisfying
I ⊆J or J ⊆ I .

The permutation polytope induced by λ, denoted Hλ, is the convex hull
of {λσ : all σ }. These polytopes have been studied in the literature with
different motivations. For example, Shapley [6] studied the case of convex
p-person game. For a subset I ⊆ {1, . . . , p, } let λ(I) denote the payoff to
I if the members of I form an alliance. Then stability of an alliance I ∪J

requires λ to be supermodular. If not, say, there exist I and J with
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λ(I ∪J )+λ(I ∩J )<λ(I)+λ(J ).

Let yi be the payoff of player i for each i in I ∪J under the alliance I ∪J .
Then it is easily verified that either

∑

i∈I

yi <λ(I), or
∑

i∈J

yi <λ(J ).

In the first(second) case, I (J ) will form its own alliance to obtain a larger
payoff.

The core of a convex p-person game is the solution set of the linear
inequality system

∑

i∈I

xi �λ(I) for all I⊆{1, . . . , p} and
p∑

i=1

xi =λ({1, . . . , p}). (1.1)

Let Cλ denote the polytope defined by (1.1). Among other things (See
Theorem 3.2 of [2] for more details), Shapley proved

THEOREM 1. Suppose λ is supermodular. Then

(1) Hλ =Cλ,
(2) the vectors of Hλ are precisely the λσ ’s where σ ranges over all permu-

tations of {1, . . . , p}.

The importance of Theorem 1 (1) is that if an optimization problem
is to maximize a linear function of {xi}, then Cλ provides a suitable set-
ting for a linear programming solution. The importance of Theorem 1 (2)
is that if the objective function is convex (in fact, quasi-convex suffices,
see [5]), then an optimal solution can be found among the set of verti-
ces of Hλ. Gao et al. [2] studied the single-shape sum-partition problem
in which the indices of a set N of n real numbers θ1 � θ2 � · · · � θn is
to be partitioned into p parts π1, . . . , πp, where the size of πi is given to
be ni({(n1, . . . , np) :

∑p

i=1 ni = n} is called a shape), to maximize an objec-
tive function f (

∑
j∈π1

θj , . . . ,
∑

j∈πp
θj ). For I a subset of {1, . . . , p}, define

n(I) = ∑
I∈I ni . They defined λ(I) = ∑n(I)

j=1 θj and proved λ is supermodu-
lar. Therefore Theorem 1 is applicable. Here, Hλ is the convex hull of all
(ni, . . . , np)-partitions (each partition is a point), and Cλ is the polytope
defined by

∑

i∈I

∑

j∈πi

θj � λ(I) for all I ⊆{1, . . . , p} and
n∑

j=1

θj =λ({1, . . . , p}).
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While the sum partition problem has been dominating in optimal parti-
tion problems, other partition problems have also been considered. Define
θ̄πi

=∑
j∈πi

θj /ni , namely, the mean of θj ’s in πi . Anily and Federgruen [1]
first studied the single-shape mean-partition problem where the objective
function is f (θ̄π1, . . . , θ̄πp

). However, the function λ as defined in (1.1) has
not been proved to be supermodular and Theorem 1 is thus not applicable.
In this paper, we prove the supermodularity.

2. Supermodularity

For the single-shape partition case, without loss of generality, we can
assume that n1 � n2 � · · · � np.

For I ={i1, i2, . . . , ik}⊆{1, . . . , p}, we suppose that ii <i2 < · · ·<ik. Define

Nik =
k∑

x=1
nix for 1 � k � |I |. Set

λ(I)=
|I |∑

k=1

⎛

⎝
Nik∑

j=Nik−1 +1

θj/nik

⎞

⎠ . (2.1)

We first prove

LEMMA 2. For any shape partition π = (π1, . . . , πp),
∑

i∈I

θ̄πi
� λ(I).

Proof. Define A={θj : j ∈πi, i ∈ I } and B ={θ1, . . . , θNi|I | } Suppose λ(I) is
defined on A but A �=B. Then we can reduce

∑

i∈I

θ̄πi
by replacing any θj ∈

A\B with a θk ∈B\A. Therefore we assume A=B. Note that

θ̄πi
=

∑

j∈πi

θj (1/ni), (2.2)

and θ1, . . . , θNi|I | are ordered from small to large. In λ(I), the sequence of
the multipliers for the θj ’s is

1
ni1

, . . . ,
1
ni1︸ ︷︷ ︸

ni1

,
1
ni2

, . . . ,
1
ni2︸ ︷︷ ︸

ni2

, . . . ,
1

ni|I |
, . . . ,

1
ni|I |︸ ︷︷ ︸

ni|I |

,

which are ordered from large to small. Since for any π,
∑

i∈I θ̄πi
is com-

puted by multiplying the same set of θj ’s with the same set of multipliers,
except in different parings, λ(I) achieves the minimum by pairing reversely.

Define �I(π)=λ(I)−λ(I\{i1}).
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LEMMA 3. Suppose I ⊂J and i1 = j1. Then �I(π) � �J (π).
Proof. First assume nj1 =1

J :

πj1︷︸︸︷
θ1 ,

πj2︷ ︸︸ ︷
θ2, . . . , θnj2

, θnj2 +1,

πj3︷ ︸︸ ︷
θnj2 +2, . . . , θnj2 +nj3

, θnj2 +nj3 +1, . . .

J ′ : θ1, θ2, . . . , θnj2︸ ︷︷ ︸
π ′

j2

, θnj2 +1, θnj2 +2, . . . , θnj2 +nj3︸ ︷︷ ︸
π ′

j3

, θnj2 +nj3 +1, . . .

Figure 2 .1 . π ′
j2

and π ′
j3
.

Let π ′ represent the corresponding partition on J ′ =J\{j1}. We use the
same subscript jk to remind the reader that njk

=n′
jk

for all 2 � k � |J |.
Figure 2.1 illustrates π(J ) and π ′(J ′). Note that the components of θ̄πjk

(as in the representation (2.2)) cancels with the components in θ̄π ′
jk

except
the first one in θ̄πjk

and the last one in θ̄π ′
jk

. Hence

θ̄πjk
− θ̄π ′

jk
= (θNjk

− θNjk−1
)

njk

for 1 � k � |J |.

Consequently,

�J (π)=
|J |∑

k=1

θNjk
− θNjk−1

njk

.

Similarly,

�I(π)=
|I |∑

k=1

θNik
− θNik−1

nik

.

Suppose ik = jg(k) with k � g(k),2 � k � |I |. Then

Gk(J ) ≡
g(k)∑

h=g(k−1)+1

θNjh
− θNjh−1

njh

�
g(k)∑

h=g(k−1)+1

θNjh
− θNjh−1

njg(k)

=
θNjg(k)

− θNjg(k−1)

njg(k)

. (2.3)
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Note that

�J (π)−�I(π) �
|I |∑

x=1

[
Gx(J )− (θNix

− θNix−1
)

nix

]
.

We prove for all 1 � k � |I |,
k∑

x=1

[
Gx(J )− (θNix

− θNix−1
)

nix

]
�

(θNjg(k)
− θNik

)

nik

,

by induction on k. For k =1

G1(J )− (θNi1
− θNi0

)

ni1

= (θNj1
− θNj0

)

nj1

− (θNi1
− θNi0

)

ni1

=0

since j1 = i1,Ni1 =ni1 =nj1 =Nj1 =1, θNj0
= θNj0

= θNi0
=0. For general k >1,

k∑

x=1

[
Gx(J )− (θNix

− θNix−1)

nix

]
� Gk(J )− (θNik

− θNik−1)

nik

+ (θNjg(k−1)
− θNik−1)

nik−1

�
(θNjg(k)

− θNjg(k−1)
)

njg(k)

− (θNik
− θNik−1)

nik

+(θNjg(k−1)
− θNik−1

)

nik

= (θNjg(k)
− θNik

)

nik

,

since njg(k)
=nik � nik−1 . Lemma 3 is proved.

For nj >1, we can handle in two ways. The first way is to notice that the only
difference from the nj1 = 1 case is that πjk

and π ′
jk

would miss each other out
in nj1 elements instead of 1 in Figure 2.1. So the numerator of (2.3) would be
a difference between two njk

-sums; but the same logic applies. The second way
is to notice that θ̄nj1

gets canceled out in �J (π)−�I(π). So the scenario is to
compare the impact on I and J when both moves back nj1 elements. But this is
equivalent to moving one element back nj1 times.

Finally, we are ready to prove the main result of this section.

THEOREM 4. λ as defined in (2.1) is supermodular.
Proof. Let I and J , be two subsets of {1, . . . , p}. Without loss of gener-

ality, assume I ∪J ={1,2, . . . ,m}. We prove Theorem 4 by induction on m.
Theorem 4 is trivially true for m=1. We prove the general m � 2 case.
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Case (1) 1∈ I ∩J , i.e. both I and J contain 1. Delete π1 and the θj ’s in
it. Suppose n1 = k. Then the reduced partition problem is to partition the
set {θk+1, . . . , θn} into p −1 parts. Theorem 4 follows by induction.

Case (2) 1 /∈ I ∩J . Without loss of generality, assume 1∈ I . Let J ∗ =J ∪
{1}. By case (1),

0 � λ(I ∪J ∗)+λ(I ∩J ∗)−λ(I)−λ(J ∗)
= [λ(I ∪J ∗)−λ(I)]+ [λ(I ∩J ∗)−λ(J ∗)]
� [λ(I ∪J )−λ(I)]+ [λ(I ∩J )−λ(J )].

Since the first difference is unchanged, and the second becomes larger by
Lemma 3, i.e., λ(I ∩J ∗)−λ(I ∩J )=�I∩J ∗(π) � �J ∗(π)=λ(J ∗)−λ(J ).

3. Other Mean-Partition Models

In the last two sections we studied the labeled single-shape partition prob-
lem where the λ function is defined on a single shape. In this section
we study some other partition models which have been studied before
[4] for the sum-partition problem. One common feature of these mod-
els is that λ is defined on a given set S of shapes. For example, in
the unlabeled single-shape model, let {n1, n2, . . . , np} denote the given sin-
gle shape. Then S consists of all permutations of {n1,n2, . . . , np}. In the
labeled bounded-shape model, a set of lower and upper bounds Li �
ni � Ui, i = 1, . . . p, is given, and S consists of all shapes {nl, n2, . . . , np}
satisfying the bounds with

∑p

i=1 ni = n. In the labeled constraint-shape
model, S is a given set of shapes with each summing to n. In the
unlabeled version for either the bounded-shape of the constraint-shape
model, S consists of all permutations of a shape in the labeled ver-
sion.

Let λs(I ) denote the λ(I) in (2.1) where I is taken from the shape s ∈S.
Define λ(I)=mins∈S λs(I ). Then clearly

LEMMA 5. For any partition π = (π1, π2, . . . , πp) with shape
s = (n1, n2, . . . , np), s ∈S,

∑

i∈I

θ̄πi
� λ(I).

Let X ⇒Y mean supermodularity for model X implies for model Y . Then
for both the labeled and unlabeled case, clearly,

constraint-shape⇒bounded-shape⇒ single-shape.
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For the sum-partition problem, the following results have been obtained [4]:

Labeled Shape θ Supermodularity

Yes Single General Yes
Yes Bounded General Yes
Yes Constrained 1-side No
No Single 1-sided Yes
No Single General No
No Bounded 1-sided No
No Constrained 1-sided No

Here, 1-sided means that θ ’s are either all nonnegative or all nonpositive. In
this section, we also consider the supermodularity properties of λ for vari-
ous mean-partition models. Note that only the ordering of θ ’s, but not their
signs, matters for the mean-partition problem. Therefore there is no need to
study the 1-sided case.

LEMMA 6. Let S ={s} denote the set of all permutations of the shape s. Con-
sider s = {n1, n2, . . . , np} and I = {1,2, . . . , k}, then for all I ′ = {i1, i2, . . . , ik}
with i1 <i2 < · · ·<ik, and {i1, i2, . . . , ik}⊆{1,2, . . . , p}, λ(I ′) � λ(I).

Proof. Since θj is increasing and ih � h,1 � h � k. We have Nih � Nh

and θNih
+x � θNh+x for all x >0.

Nh∑

j=Nh−1+1

θj

nh

�
Nh−1+nih∑

j=Nh−1+1

θj

nih

�
Nih∑

j=Nih−1 +1

θj

nih

.

Then,

λ(I)=
|I |∑

h=1

⎛

⎝
Nh∑

j=Nh−1+1

θj

nh

⎞

⎠ �
|I ′|∑

h=1

Nih∑

j=Nih−1 +1

θj

nih

=λ(I ′).

THEOREM 7. Consider S ={(n1, n2, . . . , np)}. Then λ is supermodular.
Proof.

λ(I)=
|I |∑

h=1

⎛

⎝
Nh∑

j=Nh−1+1

θj

nh

⎞

⎠ for all I ⊆{1,2, . . . , p}.

We may assume that I ∩J = Ø. Suppose to the contrary that I ∩J �= Ø. We
can delete ni ’s, for all i � |I ∩J | and θj , for all j � N|I∩J |. Then the reduced
partition problem is to partition the set {θNI∩J +1, . . . , θn} into p−|I ∩J | parts
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with I ′ ∩J ′ =Ø. Without loss of generality, let I ∪J ={1,2, . . . , |I |+|J |}, I =
{1,2, . . . , |I |} and J ={|I |+1, |I |+2, . . . , |I |+ |J |}. Then

λ(I)+λ(J ) =
|I |∑

h=1

⎛

⎝
Nh∑

j=Nh−1+1

θj

nh

⎞

⎠+
|J |∑

h=1

⎛

⎝
Nh∑

j=Nh−1+1

θj

nh

⎞

⎠

�
|I |∑

h=1

⎛

⎝
Nh∑

j=Nh−1+1

θj

nh

⎞

⎠+
|J |∑

h=1

⎛

⎝
N|I |+h∑

j=N|I |+h−1+1

θj

n|I |+h

⎞

⎠

(by Lemma 6)

= λ(I ∪J ).

For a given p-vector (a1, a2, . . . , ap), let a[i] denote the i-th smallest aj . A
p-vector A = (a1, a2, . . . , ap) majorizes another p-vector B = (b1, b2, . . . , bp)

if for all 1 � k � p −1

k∑

i=1

a[i] �
k∑

i=1

b[i], for all 1 � k � p −1, and
p∑

i=1

ai =
p∑

i=1

bi.

For a set S of shapes, A∈S is a nonmajorized shape if there does not exist
a shape B ∈S such that B majorizes A.

Next we show by a counterexample that for the unlabled bounded-shape
model, λ is not supermodular. Note that we only need to consider that λ

takes values from the set of nonmajorized shapes since if a shape B is maj-
orized by another shape A, then λB(I) � λA(I) and B would not be chosen
in defining λ(I).

Let p =4, n=19, l1 =1, l2 = l3 = l4 =2, u1 =13, u2 =u3 =u4 =6, θ1 =1, θ2 =
· · ·=θ6 =2, θi =5,7 � i � 19, I ={1,2}, J ={1,3}. The nonmajorized shapes
are {(1, 6, 6, 6), (13,2,2,2) and their permutations}

λ(I)=
(

1+2
2

+ 2+2
2

)
or

(
1
1

+ 2+2+2+2+2+5
6

)
= 7

2
=λ(J ),

λ(I ∩J )= 1
1

=1,

λ(I ∪J )= 1+2
2

+ 2+2
2

+ 2+2
2

= 11
2

,

λ(I )+λ(J )=7>
13
2

=λ(I ∩J )+λ(I ∪J ).

Next we show by a counterexample that for the labeled constrained shape
model, λ is not supermodular. Let p=4, n=19, S ={(2,2,2,13), (1,6,6,6)},
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θ1 =1, θ2 =· · ·= θ6 =2, θi =5,7 � i � 19, I ={1,2}, J {1,3}.

λ(I )=
(

1+2
2

+ 2+2
2

)
or

(
1
1

+ 2+2+2+2+2+5
6

)
= 7

2
=λ(J ),

λ(I ∩J )= 1
1

=1,

λ(I ∪J )= 1+2
2

+ 2+2
2

+ 2+2
2

= 11
2

,

λ(I )+λ(J )=7>
13
2

=λ(I ∩J )+λ(I ∪J ).

The following table summarizes our results.

Labeled Shape Supermodularity

Yes Single Yes
Yes Bounded ?
Yes Constrained No
No Single Yes
No Bounded No
No Constrained No

Finally, we give a sufficient condition for establishing supermodularity.

THEOREM 8. Let � be an unlabeled (labeled) bounded-shape set. If λ(I ∩
J ) and λ(I ∪J ) can take values from the same shape A, then λ(I)+λ(J ) �
λ(I ∩J )+λ(I ∪J ).

Proof. λ(I) � λA(I), λ(J ) � λA(J ). Since supermodularity holds for the
single shape A. λ(I)+λ(J ) � λA(I)+λA(J ) � λA(I ∩J )+λA(I ∪J )=λ(I ∩
J )+λ(I ∪J ).

4. Stronger Supermodularites

Hwang et al. [3] defined the notion of strong supermodularity which
lies between supermodularity and strict supermodularity. Let I, J,K be
subsets of {1,2, . . . , p} such that I ⊂ K ⊂ J . Define L = I ∪ (J\K) .
A triplet (I, J,K) is called λ-flat if λ(I) + λ(J ) = λ(K) + λ(L). λ is
strongly-modular if λ is supermodular and for every pair I ⊂ J if there
exists a K,I ⊂ K ⊂ J such that (I, J,K) is λ-flat, then for every K ′, I
⊂K ′ ⊂J, (I, J,K ′) is λ-flat. Note that strict supermodularity implies there
is no λ-flat triplet, hence strict supermodularity implies strong supermo-
dularity.
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It was shown in [3] that if the λ function defining a permutation
polytope is strongly supermodular, then the polytope has many extra nice
properties. They also proved that the λ function for the single-shape sum-
partition problem is strongly supermodular; if the θ ’s are distinct, then it is
strictly supermodular. In this section we study the stronger supermodular-
ities for the mean-partition problem.

We first settle the easy strict supermodularity issue. If θ ’s are not all dis-
tinct, then clearly, λ is not strictly supermodular even for the single-shape
model, labeled or unlabeled. On the other hand, if θ ’s are all distinct, then
the inequalities in Theorems 4 and 7 are all strict and strict supermodular-
ity holds.

Next we deal with the strong supermodularity case. We first show by a
counterexample that for the labeled single-shape mean-partition problem,
the λ function as studied in Section 2 is not strongly supermodular.

Let (n1, n2, n3, n4)=(1,2,3,4), I ={3}, J ={1,2,3,4} and θ ={θ1, θ2, . . . , θ10}.
It is easily verified:

(1) K ={1,3, },L={2,3,4}.
Then λ(I)+λ(J )=λ(K)+λ(L)⇔ θ1 = θ3, θ4 = θ10,

(2) K ′ = {1,2,3},L′ = {3,4}.
Then λ(I)+λ(J )=λ(K ′)+λ(L′)⇔ θ4 = θ10.

Since the two sets of conditions are different, we can easily construct a set
θ such that the condition in (2) is satisfied but not the condition in (1), for
example, θ ={1,2,2,2,2,2,2,2,2,2}.

We next prove

THEOREM 9. For the unlabeled single-shape model, λ is strongly super-
modular.

Proof. Let I ⊂J . If θN|I |+1 = θN|J | , then every triplet (I, J,K) is λ-flat. On
the other hand if there is a triplet (I, J,K) which is λ-fiat, without loss of
generality, let |K| � |L|, then it is easily verified that

|K|−|I |∑

i=0

N|I |+i+1∑

j=N|I |+i+1

θj

n|I |+i

=
|J |−|L|∑

i=0

N|L|+i+1∑

j=N|L|+i+1

θj

n|L|+i

,

and N|K| <N|L|, then θN|I |+1 = θN|J | .
We summarize our results in the following table for those mean-partition

models considered in Section 3 for which supermodularity holds:
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Labeled Shape Distinctθ Supermodularity

Yes Single No Not strong
Yes Single Yes Strict
No Single No Strong, but not strict
No Single Yes Strict
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