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Abstract The tool planning problem involves determining how
many tools should be allocated to each tool group to achieve a
set of objectives. Most previous studies assume that a demand
mix has been given for a new factory to be planned. However,
when a semiconductor company has several existing fabs, the de-
mand mix for the new fab is not explicitly known, and needs to
be allocated from the demand mix of the whole company. This
paper presents an integrated approach to determine the optimal
demand mix and associated tool plan for the new fab that can
minimize the tool cost of the new fab while each fab (new or ex-
isting) is requested to meet a predefined target in its mean cycle
time. Simulation experiments indicate that the proposed solution
is better than that obtained by a heuristic method used in indus-
try. The saving in tool cost for a typical tool planning problem
can be over US$ 70 million.

Keywords Capacity planning · Cycle time ·
Genetic algorithm · Tool planning

1 Introduction

Tool planning is a decision problem of determining how many
tools to purchase for each tool group (workstation) in planning
a new factory. The decision problem is very important in par-
ticular for the semiconductor industry, in which a typical factory
(fab) costs over US $1 billion. Finding an optimal solution for the
tool planning problem is therefore very important. The saving in
tool cost can easily be over US $1 million. In the following pre-
sentation, a tool allocation plan in the tool planning problem is
called a toolset, while some previous studies may call it a tool
portfolio [1].
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Compared to other production systems, semiconductor
manufacturing is relatively complex. The routing for manu-
facturing a typical wafer includes about 400–500 operations
processed by about 100 tool groups. A collection of 25 wafers,
called a lot, moves among tool groups with the re-entrant fea-
ture; that is, a lot may visit a tool group several times. Moreover,
some random factors such as tool breakdown occur frequently
and cannot be ignored in evaluating the performance of a toolset.

In solving tool-planning problems, most previous studies
adopted or developed models to evaluate the performance of a
toolset. Based on the evaluated performance of a toolset, they
subsequently developed methods to search for a better toolset.
The evaluation-and-search procedure is repeatedly performed
until the desired toolset is found.

Computer simulation and queuing network models are two
commonly used methods in previous literature to evaluate the
performance of a toolset. Computer simulation provides precise
modeling but requires lengthy computation. Queuing network
models can rapidly give performance estimates but the estimates
may be less accurate than those obtained by simulation.

Based on simulation models, some works regarding tool
planning have been published. Grew et al. [2] presented a
marginal allocation procedure that updates the candidate toolset
by adding one tool at a time. Mollaghasemi and Evans [2]
developed an interactive method to find a desired toolset to
meet multiple objectives. Chen and Chen [4] presented an ex-
perimental design approach, combined with a response surface
methodology, to identify a satisfactory toolset.

Various studies for tool planning adopting or developing
queuing models have been proposed. Yoneda et al. [5] pre-
sented a simulated annealing approach. Bretthauer [6] developed
a branch and bound algorithm. Connors et al. [7] proposed a
marginal allocation algorithm. Kao et al. [1] developed equi-
throughput curves to identify a toolset that meets the planner’s
criteria.

Some other studies on tool planning do not include either
simulation or queuing models. These studies implicitly assume
that a toolset is always acceptable as long as its available ma-
chine hours are higher than the aggregated demanding hours.
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Based on this assumption, Swaminathan [8] formulated the tool
planning problem in the context of multiple product mixes with
associated occurrence probabilities by a mixed integer program-
ming model. Such a model is fast in computation; however, it
cannot guarantee to yield a toolset whose manufacturing cycle
time is below a predefined target.

All of the aforementioned literature assumes that a certain
demand mix or some probabilistic demand mixes for the new
fab have been given. Here, a demand mix denotes the monthly
quantity to be produced for each product. For example, the
demand mix of three products for a new fab is known to be
(A, B, C) = (300 lots, 200 lots, 250 lots). Given a demand mix,
the previous studies propose methods to determine an optimum
toolset to achieve a set of objectives. However, in the real world,
the demand mix for planning a new fab may not be explicitly
known, and one needs a method to identify which of a large num-
ber of options is the best for planning the new fab.

In the semiconductor industry, a well-established company
usually has several existing fabs. Each existing fab was originally
planned based on a particular demand mix. However, the demand
mix for the whole company may have significantly changed by
the time a new fab is to be planned. Each existing fab therefore
cannot be operated with its optimal demand mix. To plan the
new fab, the semiconductor company has to consider how to op-
timally allocate the whole demand mix to the new fab and other
existing fabs. Such a demand allocation problem for tool plan-
ning indeed exists and is significant in the real world but has not
been addressed in the literature.

This study presents a solution methodology for the tool plan-
ning of a new fab in the context of multiple existing fabs, where
the mean cycle time of each fab must be under a predefined
target value. The solution methodology comprises a genetic algo-
rithm (GA) technique to identify a set of good demand allocation
patterns. The set of good demand allocation patterns is then ex-
haustively evaluated in order to yield the optimal toolset for the
new fab. A queuing model and its application to tool planning,
developed by Connors et al. [7], are adopted to evaluate the qual-
ity of a demand allocation pattern. Test results show that the
solution obtained by the proposed method is superior to that ob-
tained by a heuristic method used in industry. The saving in tool
cost can be over US $70 million in the testing examples.

The remainder of this paper is organized as follows: Sect. 2
introduces the input/output relationship of the adopted queu-
ing model and its application to tool planning [7]. Section 3
presents the problem formulation. Section 4 describes the solu-
tion methodology based on the GA technique. Section 5 presents
the results of some testing experiments, and concluding remarks
are given in Sect. 6.

2 Review of tool panning for a given demand mix

Developing queuing models for estimating the performance of a
toolset have been studied extensively. Some of them have been
verified to be quite effective for tool planning in both computa-
tion time and solution quality. To avoid repeating earlier work,

this paper focuses on developing a solution methodology that in-
tegrates a GA technique and existing queuing models to solve
the tool planning problem in the scenario of multiple existing
fabs. The queuing model specifically for semiconductor fabs, de-
veloped by Connors et al. [7], is adopted here as a vehicle for
evaluating the mean cycle time of a toolset.

Inclusion of the queuing model in the proposed solution
methodology is discussed below. Let Qi = [qi1, . . . , qik] rep-
resent the monthly quantity to be produced at a fab Fi , where
qij denotes the production quantity of product j ( j = 1, . . . , k)
at fab Fi . Let Xi = [xi1, . . . , xim ]T represent a toolset of fab
Fi , where xij denotes the number of tools in tool group j
( j = 1, . . . , m); C = [c1, c2, . . . , cm] denotes the tool cost vec-
tor, where ci is the procurement cost per tool for tool group i
(i = 1, . . . , m).

The input and output relationship of the queuing model in [7]
can be formulated in Eq. 1. This equation shows that given a
product demand mix (Qi), the queuing model fq can quickly
compute the mean cycle time CTi for a toolset Xi . The subscript
q denotes that the function fq is a queuing model.

CTi = fq(Xi , Qi) (1)

Based on the queuing model in Eq. 1, Connors et al. [7] formu-
lated a single-site tool planning problem as follows, where Qn is
the given demand mix for the new fab Fn and CT0 is the target of
the mean cycle time of the fab.

Minimize C · Xn

such that CTn = fq(Xn , Qn) ≤ CT0

xn j ∈ Z+

They subsequently proposed a marginal allocation algorithm [7]
to find the optimum solution of Xn efficiently. The basic idea of
the algorithm is to add one tool at a time to the tool group that
yields greatest overall reduction in cycle time at minimal cost un-
til the mean cycle time falls below the threshold. The marginal
allocation algorithm is described below.

Step 1: Set an initial toolset for the starting search
Y0 = (1, 1, . . ., 1); Xn = Y0

Step 2: Compute the mean cycle time of Xi

CTn = fq(Xn , Qn)

Step 3: Check whether Xn is the solution
If CT(Xn) ≤ CT0 then Xn is the solution, stop.
Else, continue

Step 4: Update Xn

Determine the tool group that reduces cycle time most
effectively:

k = arg

{
max

j

(
fq(Xn, Qn − fq(Xn + Ej , Qn))

cj

)}
,

j = 1, . . . , m

where Ej is the unit vector in the jth direction.
Let Xn = Xn + Ek. Go to step 3
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The input/output relationship of the tool planning problem
stated above can be formulated as Xn = fqm(Qn , CT0). That is,
given a demand mix Qn and a target mean cycle time CT0 for a
new fab Fn , the method proposed by Connors et al. [7] can yield
a toolset Xn that minimizes tool cost. The two subscripts of fqm

denote that the solution method involves a queuing model and a
marginal allocation algorithm.

3 Problem formulation

The tool planning problem investigated in this research is formu-
lated under the following assumptions: the semiconductor com-
pany produces k products whose routings require at most m tool
groups. The company currently has n − 1 existing fab sites, Fi

(i = 1, . . . , n −1). Suppose the future monthly demand pattern
of the company is forecasted to be D = (d1, d2, . . . , dk), where
dj denotes the demand quantity of product j . The future demand
is so large that a new fab Fn needs to be constructed.

Each existing fab Fi , when constructed, was optimally de-
signed for a given demand mix Pi = (pi1, pi2, . . . , pik), where
pij represents the monthly throughput of product j in fab Fi .
Due to a change in the market at the time when a new fab is to
be established, each existing fab Fi may have to produce a de-
mand mix other than Pi . Let Qi = (qi1, qi2, . . . , qik) represent
the demand quantity allocated to fab Fi when the demand for the
whole company is D; that is, D = ∑n

i=1 Qi and dj = ∑n
i=1 qij

( j = 1, . . . , k).
Let C = (c1, . . . , cj , . . . , cm) represent the tool unit cost

vector, where cj is the cost per tool for tool group j . Suppose
Xi = (xi1, . . . , xim )T represent the toolset of fab Fi , where xij

represents the number of tools in tool group j of fab Fi . The com-
pany requests that the mean cycle time of each fab should be
operated under a target value CT0. The decision problem involves
determining how to allocate the company demand D to the fab
demand Qi (i = 1, . . . , n) so that the tool cost of the new fab Xn

is minimized while each fab meets the cycle time constraint.
The tool-planning problem for constructing a new fab in a

company with multiple existing fab sites therefore can be formu-
lated as follows:

Minimize C · Xn

such that D =
n∑

i=1

Qi (2)

CT(Qi , Xi) ≤ CT0, i = 1, . . . , n (3)

xn j ∈ Z+, j = 1, . . . , m (4)

In the above formulation, D and Xi (i = 1, . . . , n −1) are given,
while Xn and Qi (i = 1, . . . , n) denote the decision variables.
Let Q = [Q1, . . . , Qn]T represent a candidate solution for the
demand allocation to each fab. Notice that Q is a n × k matrix,
where the ith row Qi = [qi1, qi2, . . . , qik ] represents the allo-
cated demand of fab Fi . The decision variables of the problem
can therefore be denoted by Xn and Q. The objective is to mini-
mize the tool cost of Xn.

4 Solution method

The investigated tool-planning problem as formulated in Sect. 3
is much more complicated than that in the previous literature,
formulated in Sect. 2. It requires the development of a method to
effectively allocate the company demand D to fab demand Qi .
This study develops a genetic algorithm (GA) approach to solve
the problem, which comprises the following two procedures.

The first procedure is to select a quantity M “good” Q ma-
trices and put them in a set, called the X-space. A good Q
matrix has two properties. First, Qi of each existing fab Fi

(i = 1, . . . , n −1) has to meet the cycle time constraint formu-
lated in Eq. 3, yet Qn of the new fab Fn does not need to meet
this constraint. Second, the tool cost of Qn without meeting any
cycle time constraint, estimated by a heuristic method, should be
relatively low. The heuristic method will be presented below.

The second procedure is to determine the optimum Q from
the X-space. Notice that each Q matrix has a corresponding Qn

vector. By applying the marginal allocation procedure developed
by Connor et al. [7], a Qn can be used to yield an associated
minimum cost toolset Xn that meets the cycle time constraint for-
mulated in Eq. 3. Since there is a quantity M of Q matrices in
the X-space, there is correspondingly quantity M of Xn toolsets.
Among the M toolsets, the Xn that minimizes tool cost is the
optimum toolset for fab Fn , and the corresponding Q is the op-
timum allocation of demand D.

This study develops a GA technique to determine the X-
space, which stores the M good Q matrices. GA techniques were
first proposed in the early 1980s [9]. Various applications have
shown that GAs are powerful techniques for effectively and ef-
ficiently solving large scale space-search problems [10].

A GA is an iterative procedure that maintains a constant-
sized population P(t) of candidate solutions (called chromo-
somes). During each iteration step t, called a generation, new
chromosomes are created by invoking genetic operators. Each
existing and newly generated chromosome is evaluated to deter-
mine its fitness value, which denotes how good the solution is.
Based on these evaluations, a set of chromosomes are screened
out by a selection procedure to form the new population P(t +1).
The procedure is iteratively performed until the termination con-
ditions are met.

The methods in our GA for creating chromosomes, genetic
operators, the fitness function, the selection strategy for forming
new population, and termination conditions are presented below.
The method for creating the X-space is also described.

4.1 Representation and generation of chromosomes

A chromosome in our GA is the Q matrix defined above, where
each element qij (a positive integer) is called a gene. Let Np

be the total number of chromosomes in the population P(t).
The initial population P(0) is created by randomly generating
Np chromosomes. Notice that some of the randomly generated
chromosomes may not be put in P(t). In our GA, only the chro-
mosome Q whose first n −1 row vectors Qi (i = 1, . . . , n −1)



148

meet the cycle time constraint formulated in Eq. 3 can be put
in the population P(t). Such a chromosome hereafter is called a
valid chromosome; otherwise, it called an invalid chromosome.

In generating a chromosome Q, the value of each gene qij

is randomly chosen from the interval [L B(qij ), UB(qij )], where
L B(qij ) and UB(qij ) denote the lower and upper bounds of qij ,
respectively. The lower bound L B(qij ) is set to 0. The method for
determining UB(qij ) is presented below.

Let qu
ij represent the maximum throughput of fab Fi when it

produces only product j and satisfies the cycle time constraint
formulated in Eq. 3. qu

ij can be easily obtained by increasing qij

stepwise and performing the queuing model in [7]; the search of
qu

ij can also be faster by applying the binary search method. To
determine UB(qij ) for a particular product j for each existing fab
Fi (i = 1, . . . , n −1), the n −1 fabs are first randomly ordered.
Let Ws (s = 1, . . . , n − 1) represent the sequentially ordered
fabs, where the function φ(s) → i defines the mapping of the two
subscripts. The procedure to determine UB(qij ) (i = 1, . . . , n −
1) of a chromosome, for product j ( j = 1, . . . , k), is expressed
below.

Step 1: Randomly generate a sequential order for the n −1 exist-
ing fabs, φ(s) → i

Step 2: Compute qu
ij for each existing fab Fi , (i = 1, . . . , n −1)

Step 3: s = 1, H = 0
While s < n, do
{
h = φ(s)
UB(qh j ) = Min{qu

h j , d1 − H}
Randomly select a value vh j for gene qh j from the interval
[0, UB(qh j )]
qh j = vh j

H = H +vh j

s = s + 1
}

Step 4: Determine the value of qn j

qn j = dj −∑n−1
i=1 qij

The above procedure for determining UB(qij ) aims to reduce the
search space of genes and maintain the constraint

∑n
i=1 qij = dj .

Notice that UB(qij ) creates different chromosomes because the
random ordering procedure in step 1 is independently performed.
This random ordering procedure aims to prevent our GA from
being trapped in a local optimum solution.

4.2 Fitness function

The fitness function is defined to evaluate the quality of a chro-
mosome. In our GA, each chromosome Q yields an nth row
vector Qn , the allocated demand of new fab Fn. The fitness func-
tion of Q is defined as the estimated tool cost of producing Qn

when a cycle time constraint is not considered. The study pro-
poses the following heuristic method to estimate such a tool cost
of Qn .

Let tij denote the required processing time of tool group i in
producing one unit of product j . To produce Qn , the total re-
quired processing time of tool group i is Tni = ∑k

j=1 qn j · tij . Let

Hi denote the available machine hours per tool for tool group i.
Then, yni = Tni/Hi (i = 1, . . . , m) denotes the lower bound or
the least number of tools required for tool group i to produce
Qn . Notice that yni ∈ R+. Let Yn = [yn1, . . . , ynm]T . The fitness
function of a chromosome Q is defined as C ·Yn , the lower bound
of tool cost for producing Qn .

4.3 Crossover and mutation operators

The proposed GA defines two genetic operators known as
crossover and mutation to create new chromosomes.

The crossover operator is designed to create Np × Pcr new
chromosomes in each generation, where Pcr is a predefined
crossover probability. This operator is applied by first randomly
choosing (Np × Pcr)/2 pairs of chromosomes from P(t). For
each pair of chromosomes (matrices), a column position in the
matrix (called the crossover line) is randomly chosen, and the
segments to the right of the crossover line exchanged.

To facilitate presenting the crossover operation, let Ai rep-
resent a chromosome. Suppose a pair of chromosomes for
crossover to be A1 and A2 shown below.

A1 =
[

q11q12q13q14
q21q22q23q24

]
A2 =

[
q11

′ q12
′ q13

′ q14
′

q21
′ q22

′ q23
′ q24

′
]

If the crossover line is located between columns 3 and 4, then
two new chromosomes A3 and A4 can be generated, as shown
below.

A3 =
[

q11q12q13q14
′

q21q22q23q24
′

]
Anew =

[
q11

′ q12
′ q13

′ q14
q21

′ q22
′ q23

′ q24

]

The mutation operator is applied by first randomly selecting
Np × Pmu new chromosomes from P(t), where Pmu is a prede-
fined probability of mutation. For each selected chromosome Q,
k × (n −1) new chromosomes are created by replacing the value
of each gene qij (1 ≤ i ≤ n −1 and 1 ≤ j ≤ k) by an integer q′

ij
randomly chosen from the interval [L B(qij ), UB(qij )]. The gene
qn j for new fab Fn is subsequently replaced by a value qn j +
(qij − q′

ij) in order to ensure that
∑n

i=1 qij = dj in these newly
created chromosomes. The number of new chromosomes created
by mutation is then Np × Pmu × k × (n −1).

The new chromosomes created by crossover and mutation
may not be valid; that is, they may not satisfy the cycle time con-
straint in Eq. 3. These invalid chromosomes are scrapped, and
only valid chromosomes are kept.

4.4 Selection strategy

The chromosomes in population P(t) together with the valid
chromosomes created by crossover and mutation are put in a
pool. Let S represent the pool in which the number of chromo-
somes is h. Np chromosomes are to be selected from S to form
the population P(t + 1). The selection strategy used in this pa-
per is based on the rank-space method [11], which was developed
to prevent the genetic search from becoming trapped at a local
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optimum solution. The procedure of the rank-space method is
presented below.

Step 1: Sort in descending order the chromosomes in S accord-
ing to their fitness values. Let A1, A2, . . . , Ah be the sorted
result. Such a ranking of Ai , termed quality-ranking, is rep-
resented by Rq(Ai)

Step 2: Move the best quality-ranking chromosome from S to
P(t +1):
Let S = S −{A1};
P(t) = P(t +1)+{A1};
B1 = A1.
Rename the chromosome selected for P(t +1):
N = 1.
The chromosome number in P(t +1) is 1

Step 3: For each chromosome Ai in S, compute the diversity in-
dex D(Ai):
D(Ai) = ∑N

k=1
1

|Ai−Bk| .
Bk is a chromosome in P(t +1).
Let A = [aij ], B = [bij ] 1 ≤ i ≤ n; 1 ≤ j ≤ k.

|A − B| =
(∑n

i=1
∑k

j=1(aij −bij )
2
)1/2

Step 4: Sort in ascending order the chromosomes in S according
to D(Ai). Such a ranking of Ai , termed diversity-ranking, is
represented by Rd(Ai)

Step 5: Compute the sum of quality-ranking and diversity-
ranking of Ai in S:
T(Ai) = Rq(Ai)+ Rd(Ai)

Step 6: Sort in ascending order the chromosomes in S according
to T(Ai). Such a ranking of Ai , termed combined-ranking, is
represented by Rc(Ai).

Step 7: For each chromosome in S, compute the probability of
putting Ai in P(t +1):
Let r = Rc(Ai);
and Prob(Ai) = p · (1− p)r−1.
p is a predefined probability, typically set to 0.667

Step 8: Generate a random number and determine which chro-
mosome in S is selected. Let Am be the selected chromo-
some. Move Am from S to P(t +1):
S = S −{Am};
P(t) = P(t +1)+{Am};
and N = N +1.
Update the chromosome number in P(t +1):
BN = Am .
Rename the chromosome selected for P(t +1)

Step 9: Termination check
If N < Np, then go to step 3.
Else, stop

4.5 Terminating conditions

Population P(t) is iteratively updated until the following termi-
nation condition is met: let NG be a predefined large integer and
BS(t) be the best solution in each population P(t). Our GA stops
when a particular BS(t0) keeps the best solution for over NG gen-
erations. That is, if BS(t) = BS(t +1) for t0 ≤ t ≤ t0 + NG , then
the GA stops at t0 + NG ; BS(t0 + NG ) is the final solution.

4.6 Updating the X-space

Notice that in the generation of each P(t), the X-space needs
to be continuously updated. The X-space stores M chromo-
somes, which, when evaluated by the fitness values, are the top
M number of chromosomes among all valid chromosomes that
have been visited by our GA. The X-space will be used to find
the optimum solution (Q, Xn) for the investigated tool planning
problem.

Let Ai (i = 1, . . . , M) represent the M chromosomes in the
X-space, and Rni represent the nth row vector of Ai ; that is, the
demand allocated to fab Fn . Given an Rni vector, the marginal
allocation algorithm [7] can be used to determine a toolset Xni

which minimizes tool cost and meets the cycle time constraint
formulated in Eq. 3; that is, CT(Rni , Xni) ≤ CT0. The optimum
solution of the research problem is the chromosome As, the min-
imum one in tool cost in the X-space, as expressed below.

s = Arg{Min1≤i≤M (C · Xni)}

5 Testing examples

The performance of the proposed solution methodology is evalu-
ated by solving the following tool-planning problem in which the
routing and tool cost data was provided by a real semiconductor
company in industry: the semiconductor company of interest has
two existing fabs Fab_1 and Fab_2, and is planning a new fab
Fab_3. The three fab sites are so far apart that each site cannot
use the tools of other sites as backup. That is, a product is com-
pletely manufactured at one fab; it is impossible to manufacture
some operations of the product at a fab and manufacture other
operations at another fab.

The company produces four product families: U, V , W , and
Z . A typical product in each product family is chosen to repre-
sent the family. Each routing of these four representative prod-
ucts includes 400–500 operations. The mean processing time of
these four representative products is PT0 = 10 days.

Fab_1 was optimally designed to produce the monthly de-
mand mix (U : V : W : Z) = (360, 340, 480, 0). That is, the total
monthly output involves 360 lots U, 340 lots V , and 480 lots
W . Fab_2 was optimally designed for producing the product mix
(U : V : W : Z) = (600, 360, 240, 0). When Fab_1 and Fab_2
were planned, new product Z was not available; therefore, their
demand mixes did not include product Z .

Due to a change in market, the demand of product W is
diminishing. The future monthly demand for the company is
forecasted to be (U : V : W : Z) = (1200, 1200, 0, 1200). The
amount of future demand is so high that the company needs to
establish a new fab Fab_3. Without the demand of product W ,
the demand mix for the company is now significantly different
from those of Fab_1 and Fab2. To plan the toolset of Fab_3, the
company needs to re-allocate the demand to each fab site.

The company requests that the mean cycle time of each fab
should be less than a target CT0. The decision problem is figur-
ing out how to allocate the demand to each fab so that Fab_1 and
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Fab_2 can produce the allocated demand in the targeted mean
cycle time and the tool cost of Fab_3 is minimized.

The performance of the proposed method will be compared
with that of a heuristic method used in industry. The heuristic
method involves requesting each fab to produce a demand mix
that is as close as possible to the originally designed demand
mix. Taking products U and V as examples (Table 1), Fab_1 and
Fab_2 produce exactly the same amount as the originally de-
signed demand mix. Given allocated demands of product U and
V , the maximum quantity of product Z that can be allocated to
Fab_1 can be determined by repeatedly performing the queu-
ing model in [7]. That is, by trying various amounts of product
Z allocated to Fab_1, the queuing model yields various CT1.
The maximum quantity of product Z that can be allocated is the
amount that makes CT1 closest to CT0.

Table 1 compares the performance of the two methods for
tool planning when CT0 = 30 days. The saving in tool cost by
applying the proposed method is about US $76 million, about a
5.2% difference.

The proposed method was coded in C++ language and per-
formed on a Pentium 4 computer. In the GA, the crossover rate
was set to Pcr = 0.6, the mutation rate to Pmu = 0.1, and the pop-
ulation size to Np = 100. The search terminates when a particu-
lar toolset maintains the best solution for over 500 generations.

The proposed method involves two procedures. The first pro-
cedure is to find the X-space, which stores 500 good demand
allocation portfolios. For each demand allocation portfolio in
the X-space, the second procedure is to compute the toolset of
Fab_3 that minimizes tool cost and should meet the cycle time
constraint. For a demand portfolio in the X-space, the tool cost
computed by the first procedure is called the initial tool cost. The
tool cost computed by the second procedure is called the final
tool cost.

In the first procedure, the number of visited demand portfo-
lios is about 2.4×105. The GA search proceeds for about 1,000
generations before it terminates. The computation time for the
GA search to identify the X-space is about three hours. About
three hours are required for the computation of toolsets for 100
demand portfolios in the X-space, and about 15 hours are re-
quired for 500 demand portfolios. The total computation time
seems acceptable for a long-term decision-making problem such
as tool planning.

The initial tool cost and the final tool cost for the 500 de-
mand portfolios in the X-space are shown in Fig. 1, which shows

Table 1. Comparison of performances for CT0 = 30 days

CT0 = 30 days Proposed method Heuristic method

Fab_1: (U, V , W , Z) (383, 393, 0, 98) (360, 340, 0, 110)
Fab_2: (U, V , W , Z) (606, 394, 0, 108) (600, 360, 0, 115)
Fab_3: (U, V , W , Z) (211, 413, 0, 994) (240, 500, 0, 975)
Tool cost for Fab_3 US $1,461 million US $1,537 million
Tool cost difference 0 US $76 million
Cost reduction by % 0% 5.2%
Final tool number 517 548

Fig. 1. Tool cost of 500 candidates

that the distribution of the final tool cost is quite consistent with
that of the initial tool cost. This implies that we cannot find
a better toolset by increasing the number of selected demand
portfolios. In fact, this testing problem shows that the optimum
demand portfolio appears in the first 100 demand portfolios. We
can therefore reasonably claim that the proposed method can find
the optimum solution.

6 Concluding remarks

This study presents a methodology for solving the tool planning
problem for a semiconductor company that has several existing
fabs. The demand mix for the whole company is known and must
be allocated to the new and existing fabs before proceeding with
the task of tool planning. The proposed methodology develops
a GA technique to identify some hundreds of good demand al-
location patterns, and put them in an X-space. A good demand
allocation pattern is one in which each existing fab meets the
cycle time requirement, and the new fab is relatively low in tool
cost without meeting the cycle time requirement. The optimum
demand allocation pattern is then identified from the X-space by
exhaustively evaluating the tool cost of each member with the
cycle time requirement.

Experiments show that the tool cost with cycle time con-
straint is highly correlated with that without cycle time con-
straint. We therefore can reasonably claim that the proposed
method is valid in identifying the optimum solution. The saving
in tool cost by the proposed method exceeds a heuristic method
by over US $70 million.
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