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Abstract

The low energy states in metallic armchair carbon nanotubes can decay by the electron–electron Coulomb interac
the intraband and the interband excitations. The inelastic scattering rate is very sensitive to the changes in the elec
tribution and the state energy (or the wavevector). The temperature dependence is linear for the Fermi-momentum s
dependence is hardly affected by the nanotube radius and the Fermi energy. The electron–electron interactions are mo
in electronic deexcitations compared with the electron–phonon interactions. The calculated results are roughly consi
the experimental measurements from the time-resolved photoemission spectroscopy.
 2005 Elsevier B.V. All rights reserved.
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The quasi-one-dimensional (1D) carbon nanotubes were first discovered by Iijima in 1991[1]. The theoretica
study on electronic structures of armchair carbon nanotubes done by Mintmire et al.[2] was earlier than the exper
mental discovery. Each armchair carbon nanotube owns very special geometric structures and energy ban
exist armchair and zigzag lines along the azimuthal and axial directions, respectively. Its geometry is chara
by (m,m), wherem is the number of dimers along the transverse direction. An armchair(m,m) nanotube is a 1D
metal, with the linear valence (π ) and conduction (π∗) bands intersecting at the Fermi level (EF = 0). The gapless
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feature remains unchanged even in the presence of the curvature effects (the misorientations ofpπ orbitals and
the mixing ofpπ andsp2σ orbitals)[2–7]. The non-armchair carbon nanotubes have narrow or moderate e
gaps. In addition, they can change into metals in the presence of the magnetic flux[7].

Armchair carbon nanotubes should be suitable 1D metallic systems in studying carrier dynamics du
inelastic electron–electron (e–e) and electron–phonon (e–ph) interactions. The electrical conductivity from
ph inelastic scatterings had been calculated from the electron self-energy[8]. At room temperature, the electro
lifetime (τ ) of the Fermi-momentum state (kF ) is predicted to be 1.4 ps (or the decay rate 1/τ = 2.85 meV). In
this work, we mainly study the low-frequency electronic excitations, and the deexcitations of the low energ
by means of the inelastic Coulomb scatterings. The dependence of the inelastic scattering rate on the de
mechanisms, the temperature (T ), the state energy, the nanotube radius (r), and the Fermi energy (EF ) is dis-
cussed. Comparison with the e–ph interactions[8] or the experimental measurements[9] from the time-resolved
photoemission spectroscopy is also made.

The unique cylindrical geometry determines band structures and thus electronic excitations. There are
ber of theoretical[10–13]and experimental[14–19]studies on the elementary excitations. Due to the cylindr
symmetry, each carbon nanotube exhibits the decoupled electronic excitations of different angular momenL’s).
The low-frequency electronic excitations are only associated with theL = 0 mode. This mode is very useful
understanding the many-particle properties of free carriers near the Fermi level. Electrons could be exci
the occupied states to the unoccupied states by the Coulomb or electromagnetic field[9–19]. The excited free
carriers further decay by the inelastic e–e and e–ph scatterings. Recently, the experimental measureme
time-resolved photoemission spectroscopy on metallic single-walled carbon nanotubes have been perf
research the carrier dynamics of the low energy states[9]. The photoexcited electronic distribution returns to
Fermi–Dirac distribution in about 200 fs (1/τ ∼ 20 meV) and then relaxes to the initial temperature through
e–ph interactions on a 1 ps scale.

The e–e Coulomb interactions may play an important role on the many-particle properties, the electron
and the electron effective mass. The electron lifetime in metallic and semiconducting carbon nanotubesT = 0
had been studied by means of evaluating the electron self-energy[20]. The previous work shows that the ener
dependence of the electron lifetime for various subbands cannot be described by a simple relation. The
self-energy was also used to investigate the electron effective mass in semiconducting carbon nanotu[21].
The present study considers the effects of temperature on the electron lifetime in metallic carbon nanotub
allows us to compare with the calculated lifetimes with those estimated from the experimental measurem[9]
and compare the e–e and e–ph contributions to the deexcitation rates.

We use the tight-binding model and the random-phase approximation (RPA)[10] to calculate theπ -electronic
structure and the dielectric function (ε) of armchair carbon nanotubes. The low-frequency electronic excita
of L = 0, which directly reflect the characteristics of the low energy bands, are investigated in detail, e
temperature- and momentum-dependence (q-dependence). They will dominate over the inelastic Coulomb s
terings. The decay rate of the excited free carriers is further evaluated from theGolden Rule by Fermi[22]. Our
study shows that the inverse lifetime is significantly affected by the electronic distribution (or the decay ch
and the state energy, but not the nanotube radius and the Fermi energy. For the Fermi-momentum state, t
lifetime is found to depend on temperature linearly. Moreover, the deexcitation rate is much faster than tha
by the e–ph inelastic scatterings. The calculated results are consistent with the experimental measureme[9].

The π -electronic structure formed by the 2pz orbitals is calculated from the nearest-neighbor tight-bind
model. The energy dispersions of the(m,m) armchair nanotube are obtained from diagonalizing the 2× 2 Hamil-
tonian matrix[3]:

(1)Eh(k, J ) = ±γ0

{
1+ 4 cos

(√
3bk

2

)
cos

(
πJ

m

)
+ 4 cos2

(√
3bk

2

)}1/2

.

The resonance integral for the nearest-neighbor interaction isγ0 = 3.033 eV, andb = 1.42 Å is the C–C bond
length. Electronic states are characterized by the axial wave vector (|k| � π/

√
3b) and the angular momentu
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Fig. 1. TheL = 0 response functions of the(5,5) nanotube. (a) The real part and the imaginary part of the dielectric function are calc
at q = 0.2 × 105 cm−1 andT = 300 K. The inset shows electronic excitations of the linear energy bands. The loss spectra are eva
T = 300 K and 30 K for (b)q = 0.2× 105 cm−1 and (c)ωex = 3γ0bq/2. The low energy results are also shown in the inset of (b).

(J = 1,2, . . . ,2m). h = c andv, respectively, represent conduction and valence bands. The former are sym
to the latter about the Fermi levelEF = 0. The corresponding wave functions are denoted byΨ (k,J,h). The
low-frequency Coulomb excitations are mainly determined by theJ = m linear bands closest to the Fermi lev
(the inset inFig. 1(a)). Their energy dispersions can be simplified byEh(k, J = m) = ±3

2γ0|k − kF |, wherekF =
2π/3

√
3b (= 851.5× 105 cm−1). The special linear bands would induce the novel electronic excitations.

For a hollow cylindrical nanotube, the transferred momentum and angular momentum are conserved
the e–e interactions. The low-frequency electronic excitations are characterized by(q,L = 0). The temperature
dependent dielectric function ofL = 0 within the RPA[10] is given by

ε(q,L = 0,ω) = ε0 − V (q,L = 0)χ(q,L = 0,ω)

= 2.4− 4πe2I0(qr)K0(qr)
∑

J,h,h′′

∫
dk

(2π)2

∣∣〈k + q,J,h′′|eiqy |k, J,h〉∣∣2

(2)× f (Eh′′
(k + q,J )) − f (Eh(k, J ))

Eh′′
(k + q,J ) − Eh(k, J ) − ω − iδ

.
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f (Eh(k, J )) = 1/[1 + (Eh(k, J ) − µ)/kBT ] is the Fermi–Dirac distribution function.kB is the Boltzmann con
stant. The chemical potentialµ keeps zero for anyT because of the symmetry of the low energy bands abou
Fermi level.ε0 = 2.4 is the background dielectric constant contributed from high-energy excitations—othe
those excitations within theπ -electronic structures.V (q,L = 0) = 4πe2I0(qr)K0(qr) is the bare Coulomb inter
action of an electron gas.I0(qr) [K0(qr)] is the first [second] kind of modified Bessel function of zero order.
imaginary part of the response function is associated with the integration of the delta function (Imχ(q,L = 0,ω)

in Eq. (6)). Under the Coulomb perturbation atT = 0, there only exist thev → c interband excitations from th
occupied valence states to the unoccupied conduction states. However, atT �= 0, there are, respectively, free hol
and electrons in the linear valence and conduction bands. Such carriers cause the intraband excitations frov → v

andc → c. In addition, the RPA had been successfully applied in explaining the many-particle properties
related 1D quantum-wire systems, e.g., electronic excitations[23,24]and electron distribution function[25,26].

A metallic armchair nanotube exhibits rich excitation properties. The(5,5) nanotube is chosen for a model stu
in understanding the essential features of electronic excitations. The imaginary part (ε2) and the real part (ε1) of the
dielectric function is shown inFig. 1(a) atT = 300 K andq = 0.2× 105 cm−1. The former, which corresponds
the unscreened single-particle excitations, exhibits a prominent peak at the excitation energyωex = 3

2γ0bq (equal
to the decay energyωde in Eq. (8)). The latter can change drastically from a positive value to a negative valu
understood from the Kramers–Kronig relations. The zero ofε1 will occur at the plasmon frequency (ωp), where the
loss function, defined as Im[−1/ε], is very strong (Fig. 1(b)). The single-particle excitations become very wea
the presence of charge screening (the inset inFig. 1(b)); that is, they are seriously suppressed. The whole excita
spectrum is dominated by the collective excitations (the plasmon). The similar result could also be foun
semiconductor quantum wires[23,24].

The plasmon frequency is much higher than the single-particle excitation energy so that the collective ex
absent in the decay channels. The weak single-particle excitations, which own the transferred momen
energy with the linear relationωex = 3

2γ0bq (Fig. 1(c)), will take part in the inelastic decay process (Eq.(7)).
Furthermore, the small-(q,ω) excitations predominate over the overall electronic deexcitations. It is very sp
that electronic excitations are almost independent of temperature, as shown inFig. 1(b) and (c). Both intraband
and interband excitations have the same excitation energies, mainly owing to the intersecting linear vale
conduction bands (inset inFig. 1(a)). Moreover, their bare Coulomb interactions are identical (the produ
V (q,L = 0) and|〈k + q,J,h′′|eiqy |k, J,h〉|2 in Eq.(2)). These two reasons account for the negligible tempera
dependence.

We only focus on the deexcitations of free carriers in the linear bands ofJ = m at anyT . They can interact with
other electrons by the screened Coulomb interactions ofL = 0. According to theGolden Rule by Fermi[22], the
inelastic scattering rate or the inverse electron lifetime of the(k, J = m,h) state is

1

τ(k,m,h;T )
= 2π

∑
p,q,J ′,

h′,h′′,h′′′,σ

f
(
Eh′

(p,J ′)
)[

1− f
(
Eh′′′

(p − q,J ′)
)]

× [
1− f

(
Eh′′

(k + q,J )
)]∣∣V eff[(k,m,h,h′′), (p,J ′, h′, h′′′), (q,L = 0)

]∣∣2
(3)× δ

(
Eh′′′

(p − q,J ′) + Eh′′
(k + q,m) − Eh′

(p,J ′) − Eh(k,m)
)
,

where the square of the effective e–e Coulomb interaction is

∣∣V eff[(k,m,h,h′′), (p,J ′, h′, h′′′), (q,L = 0)
]∣∣2

(4)=
∣∣∣∣V (q,L = 0)〈p − q,J ′, h′′′|e−iqy |p,J ′, h′〉〈k + q,m,h′′|eiqy |k,m,h〉

ε[q,L = 0, (Eh(k,m) − Eh′′
(k + q,m))]

∣∣∣∣
2

.
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δ
(
Eh′′′

(p − q,J ′) + Eh′′
(k + q,m) − Eh′

(p,J ′) − Eh(k,m)
)

(5)=
∞∫

−∞
dω δ

(
Eh′′′

(p − q,J ′) − Eh′
(p,J ′) − ω

)
δ
(
ω + Eh′′

(k + q,m) − Eh(k,m)
)

and

Im[χ(q,L = 0,ω)]
π[exp(−ω/kBT ) − 1]

=
∑

p,J ′,h′,h′′′,σ
f

(
Eh′

(p,J ′)
)[

1− f
(
Eh′′′

(p − q,J ′)
)]∣∣〈p − q,J ′, h′′′|e−iqy |p,J,h′〉∣∣2

(6)× δ
(
Eh′′′

(p − q,J ′) − Eh′
(p,J ′) − ω

)
,

Eq.(3) is reduced to

1

τ(k,m,h;T )
= 2

∑
h′′,q

∞∫
−∞

dω
−exp(Eh′′

(k + q,m)/kBT )

[exp(Eh′′
(k + q,m)/kBT ) + 1][exp(−ω/kBT ) − 1]

× (− Im
[
χ(q,L = 0,ω)

])∣∣∣∣ V (q,L = 0)

ε[q,L = 0, (Eh(k,m) − Eh′′
(k + q,m))]

∣∣∣∣
2

(7)× ∣∣〈k + q,J,h′′|eiqy |k, J,h〉∣∣2δ(ω + Eh′′
(k + q,m) − Eh(k,m)

)
.

The first term related to the temperature dependence can be further calculated, and the second term is pr
to the loss function. As a result, Eq.(7) is changed into

1

τ(k,m,h;T )
=

∑
h′′,q

coth(ωde/2kBT ) − tanh((ωde− Eh(k,m))/2kBT )

exp(−Eh(k,m)/kBT ) + 1

(8)× V (q,L = 0)
∣∣〈k + q,m,h′′|eiqy |k,m,h〉∣∣2 Im

[ −1

ε(q,L = 0,ωde)

]
,

where the decay energyωde= Eh(k,m) − Eh′′
(k + q,m). There are two kinds of single-particle decay proces

intraband deexcitations (c → c andv → v) and interband deexcitations (c → v). The temperature-dependent te
at T = 0 becomesΘ(Ec(k,m) − µ)Θ(Ec(k,m) − Ec(k + q,m)), i.e., the initial state must be higher than t
chemical potential and the finial state. TheT = 0 result is the same with that obtained from the electron self-en
[20]. The contributions due toωde > 0 are almost the same with those fromωde < 0, because the deexcitatio
mainly come from the small-(q,ω) electronic excitations. The following discussions will be only focused on
ωde> 0 case.

We first see the inelastic scattering rates of the low energy states at room temperature. The dependen
wavevector is strong. For the Fermi-momentum state, the interband excitations are the only deexcitation
nism. 1/τ(kF ) is about 50.9 meV (orτ ∼ 80 fs), as shown inFig. 2(a). When the conduction-band states gradu
deviate from the Fermi level, their decay rates grow (the solid curve). There are more vacant states at h
ergies according to the Fermi–Dirac distribution function. Such states are responsible for the increase of/τ with
|k − kF |. The(k, c) states, thekF state excepted, can be deexcited by the intraband and the interband excit
The c → c intraband excitations dominate the decay processes except for these states very close to t
level (the inset inFig. 2(a)), since they own the small-(q,ωde) transfer, or correspond to the stronger scree
response function (Fig. 1(c)). On the other hand, thev → v intraband excitations are the deexcitation channel
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Fig. 2. The inelastic scattering rates of the(5,5) nanotube. (a) They are calculated for the low energy states atT = 300 K. Also shown in
the inset are those of the conduction-band states from the intraband excitations. (b) The temperature-dependent scattering rates a
different states.

the valence-band states. Their decay rates decline with|k − kF | quickly (the dashed curve) because of the seri
limitation of the electron distribution. 1/τ ’s are almost vanishing for the(k, v) states with energies lower tha
4kBT .

The temperature dependence of the e–e inelastic scattering rates is very special. 1/τ of the kF state depend
on temperature linearly, as shown inFig. 2(b) (the heavy solid curve). The temperature dependence comes
the first term in the right-hand side of Eq.(8). The linearT -dependence is associated with the two conditio
Eh(kF ,m) = EF = 0 andωde 
 kBT . Such dependence is identified to be the inverse of exp(−ω/kBT ) − 1
in Eqs.(6) and (7). When thekF state interacts with the valence-band states, the available vacant states
latter are proportional to temperature. Apparently, the electron distributions completely determine the tem
dependence of the inelastic e–e interactions. The similar linear dependence could also be found for the co
band states at low temperature (Ec(k,m) � kBT ), and their scattering rates are enhanced doubly. Howeve
valence-band states exhibit the nonlinearT -dependence, the composite behavior ofT and the exponential deca
function (exp(Ev(k,m)/kBT )). This result relies on the distribution functions of the two interacting electrons

The inelastic scattering rate of the Fermi-momentum state deserves a closer study. All the armchai
nanotubes, as shown inFig. 3(a), exhibit the similar behavior, the linearT -dependence. The linear bands in meta
carbon nanotubes are the main reason for the special temperature dependence. The decay rate decline
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Fig. 3. The temperature-dependent scattering rates of the Fermi-momentum states are calculated for (a) different armchair nanotubes, an
the(5,5) armchair nanotube at various Fermi energies. The inset in (a) shows the radius dependence of the scattering rates atT = 300 K.

the nanotube radius grows (inset inFig. 3(a)). The e–e Coulomb interactionV (q,L = 0) (Eq. (2)) is weaker in a
larger nanotube, while the small-q Coulomb interaction depends on the nanotube radius weakly. Hence, th
screened response function in Eq.(8) is predominated by the small-(q,ω) excitations leads to the weak radi
dependence.

The Fermi energy could be altered from zero to a finite value, when metallic atoms or molecules are inte
into carbon nanotubes, as done for graphite. The low-frequency screened response function (Fig. 1(c)) is hardly
affected by the Fermi energy (EF < 1 eV), since the electronic excitations almost remain unchanged for the
energy bands. As a result, the decay rate of the Fermi-momentum state is independent of the Fermi ene
result further illustrates that the linear energy dispersions determine the electronic excitations and thus the
scattering rate.

From the above-mentioned calculations, the decay rate of the Fermi-momentum state at room tempe
deduced to be 1/τ ∼ 40 meV for all metallic carbon nanotubes with or without doping. This result roughly ag
with the characteristic deexcitation rate of the metallic carbon nanotubes from the experimental measure
the time-resolved photoemission spectroscopy[9]. Apparently, the inelastic scattering rate of the e–e interactio
much faster than that (1/τ = 2.85 meV) of the e–ph interactions[8]. The e–e interactions are more efficient in
electron deexcitations. They are expected to play an important role on other physical properties, e.g., the
of the e–e and e–ph interactions.
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We have calculated for armchair carbon nanotubes the inelastic e–e scattering rates. The special l
ergy bands make the e–e interactions exhibit the intraband and the interband excitations. They also res
temperature-independent loss spectrum. The inelastic scattering rates of the low energy states are dom
the small-(q,ω) single-particle excitations. The dependence on the electronic distribution and the wave ve
strong. The temperature dependence of the Fermi-momentum state is linear. However, such dependence
affected by the nanotube radius and the Fermi energy. Similar results could also be found in other metalli
nanotubes with linear energy bands intersecting at the Fermi level. The inelastic e–e scatterings are m
cient in the electron deexcitations compared with the inelastic e–phonon scatterings. The calculated resu
essentially explain the experimental measurements.
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