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The Maximum Benefit Chinese Postman Problem (MBCPP) is an interesting and practical
generalization of the classical Chinese Postman Problem, which has many real-world applica-

tions. Each arc on the MBCPP network is associated with a service cost for the traversal with
service, a deadhead cost for the traversal with no service, and a set of benefits. Each time
an arc is traversed, a benefit is generated. The objective of the MBCPP is to find a postman

tour traversing a selected set of arcs with the total net benefit maximized. Such a generalization
reflects real-world situations more closely. The MBCPP has been shown to be more
complicated than the Rural Postman Problem, which is an NP-hard problem. Therefore, it

is difficult to find polynomial-time bounded algorithms to solve the problem exactly. In this
paper, we first review an existing exact solution procedure, and introduce several heuristic
algorithms including the Branch-Scan algorithm, the Connection algorithm with various
connection strategies, and the Directed Tree algorithm, to solve the MBCPP approximately.

We also apply one-opt, two-opt, component exchange, and component-drop procedures to
improve the solutions. The proposed algorithms are tested and compared. Extensive
computational results are provided and analysed.

Keywords: Approximate solutions; Maximum Benefit Chinese Postman Problem; Algorithms

1. Introduction

There are numerous generalizations of the well-known
Chinese Postman Problem. Examples include the
Rural Postman Problem (RPP; Christofides et al.
1981, Eiselt et al. 1995b, Pearn and Wu 1995), the
Hierarchical Postman Problem (HPP; Dror et al. 1987,
Ghiani and Improta 2000), the k-person Chinese
Postman Problem (Pearn 1994), the Capacitated Arc
Routing Problem (Pearn et al. 1987, Assad et al. 1987,
Golden and Wong 1981, Pearn 1988, 1989, 1991,
Ghiani and Improta 2000), Mixed Postman Problem
(Pearn and Liu 1995, Pearn and Chou 1999), Windy
Postman Problem (Pearn and Li 1994) and many

others. The Maximum Benefit Chinese Postman
Problem (MBCPP) is another interesting generalization
of the Chinese Postman Problem, in which each arc on
the network is associated with a service cost for the tra-
versal with service, a deadhead cost for the traversal
with no service, and a set of benefits. Each time an arc
is traversed a benefit is generated. The objective of the
MBCPP is to find a postman tour traversing a selected
set of arcs with the total net benefit maximized. Such a
generalization reflects real-world situations more
closely. Applications directly related to the MBCPP
include routing of street sweepers, snowploughs,
spraying roads with salt, and inspection of streets for
maintenance. These applications have been formulated
as traditional arc routing problems in which only one
single service traversal on each arc is considered.
In real situations, however, the demand on the arc*Corresponding author. Email: roller@cc.nctu.edu.tw
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may require multiple service traversals to complete

the service. This is true for most snowplough operations,

where one single traversal can only remove a portion of

the snow covering a street. Multiple service traversals

are required, in this case, to complete the removal

of the snow. Assad and Golden (1995), Eiselt et al.

(1995a, b), and Dror (2000) summarized the theory

and applications of arc routing problems.
The MBCPP on directed networks was first consid-

ered in Malandraki and Daskin (1993) and investigated

latter for undirected networks by Pearn and Wang

(2003). The problem may be briefly defined as follows.

Let G ¼ ðV,AÞ be a directed graph with V representing

the set of nodes, and A representing the set of arcs.

For each arc ði, jÞ 2 A, we are given a non-negative

service cost csij for the traversal with service, and a

non-negative deadhead cost c dij for the traversal with

no service, which we expect c sij > c dij . We are also given

a set of non-negative benefits bijrij from node i to node

j for the rijth traversal, where rij¼ 1, 2, . . . , nij. To reflect

real situations, we assume that bijrij is non-increasing

in rij. The net cost of the rijth traversal of the arc (i, j)

therefore can be expressed as cijrij ¼ c sij � bijrij for

rij¼ 1, 2, . . . , nij, where nij ¼ maxfrijj cijrij < cdij g, and for

rij � nij þ 1 the net cost is cijrij ¼ c dij . That is, for the

traversal of the deadhead arcs, no benefit is generated.

Then, the MBCPP is to find a postman tour, starting

from the depot, traversing a subset of A, and returning

to the same depot with total net cost minimized. We

note that the cost and benefit structures given here are

more general than those presented in Malandraki and

Daskin (1993). In practice, the traversal cost is closely

related to the arc distance, and the traversal benefit

usually is given depending on the type of applications,

which should be provided to the operation office

or management personnel.
To illustrate the MBCPP, we consider the following

example depicted in figure 1 with four nodes, five arcs,

and node 1 as the depot. The arc traversal costs,

the deadhead costs, the benefits, and the net costs

are shown in table 1. The optimal MBCPP solution

is (1, 2, 3, 1, 2, 3, 4, 1) with total service cost 13, total

deadhead cost 2, and total benefit 22. Therefore, the

total net benefit is 7, which is maximal.

2. Existing solution procedures

The MBCPP has been shown to be more complicated

than the Rural Postman Problem (which is NP-hard;

Christofides et al. 1981). In fact, Pearn and Wang

(2003) presented a linear transformation to convert the
Rural Postman Problem into a special case of the

MBCPP. Therefore, it is difficult to find polynomial-

time bounded algorithms to solve the problem exactly.

Malandraki and Daskin (1993) presented a linear

integer programming formulation for the problem, and

developed a branch-and-bound type exact algorithm to

solve the MBCPP optimally. The exact algorithm is

essentially based on a branching rule with some
bounding techniques. Subtour elimination constraints

are initially removed to relax the original linear-integer

programming formulation, which simplifies the MBCPP

into the minimal-cost flow problem. The exact algorithm

first expands the original network by splitting each arc

into several separated parallel arcs with each arc

representing a single traversal. The algorithm then

relaxes the subtour elimination constraints and
solves the resulting relaxed problem as a minimal-cost

flow problem. The Minimal-cost flow problem is a

polynomial-time solvable network problem, which can

be solved efficiently using the polynomial-time bounded

algorithms developed in Edmonds and Johnson (1973)

on the expanded network. If the solution contains

disconnected components, then the minimal-cost flow

solution is not feasible to the MBCPP. In this case,

the exact algorithm continues and applies a branching
rule by adding some bounding constraints to include

or exclude certain arcs, solving the relaxed minimal-

cost flow problem iteratively to find feasible solutions.
For the MBCPP example depicted in figure 1, the

transformed network, expanded from the original

MBCPP, is shown in figure 2 with arc net costs

indicated. The resulting network after applying the

minimal-cost flow algorithm to the expanded network
is displayed in figure 3. Since the minimal-cost flow

solution contains only one component, the solution is

feasible to the MBCPP, which is also optimal in this

case. Unfortunately, the computational time required

Table 1. Traversal costs and benefits for the

MBCPP example.

Arc csij cdij bijrij cijrij

(1, 2) 2 1 3 �1, 1
(2, 3) 2 1 3 �1, 1
(3, 4) 3 2 5, 2 �2, 1, 2
(4, 1) 3 2 5, 2 �2, 1, 2

(3, 1) 3 2 6, 2 �3, 1, 2

1

2

3

4

Depot

Figure 1. MBCPP example.
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for this exact approach grows exponentially as a
function of the size of the given network (total number
of nodes |V|, and total number of arcs |A|). The
proposed exact approach, therefore, is computationally
inefficient. Only problems of small or moderate size
can be solved within a reasonable amount of computer
time. In this paper, we take a different approach.
We present several heuristic solution procedures to
solve the problem approximately. We also consider
some procedures to improve the heuristic solutions.

3. Heuristic algorithms

In the following, we introduce several heuristic
algorithms including (A) the Branch-Scan algorithm,
(B) the Connection algorithm, and (C) the DiTree
algorithm to solve the MBCPP approximately. Phase
one of these algorithms is the same, which involves
finding a symmetric directed graph and solving the
corresponding minimal-cost flow problem. We also
consider some improvement procedures to improve
the solutions. These algorithms are described in the
following. It should be noted that if the three algorithms
are applied to CPP, then any solutions obtained are
optimal.

3.1. Branch-Scan Algorithm

The Branch-Scan algorithm is essentially based on
the exact algorithm proposed by Malandraki and

Daskin (1993). In executing the branch-and-bound
procedure, the algorithm simplifies the search procedure
using the depth-first strategy. In each level of the
branching tree, the Branch-Scan algorithm considers
the branch with the lowest bound. Then, the algorithm
proceeds downward to the next level of the branching
tree, continuing with this depth-first search procedure
until the branching tree terminates with the branching
(search node is fathomed). Stopping rules with bounds
on the maximum computer run time or until the first
feasible solution is found are also enforced so that the
number of branching and searching iterations would
not grow exponentially. If the solution corresponding
to the fathomed node is infeasible, the algorithm
backtracks the branching tree to the previous level to
find an alternative non-fathomed node.

For the MBCPP example depicted in figure 4, which
is presented in Malandraki and Daskin (1993) with
some modification, the net costs are displayed in
table 2. The expanded network contains three copies
of the arcs (1, 4), (4, 1), (2, 5), (5, 2), (3, 6), (6, 3),
and two copies of the arcs (1, 2), (2, 3), (1, 3), (6, 5),
(5, 4), (6, 4). The minimum-cost flow solution over
the expanded network consists of three disjoint
components: C1¼ {1, 4}, C2¼ {2, 3}, and C3¼ {3, 6}
with each component containing two arcs forming
a cycle, which obviously is infeasible.

To illustrate the Branch-Scan algorithm, we first
branch on the arc (1, 2) to determine if the component
C2 should be included in the solution. We then choose
the node with the lowest bound and continue to branch

1

2

3

4−3

−2

−2

−1

−1

1

1

1 2 

1

1

2

2

Figure 2. Expanded network.

1

2

3

4

−1

−1

1

1

−3

−2

−2

Figure 3. Minimal-cost flow solution over the expanded

network.

2 31

5 64

Figure 4. MBCPP example.

Table 2. Arcs and the costs for the MBCPP example
depicted in figure 4.

Arc cijrij Arc cijrij Arc cijrij

(1, 4) �10, 1, 10 (3, 6) �10, 1, 10 (6, 5) 2, 10
(4, 1) �10, 1, 10 (6, 3) �10, 1, 10 (5, 4) 2, 10

(2, 5) �10, 1, 10 (1, 2) 2, 10 (1, 3) 2, 10
(5, 2) �10, 1, 10 (2, 3) 2, 10 (6, 4) 2, 10

Maximum Benefit Chinese Postman Problem 817
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on the arc (2, 3), to determine if the solution should
include the component C3. The resulting branching tree
is shown in figure 5 with bounds indicated, where xij
represents the first traversal of the arc (i, j). The solution
obtained by applying the Branch-Scan algorithm is �50
with a total net benefit of 50.
We experiment with the Branch-Scan algorithm on

15 sample problems with sizes no greater than
|V|¼ 30, and |A|¼ 783, where the maximum CPU time
restriction was initially relaxed. The results are displayed
in table 3 with |V| representing the number of nodes in G,
|A| representing the number of arcs in G, and R repre-
senting the ratio of the Search solution and the optimal
solution. The results show that the Branch-Scan
algorithm works reasonably well. In fact, the Branch-
Scan algorithm yields 12 optimal solutions (out of 15).
The average ratio of the Search solution over the
optimal solution exceeds 0.99. The experiment also
shows that the CPU time required is roughly �|A| with
�¼ 0.02. Therefore, in practice, we may set �|A| as the
maximum run time in CPU seconds.

3.2. Connection algorithm

The Connection algorithm consists of two phases.
In Phase I, the algorithm first expands the original
network by splitting each arc into several separated
arcs, with each representing a single traversal, and
then relaxes the subtour elimination constraints to
solve the remaining problem as a minimal-cost flow
problem over the expanded network. If the solution
contains only one component, the algorithm terminates,
and the solution is optimal. Otherwise, the algorithm
proceeds to Phase II executing the linking procedure
to construct a cycle by connecting nodes selected from
each component. The Connection algorithm considers
several strategies for the linking procedure to generate
the most profitable connection, which we refer to
as the Neighbour Connection (NC), the Savings
Connection (SC), and the Insertion Connection (IC),
which are described below.

3.2.1. Neighbour Connection (NC). Let C¼ fCrgkr¼1 be
the set of components generated from phase I. For the
Neighbour Connection, the linking procedure starts
with node i in a component Cro. Then, the linking
procedure selects a component Cr (only one) from
W¼C� {Cro}, and connects i in Cro to j in Cr minim-
izing l(i, j), where l(i, j) is the net cost of the path
from i to j. Update W¼W� {Cr}. At each iteration,
the linking procedure selects a node in a component
from W and links the node to the previous connected
components so that the added net cost is minimized.
The linking procedure terminates when W ¼ �.
The Neighbour Connection considers three criteria
to generate the most profitable connection, which we
refer to as the Forward (NCF), Backward (NCB), and
Minimum (NCM) criteria. For the Forward, p is chosen
so that l( j, p) is minimized, where j is the ending
point of the previous connected component; for the
Backward, p is chosen so that l( p, i) is minimized,
where i is the starting-point of the initial con-
nected component; for the Minimum, p is chosen so that
min{l( j, p), l( p, i)} is minimized, where p 2 Cr 2W.
Repeat phase II for all i 2 fCrg

k
r¼1, with each generating

three solutions based on those criteria. The best one of
all is chosen as the Neighbour Connection solution.

3.2.2. Savings Connection (SC). The linking procedure
starts with node i in a component Cro. Then, the linking
procedure selects a node p from each component
Cr 2W ¼ C� fCrog forming a set of initial cycles (i, p)
( p, i ), and computes the savings s( p, p0)¼ {l( p, i)þ
l(i, p0)� l( p, p0)| i 2 Cro, p 2 Cr, p

0 2 Cr0g for each pair
of cycles, and orders them from the largest to the
smallest. At each iteration, the linking procedure

Table 3. Performance of the Search algorithm on the
15 test problems.

|V| |A| Search Optimal R

1 10 54 43 43 1.00
2 10 54 51 51 1.00

3 10 81 52 52 1.00
4 10 81 60 60 1.00
5 10 81 27 27 1.00

6 20 228 105 105 1.00
7 20 228 196 196 1.00
8 20 228 97 99 0.98

9 20 342 161 161 1.00
10 20 342 128 128 1.00
11 30 174 113 121 0.93

12 30 522 223 223 1.00
13 30 522 490 490 1.00
14 30 783 317 317 1.00
15 30 783 242 243 1.00

x13

bound = −60

bound = −20

x12

bound = −34

bound = −54

bound = −50

x23

bound = −54

Figure 5. Branching tree generated by the Branch-Scan
algorithm.

818 W. L. Pearn and W. C. Chiu

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
21

 2
6 

A
pr

il 
20

14
 



chooses the largest s( p, p0) and merges two cycles by
replacing arcs ( p, i), (i, p0) by arc ( p, p0). The linking
procedure terminates when no savings can be made.
The Savings Connection considers two criteria for
selecting the linking nodes, which we refer to as the
one-way (SCI) and two-way (SCII) criteria. For the
one-way criterion, p is chosen from the component Cr0

so that min{l(i, p), l( p, i )} is minimized; for the
two-way criterion, p is chosen from the component
so that l(i, p)þ l( p, i) is minimized.

3.2.3. Insertion Connection (IC). The linking
procedure starts with node i in the component Cro.
Then, the linking procedure selects a node j in Cr from
W¼C� {Cro} forming a cycle i–j–i with minimal
l(i, j )þ l( j, i ). Update W¼C� {Cr}. At each iteration,
the linking procedure selects a node in a component
from W and inserts the node and the corresponding
component to the previous connected components
so that the added net cost is minimized. The linking
procedure terminates when W¼�. The Insertion
Connection considers two criteria to generate the most
profitable connection, which we refer to as the Nearest
(ICN), and the Profit (ICP) criteria. For the Nearest,
p is chosen so that min{l(i, p), l( p, i )} is minimized,
then the procedure finds the arc (i, j) from the previous
cycle maximizing l(i, j)� l(i, p)� l( p, j) and inserts
p between i and j. For the Profit, p is chosen so that
{l(i, j)� l(i, p)� l( p, j)þ b( p)} is maximized, where b( p)
is the total net benefit of the component containing
the node p. The best one is chosen as the IC solution.
For further improvement, we consider the follow-

ing procedures called the one-opt, two-opt, component-
exchange, and component-drop procedures. Given a
MBCPP solution, the one-opt procedure considers the
connected components and replaces one linking node
with another linking node in the same component
if it yields a net cost reduction. The two-opt procedure
replaces two adjacent linking nodes simultaneously
with another two linking nodes from the same
components if it yields a net cost reduction. The
component-exchange procedure interchanges two
adjacent linking nodes if it yields a net cost reduction.
The component-drop procedure drops a component
from the current solution if it yields a net cost reduction.
Repeat the four improvement procedures until no more
net cost reduction can be made. Table 4 displays the
performance of the three strategies NC, SC, and IC
for the Connection algorithm on the 15 test problems
in terms of the ratio (R) of the generated solutions
over the optimal solutions. The performances of those
three strategies are rather close to each other. They all
perform quite well for some problems but poorly
for others. Although all three strategies are efficient,

the Insertion strategy requires more computer time
than the other two owing to the extensive number of
checkings for finding the appropriate node for most
profitable connection.

3.3. Ditree expansion algorithm

The Ditree expansion algorithm consists of two phases.
In phase I, the algorithm first expands the original
network by splitting each arc into several separated
arcs, with each representing a single traversal, and
then relaxes the subtour elimination constraints to
solve the remaining problem as a minimal-cost flow
problem over the expanded network. If the solution
contains only one component, the algorithm terminates,
and the solution is optimal. Otherwise, the algorithm
proceeds to phase II by first defining the net cost
between every pair of components as l(Cr,Cr 0, l)¼
minx,y{l(x, y, l)| x 2 Cr, y 2 Cr0}, where l(x, y, l) is the
cost of the least-cost path between x and y over the
modified network with l (initially set to zero) added
to every arc on the paths linking Cr and Cr 0. Then,
the algorithm constructs a Shortest Spanning
Arborescence (SSA; Christofides et al. 1981) to connect
all the components. Let T be the set of arcs from
the SSA solution. The Ditree expansion algorithm
marks the arcs in T as ‘required to traverse’ and solves
the minimal-cost flow problem over the expanded
network generating a complete MBCPP solution.
Different values of l may lead different SSAs. In fact,
for a large value of l the SSA solution tends to choose
paths containing a smaller number of arcs (and hence
a smaller number of ls) in linking the components.
Therefore, we can generate various MBCPP solutions

Table 4. Performance of the three Connection Algorithms,
NC, SC, and IC, on the 15 test problems, where
R(�)¼ (heuristic solution)/(optimal solution).

|V| |A| R(NC) R(SC) R(IC)

1 10 54 0.44 0.44 0.44
2 10 54 1.00 1.00 1.00

3 10 81 0.79 0.79 0.79
4 10 81 0.83 0.83 0.83
5 10 81 0.26 0.26 0.26

6 20 228 1.00 0.88 1.00
7 20 228 0.99 1.00 0.98
8 20 228 1.00 0.97 0.97

9 20 342 1.00 1.00 1.00
10 20 342 1.00 0.99 1.00
11 30 174 0.97 0.97 0.97
12 30 522 1.00 0.98 1.00

13 30 522 1.00 0.99 1.00
14 30 783 1.00 0.99 1.00
15 30 783 1.00 1.00 1.00
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by adding chosen values of l to the arcs in T, choosing
different nodes as the root of SSA, and select the
best among all as the solution from this approach.
We experiment with the Ditree expansion algorithm
on the same 15 test problems, where the parameter l
is initially set to 0, 1, 2, 3, 4, and 5. The preliminary
results indicate that the solutions obtained on these
problems achieve the best problem solutions for
l¼ 0, 1. Therefore, we limit the choice of l to 0 and 1.

3.4. Improvement procedures

We note that the four improvement procedures
discussed earlier, the one-opt, two-opt, component-
exchange, and component-drop, are applied to the
Branch-Scan algorithm, the three Connection
algorithms (NC, SC, IC), and the Ditree expansion
algorithm, in the same order, to improve the solutions
generated. We also note that the order of the four
improvement procedures may affect the final solutions
but not significantly.

4. Computational comparisons

To test and compare the proposed solution procedures,
we generate three sets of test problems, which are
randomly generated. Test problems in set I have
the following network characteristics: the number of
nodes, 10� |V|� 30, the number of arcs, 27� |A|�
435, the benefit layers are numbered from 1 to 5, and
the net costs are set to �100� cijrij � 100. Test problems
in set II have the following network characteristics: the
number of nodes, 40� |V|� 100, the number of arcs,
78� |A|� 4950, the benefit layers are numbered from
1 to 5, and the net costs are set to �100� cijrij � 100.
For the test problems in set III: the number of nodes,
125� |V|� 200, the number of arcs, 1550� |A|�
19 900, the benefit layers are numbered from 1 to 5,
and the net costs are set to �100� cijrij � 100. Some
networks are dense, and others are sparse.
For evaluating the accuracy of the obtained solutions,

we also implement the branch-and-bound exact
algorithm proposed by Malandraki and Daskin (1993)
to find the problem optimal solutions. The optimal
solutions can be found only for the small and moderate
size of problems in set I (within a reasonable amount
of computer time) because of the complexity of the
problems. We note that the upper bounds, used as a
convenient reference point for assessing the accuracy
of the heuristic solutions, are obtained from solving
the MBCPP by relaxing the subtour elimination
constraints (which is reduced to the minimal-cost flow
problem). All the computations and experiments are
implemented using FORTRAN programming language,

executed on Pentium IV personal computers. The
comparison, summarized in tables 5–7, is based on the
average percentage below the problem optimal
solutions, worse percentage below the optimal solution,
number of optimal solutions obtained, number of
best solutions obtained, and number of worst percent-
ages obtained. For problems in sets II and III,

Table 5. Performance comparisons of problem set I of the
five algorithms (30 problems).

Branch NC SC IC Ditree

Average % below
the optimal solution

0.71 6.80 9.00 7.00 9.16

Worst % below

the optimal solution

6.61 74.07 74.07 74.07 59.09

Number of optimal
solutions obtained

16 15 8 13 3

Number of best
solutions obtained

22 19 13 16 9

Number of worst

solutions obtained

4 3 6 5 15

Average CPU seconds 0.52 1.41 3.34 5.23 0.85

Table 7. Performance comparisons of problem set III of the
five algorithms (30 problems).

Branch NC SC IC Ditree

Average % below
the upper bound

80.88 7.20 8.80 4.60 13.03

Worst % below

the upper bound

99.40 32.26 32.26 32.26 32.26

Number of upper
bounds obtained

1 2 2 2 1

Number of best
solutions obtained

1 18 3 13 2

Number of worst

solutions obtained

28 1 1 1 1

Average CPU seconds 5.52 26.41 49.34 58.23 6.12

Table 6. Performance comparisons of problem set II of the
five algorithms (40 problems).

Branch NC SC IC Ditree

Average % below
the upper bound

51.68 6.27 7.62 6.12 9.75

Worst % below

the upper bound

98.08 83.33 83.33 83.33 47.83

Number of upper
bounds obtained

5 9 4 8 2

Number of best
solutions obtained

8 18 7 23 6

Number of worst

solutions obtained

28 1 1 1 2

Average CPU seconds 2.52 9.41 19.34 28.23 2.12
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upper bounds will be used in the comparisons.
In comparing the three algorithms the test results
show that:

(1) The Branch-Scan algorithm yields 22 best solutions
in problem set I (out of 30), which outperforms
that of the other four algorithms. In fact, the
Branch-Scan algorithm yields an average of
0.71 percent below the optimal solution, the worst
6.61 percent below the optimal solution, and
22 optimal solutions. However, the Branch-Scan
algorithm yields only eight best solutions in
problem set II and one best solution in problem
set III.

(2) For the Connection algorithm, NC yields 19,
SC yields 13, and IC yields 16 best solutions in
problem set I. In problem set II, NC yields 18,
SC yields seven, and IC yields 23 best solutions.
In problem set III, NC yields 18, SC yields three,
and IC yields 13 best solutions. The performances
of the three strategies seem to be close to each
other, but the IC strategy requires more computer
run time than the other two. Overall, the ratio of
performance seems to be stable for all problem sizes.

(3) The Ditree algorithm yields nine best solutions
in problem set I, six best solutions in problem set II,
and two best solutions in problem set III. In fact, the
Ditree algorithm yields an average of
9.16 percent below the optimal in problem set I,
9.75 percent below the upper bound in problem
set II, and 13.03 percent below the upper bound
in problem set III.

The Branch-Scan algorithm does not seem to work
well, owing to insufficient run time as the problem size
increases. For further testing, we set a different � value
to increase the run time for the same test problems I,
II, and III. Table 8 displays the solutions in term
of the average percentage below the optimal, or the
upper bounds of the Branch-Scan algorithm,
for �¼ 0.02, 0.05, 0.10, 0.20, and 0.50. For �¼ 0.02,
the average percentage below the optimal solutions
(or the upper bound) is 0.71 percent for problems in
set I, 51.68 percent for problems in set II, and 80.88
percent for problems in set III. For �¼ 0.50, the average

percentage below the optimal solutions (or the upper
bound) decreases to 0.01 percent for problems in set I,
20.33 percent for problems in set II, and 65.74 percent
for problems in set III. The results indicate that the
performance of the Branch-Scan algorithm varies
depending on the network size and structure. Obviously,
if more run time is used for the Branch-Scan algorithm,
better solutions can be obtained. Thus, for small
and moderate problem sizes, the Branch-Scan algorithm
is a good solution procedure.

To further investigate the impact of the cost/benefit
structure on the solutions of the four algorithms, we
experiment with the sample problems tested earlier by
arbitrarily adding the values, 1, 2, 3, and 4, to the net
benefit of the first layer on each arc, for 10 sample
problems tested earlier. We denote the new problem
sets as IV-a, IV-b, IV-c, and IV-d, respectively. The
results, as displayed in tables 9–11, indicate that for all
four algorithms, the greater net benefit we add to the
first layer, the better the solution.

The results in tables 9–11 indicate that the quality
of the solutions obtained is highly dependent

Table 8. Average percentage below the optimal
(upper bound) for various �.

Set I Set II Set III

�¼ 0.02 0.71 51.68 80.88
�¼ 0.05 0.18 39.68 78.12
�¼ 0.10 0.01 34.08 76.38

�¼ 0.20 0.01 26.25 72.82
�¼ 0.50 0.01 20.33 65.74

Table 9. Number of optimal solutions for the NC, SC, IC,
and Ditree algorithms.

Test

problems

Problem

characteristic

NC SC IC Ditree

IV-a cij1þ 1 5 5 6 6
IV-b cij1þ 2 9 8 8 8

IV-c cij1þ 3 9 9 9 9
IV-d cij1þ 4 10 10 10 10

Table 10. Average percentage below optimal solution for the
NC, SC, IC, and Ditree algorithms.

Test
problems

Problem
characteristic

NC SC IC Ditree

IV-a cij1þ 1 10.33 10.33 10.67 5.31
IV-b cij1þ 2 3.28 3.38 3.34 3.76
IV-c cij1þ 3 0.16 0.16 0.21 0.05

IV-d cij1þ 4 0.00 0.00 0.00 0.00

Table 11. Worst percentage below the optimal solution
for the NC, SC, IC, and Ditree algorithms.

Test

problems

Problem

characteristic

NC SC IC Ditree

IV-a cij1þ 1 51.35 51.35 51.35 2.54

IV-b cij1þ 2 32.83 32.83 32.83 35.82
IV-c cij1þ 3 1.57 1.57 2.10 0.53
IV-d cij1þ 4 0.00 0.00 0.00 0.00
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on the weight placed on the benefit for the first layer.
This is because as the weight of the benefit is placed
more on the first layer and less on the other layers, the
problem gradually reduces to the classical CPP, and
the solutions obtained therefore tend to be optimal.
This is expected, since all four algorithms can solve
the classical CPP optimally, as stated earlier.

5. Conclusions

The Maximum Benefit Chinese Postman Problem
(MBCPP) is a practical generalization of the Chinese
Postman Problem, which has many applications.
The MBCPP has been shown to be computation-
ally intractable. Therefore, it is difficult to find
polynomial-time bounded algorithms to solve the
problem exactly. In this paper, we proposed several
algorithms to solve the MBCPP approximately,
including the Branch-Scan algorithm, Connection
algorithm, and Ditree expansion algorithm. We also
considered several criteria for the Connection algo-
rithm. Those criteria include the Forward Neighbour,
Backward Neighbour, Minimum Neighbour, One-way
Saving, Two-way Saving, Nearest Insertion, and Profit
Insertion. We experimented with the proposed
algorithms on many problems, which were randomly
generated. The results indicated that the Branch-Scan
algorithm outperformed the other two algorithms
for the MBCPP of small or moderate sizes. For a
large MBCPP, the Connection algorithm seems to
perform best.
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