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Abstract

We study the implication of decoupling zero-norm states in the high-energy limit, for the
dimensional bosonic open string theory. Infinitely many linear relations among 4-point fun
are derived algebraically, and their unique solution is found. Equivalent results are also obta
taking the high-energy limit of Virasoro constraints, and as an independent check, we comp
4-point functions of 3 tachyons and an arbitrary massive state by saddle-point approximation
 2005 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

The high-energy limit of string theory is an old subject[1–3]. Its motivation is to find
the hypothetical hidden symmetry. It is believed that the higher-spin gauge fields in
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theory receive their masses via a spontaneous symmetry breaking mechanism[2,4]. It is
then natural to expect that the gauge fields become effectively massless and the sy
is restored in the high-energy limit. The symmetry might also explain mysterious c
spondences such as dualities and holography.

This subject has been attacked from various directions. One can take the high-
limit of the worldsheet theory and use it to define string theory in the high-energy limi[5].
However there is a lot of ambiguity in taking the high-energy limit of a worldsheet. It is
clear which choice of the high-energy worldsheet action is the one suitable for the pu
of studying symmetries.

Another approach is to study consistent higher spin gauge theories[6]. It turns out that
there is no consistent scale-free nontrivial interactions in the flat spacetime. Usually
study these theories in the AdS background. In general we need a characteristic leng
to define consistent interactions. The string scaleα′ cannot be used because by definit
α′ → ∞ in the high-energy limit.

The third approach is to examine correlation functions in string theory and loo
meaningful patterns in the high-energy limit[1–3]. This is the approach that we will tak
in this work. We consider the bosonic open string theory and compare correlation fun
which are different from each other by a single vertex at the same mass level. We cla
their relative ratios are completely determined at the leading order for any mass leve
should be viewed as the strongest signal there ever was for a symmetry in the high-
limit.

The main idea of our approach is that the decoupling of zero-norm states st
restricts the dynamics of string theory[7]. One can show[8,9] that off-shell gauge transfo
mations of Witten’s string field theory, after imposing the no-ghost condition, are iden
to the on-shell stringy gauge symmetries generated by two types of zero-norm sta
view of the dictating role of gauge symmetry in Witten’s SFT, we believe that the
tence of the huge gauge symmetry represented by zero-norm states[10,11]fixes the theory
uniquely. In particular, we will show in this paper that by taking a self-consistent h
energy limit[12–14]of arbitrary four-point functions, it will allow us to express them
the leading order in terms of those of tachyons. We will also take the 2D string as a
ample to establish the connection between the high-energy limit of zero-norm stat
the hidden symmetry. In 2D string, we will show that the high-energy limit ofw∞ alge-
bra generated by 2D zero-norm states[15] can be identified with thew∞ symmetry of 2D
string[16].

1.2. Review

We will focus on 4-point functions in this work, although our discussion can be ge
alized to higher point correlation functions. Due to Poincaré symmetry, a 4-point fun
is a function of merely two parameters. Viewing a 4-point function as the scattering
plitude of a two-body scattering process, one can choose the two parameters to beE (one
half of the center of mass energy for the incoming particles, i.e., particles 1 and 2 inFig. 1,
andφ (the scattering angle between particles 1 and 3). For convenience we will ta

center of mass frame and put the momenta of particles 1 and 2 along theX1-direction, with
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Fig. 1. Kinematic variables in the center of mass frame.

the momenta of particles 3 and 4 on theX1–X2 plane. Readers can refer toAppendix A
for expressions of the kinematic variables in this frame.

The high-energy limit under consideration is

(1)α′E2 → ∞, φ = fixed.

Based on the saddle-point approximation of Gross and Mende[1], Gross and Manes[3]
computed the high-energy limit of 4-point functions in the bosonic open string theor
explain their result, let us first define our notations and conventions. For a particle o
mentumk, we define an orthonormal basis of polarizations{eP , eL, eTi }. The momentum
polarizationeP is proportional tok, the longitudinal polarizationeL is the space-like uni
vector whose spatial component is proportional to that ofk, andeTi are the space-like
unit-vectors transverse to the spatial momentum. As an example, fork pointing along the
X1-direction,

(2)k = (
k0, k1, k2, . . . , k25)= (E,p,0, . . . ,0), p > 0,

the basis of polarization is

eP = 1

m

(√
p2 + m2,p,0,0, . . . ,0

)
, eL = 1

m

(
p,

√
p2 + m2,0,0, . . . ,0

)
,

(3)eTi = (0,0, . . . ,1, . . .),

wherem is the mass of the particle. In general,eTi (for i = 3, . . . ,25) is just the unit vecto
in theXi -direction, and the definitions ofeP , eL andeT2 will depend on the motion of th
particle. ForeT2, which is parallel to the scattering plane, we denote it byeT (seeFig. 1
andAppendix A). The orientations ofeT2 for each particle are fixed by the right-hand ru
�k × eT2 = eT3, where�k is the spatial momentum of 4-vectork. We will use the notation

∂nXA ≡ eA · ∂nX for A = P,L,T ,Ti .
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Each vertex is a polynomial of{∂nXA} times the exponential factor exp(ik ·X). Among
all possible choices of polarizations for the 4 vertices in a 4-point function, we now a
that only the polarizationsL and T need to be considered. The polarizationP can be
gauged away using zero-norm states[9]. To see why we can ignore allTi ’s exceptT , we
note that a prefactor∂nXA can be contracted with the exponentik · X of another vertex
The contribution of this contraction to a scattering amplitude is proportional tokA ∼ E.
If kA �= 0 (i.e., if A = L or T ), this is much more important in the high-energy lim
than a contraction with another prefactor∂mXB , which givesηAB ∼ E0. Therefore, if all
polarizations in all vertices are chosen to be eitherL or T , the resulting 4-point function
will dominate over other choices of polarizations.

According to the zeroth-order saddle-point approximation[1], the leading order of a
4-point function is

(4)
〈
V (k1)V (k2)V (k3)V (k4)

〉∼
(

4∏
a=1

va

)
T .

HereT is the correlation function of 4 tachyons, according to the following rules

(5)
1

(n − 1)!∂
nXT → i

E sinφ

(−λ)n
,

(6)
1

(n − 1)!∂
nXL → −i

λn−1 − 1

λ − 1

E2 sin2 φ

2M(−λ)n
,

where1

(7)λ = sin2 φ

2
.

A peculiar feature of(6) is that it vanishes forn = 1

(8)∂XL → 0.

Does this mean that all 4-point functions involving∂XL are subleading? The answer d
pends on how we define the notion of “subleading”. What is the reference 4-point fun
to be compared with?

Note that it is impossible to have a universal notion of “leading order” for all 4-p
functions, since 4-point functions with vertices at higher mass levels typically dom
over those with vertices at lower mass levels in the high-energy limit. Having a well de
limit for all correlation functions is also contradictory to the fact that there is no consi
interacting higher-spin gauge field theory in the flat spacetime.

We propose that the appropriate question to ask is: How will a 4-point function cha
we replace a vertex by another vertex at the same mass level? For example, we can
a factor∂XL by ∂XT in one of the vertices. Naively, the former with∂XL should dominate
over the latter in the high-energy limit since the components ofeL scale asE1 and those
of eT scale asE0. However, Eq.(8) tells us that∂XL does not live up to this expectatio
1 However, see correction in Ref.[14].
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Nevertheless, it does not imply that∂XL is subleading compared with∂XT . It depends on
the rest of the terms in the prefactor.

The purpose of our work is to find linear relations among 4-point functions in the h
energy limit as a signature of the hidden symmetry proposed in[1]. This is not manifest in
the saddle-point result(5), (6), which holds for thenaiveleading order (0th order saddl
point approximation). One of the main reasons is that they ignored vertices involving∂XL.
Another main reason is that they did not try to determine the precise power factorE

[14] in a 4-point function (a higher order correction to the saddle-point approximati
needed), which is crucial for examining linear relations among 4-point functions.

The proper notion of “leading order” in the high-energy limit such that linear r
tions among 4-point functions can be established was first discovered in[12,13]. A purely
algebraic approach utilizing zero-norm states was developed there to derive the line
tions explicitly for the first few mass levels. This approach was further explored to o
stronger results, and its connection/difference from the saddle-point computation w
plained in detail in[14].

The central idea behind the algebraic approach used in[12–14]was the decoupling o
zero-norm states (i.e., the requirement of gauge invariance). A crucial step in the der
is to replace the polarizationeP by eL in the zero-norm states. It is assumed that, w
zero-norm states decouple at all energies, the replacement leads to states that are d
at high energies.

The new achievements of this paper include:

(1) We studied the implication of the decoupling of zero-norm states in the high-e
limit. The 4-point functions at the leading order are specified for all mass levels.

(2) Infinite linear relations among 4-point functions are obtained for all mass levels
ratio of any two 4-point functions at the leading order is uniquely determined.

(3) We developed a “dual” description of the algebraic approach using the spurious
which is to take high-energy limit of the Virasoro constraints.

(4) Using saddle-point approximation, we explicitly computed all 4-point functions f
tachyons and one arbitrary massive state, and verified the linear relations obtain
algebraic methods.

2. Main results

For brevity, we will refer to all 4-point functions different from each other by a sin
vertex at the same mass level as a “family”. When we compare members of a family, w
only need to specify the vertex which is changed.

A 4-point function will be said to beat the leading orderif it is not subleading to any
of its siblings. We will ignore those that are not at the leading order. Our aim is to find
numerical ratios of all 4-point functions in the same family at the leading order. Appar
there are more 4-point functions at the leading order at higher mass levels. Our go
seem insurmountable at first sight.

Saving the derivation for later, we give our main results here. A 4-point function

the leading order if and only if the vertexV under comparison is a linear combination of
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(9)V (n,m,q)(k) = (
∂XT

)n−m−2q(
∂XL

)m(
∂2XL

)q
eik·X,

where

(10)n � m + 2q, m,q � 0.

The corresponding states are of the form

(11)
(
αT−1

)n−m−2q(
αL−1

)m(
αL−2

)q |0, k〉.
The mass squared is 2(n − 1). All other states involvingαT−2, α

A−3, . . . are subleading.
Using the notation2

(12)T (n,m,q) = 〈
V1V

(n,m,q)(k)V3V4
〉
,

all linear relations among different choices ofV (m,n,q) (obtained from the decoupling o
spurious states at high energies) can be solved by the simple expression

(13)lim
E→∞

T (n,2m,q)

T (n,0,0)
=
(

− 1

m̂

)2m+q(1

2

)m+q

(2m − 1)!!,

(14)lim
E→∞

T (n,2m+1,q)

T (n,0,0)
= 0,

wherem̂ = √
2(n − 1). This formula tells us how to trade∂XL and∂2XL for ∂XT , so

that all 4-point functions can be related to the one involving only∂XT in V2. The formula
above applies equally well to all vertices.

Since we know the value of a representative 4-point function[12,14]

(15)T T 1··T 2··T 3··T 4··
n1n2n3n4

= (−1)n2+n4
[
2E3 sinφCM

]ΣniT (Σni),

where

T (n) = √
π(−1)n−12−nE−1−2n

(
sin

φCM

2

)−3(
cos

φCM

2

)5−2n

(16)× exp

(
− s ln s + t ln t − (s + t) ln(s + t)

2

)

is the high-energy limit of
�(− s

2−1)�(− t
2−1)

�( u
2+2)

with s + t + u = 2Σni − 8, and we have

calculated it up to the next leading order inE. In Eq.(15), ni is the number ofT i of theith
vertex operators andT i is the transverse direction of theith particle. We can immediatel
write down the explicit expression of a 4-point function if all vertices are nontrivial a
leading order.

2 More rigorously,V2 needs to be a physical state in order for the correlation function to be well-define
should keep in mind that our results should be applied to suitable linear combinations of(9), possibly together

with subleading states, to satisfy Virasoro constraints.
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3. Linear relations among 4-point functions

Before we go on, we recall some terminology used in the old covariant quantiz
A state|ψ〉 in the Hilbert space isphysicalif it satisfies the Virasoro constraints

(17)
(
Ln − δ0

n

)|ψ〉 = 0, n � 0.

SinceL
†
n = L−n, states of the form

(18)L−n|χ〉
are orthogonal to all physical states, and they are calledspurious states. Zero-norm states
are spurious states that are also physical. They correspond to gauge symmetries
old covariant first quantization spectrum of open bosonic string theory, the solutio
physical state conditions include positive-norm propagating states and two types o
norm states. The latter are[7]

(19)Type I: L−1|x〉, whereL1|x〉 = L2|x〉 = 0, L0|x〉 = 0,

(20)Type II:

(
L−2 + 3

2
L2−1

)
|x̃〉, whereL1|x̃〉 = L2|x̃〉 = 0, (L0 + 1)|x̃〉 = 0.

In this section we derive the linear relations among all amplitudes in the same f
by taking the high-energy limit of zero-norm states (HZNS). Solutions of HZNS for s
low lying mass level are presented inAppendix B. The first step in the derivation is t
identify the class of states that are relevant, i.e., those at the leading order. As we ex
in Section1.2, we only need to consider the polarizationseT andeL.

To get a rough idea about how each vertex operator scales withE in the high-energy
limit, we associate a naive dimension to each prefactor∂mXA according to the following
rule

(21)∂mXT → 1, ∂mXL → 2.

The reason is the following. Each factor of∂mXµ has the possibility of contracting wit
the exponentiki · X of another vertex operator so that it scales likeE in the high-energy
limit. Furthermore, components of the polarization vectorseT andeL scale withE like E0

andE1, respectively.
When we compare vertex operators at the same mass level, the sum of all the intem

in ∂mXA is fixed. Roughly speaking, it is advantageous to have many∂XA than having
fewer number of∂mXA with m > 1. For example, at the first massive level, the ver
operator∂XT ∂XT eik·X has a larger naive dimension than∂2XT eik·X.

The counting of the naive dimension does not take into consideration the poss
that the coefficient of the leading order term happens to vanish by cancellation. Th
dimension of a vertex operator can be lower than its naive dimension, although the r
never happens.

Through experiences accumulated from explicit computations[12–14], we find that the
highest spin vertex(

T
)n ik·X (

T
)n
 (22)∂X e ↔ α−1 |0, k〉
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is always at the leading order in its family. Since the naive dimension of this state e
its true dimension, any state with a lower naive dimension than this vertex operat
be ignored. This implies that we can immediately throw away a lot of vertex oper
at each mass level, but there are still many left. The problem is that, although the
disadvantages to have∂mXT with m � 2 or ∂mXL with m � 3 compared with having
(∂XT )m, it may be possible that having extra factors of∂XL, which has a higher naiv
dimension than∂XT , can compensate the disadvantage of these factors. However, e
computations at the first few massive levels showed that this never happens.

We will now argue why this is generically true, and show in this subsection that the
states that will survive the high-energy limit at leveln are of the form

(23)|n,2m,q〉 ≡ (
αT−1

)n−2m−2q(
αL−1

)2m(
αL−2

)q |0; k〉.
Our argument is essentially based on the decoupling of zero-norm states in the

energy limit. However, note that when we take the high-energy limit, that is, whe
replaceeP by eL and ignore subleading terms in the 1/E2 expansion,3 the zero-norm
states become positive norm states, although we will still call them “high-energy zero
states”, or HZNS for short. (This is why it is possible to derive relations among pos
norm physical states by taking the high-energy limit of Ward identities. SeeAppendix B,
for examples.) As such, it is not essential to maintain the zero-norm condition, and w
simply take the high-energy limit of spurious states. It can be shown that, as far as th
results are concerned, the decoupling of those spurious states we are going to us
paper are equivalent to the decoupling of high-energy zero-norm states (HZNS).

Thanks to the Virasoro algebra, we only need two Virasoro operators

(24)L−1 = 1

2

∑
n∈Z

α−1+n · α−n = m̂αP−1 + α−2 · α1 + · · · ,

(25)L−2 = 1

2

∑
n∈Z

α−2+n · α−n = 1

2
α−1 · α−1 + m̂αP−2 + α−3 · α1 + · · ·

to generate all spurious states. Herem̂ is the mass operator, i.e.,m̂2 = −k2 when acting on
the state|0, k〉.

3.1. Irrelevance of other states

To prove that only states of the form(23) are at the leading order, we shall prove t
(i) any state which has an odd number ofαL−1 is irrelevant (i.e., subleading in the hig
energy limit), and (ii) any state involving a creation operator whose naive dimension
than its mode indexn, i.e., states belonging to

(26)
{
αL−n, n > 2; αT−m, m > 1

}
is also irrelevant. We proceed by mathematical induction.

3 Strictly speaking, we need to justify the replacementeP → eL. This is not totally trivial, and will be treate

with more rigor in a forthcoming paper.



360 C.-T. Chan et al. / Nuclear Physics B 725 (2005) 352–382

y
n its

n or
di-

-

e

in

ension

factor
de

also

ontains
We

cause
e
s

First we prove that any state which has a single factor ofαL−1 is irrelevant, and that an
state with twoαL−1’s is irrelevant if it contains an operator of naive dimension less tha
index.

Consider the HZNSL−1χ whereχ is any state without anyαL−1, and it is at level
(n − 1). Note that, exceptαL−1, the naive dimension of an operator is always less tha
equal to its index (we excludeαP−1 as mentioned above). This means that the naive
mension ofχ is less than or equal to(n − 1). Since we know that at leveln, the state
Eq.(23)has true dimensionn, when computingL−1χ in the high-energy limit, we can ig
nore everything with naive dimension less thann. This means that we needL−1 to increase
the naive dimension ofχ by no less than 1. In the high-energy limit ofL−1

(27)L−1 → m̂αL−1 + αL−2α
L
1 + αT−2α

T
1 + · · · ,

only the first term will increase the naive dimension ofχ by 1. All the rest do not chang
the naive dimension. This means that, to the leading order,

(28)L−1χ ∼ m̂αL−1χ.

This is a state with a single factor ofαL−1 and it is a HZNS, so it should be decoupled
the high-energy limit.

Now consider an arbitrary stateχ at level(n − 1) which has a single factor ofαL−1. If
χ involves any operator whose naive dimension is less than its index, the naive dim
of χ is at most(n − 1). In the high-energy limit

(29)L−1χ → m̂αL−1χ + αL−2α
L
1 χ + · · · ,

except the first two terms, all other terms are irrelevant because they contain a single
of αL−1. As the second term has a naive dimension(n−1) and can be ignored, we conclu
thatαL−1χ is irrelevant.

The next step in mathematical induction is to show that if (a) states with(2m − 1)

factors ofαL−1 are irrelevant, and (b) states with 2m factors ofαL−1 are still irrelevant if it
also contains any of the operators in(26), then we can prove that both statements are
valid for m → m + 1.

Supposeχ is an arbitrary state at level(n − 1) which has 2m factors ofαL−1’s. The
high-energy limit ofL−1χ is given by(29). The second term has(2m − 1) factors ofαL−1
and is irrelevant. The rest of the terms, except the first, are irrelevant because they c
at least one operator from the set(26). Hence the first term is a HZNS and is irrelevant.
have proved our first claim for(m + 1), i.e., a state with(2m + 1) factors ofαL−1 decouple
at high energies.

Similarly, consider the case whenχ is at level(n − 1) and has(2m − 1) factors ofαL−1.
Furthermore we assume that it involves operators from the set(26). Then the first term
in (29) is what we want to prove to be irrelevant. The second term is irrelevant be
we have just proved that a state with(2m + 1) factors ofαL−1 is irrelevant. The rest of th
terms are irrelevant because they have(2m − 1) αL−1’s. Thus we conclude that both claim

are correct form + 1 as well. The mathematical induction is complete.
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3.2. Linear relations

According to the previous subsection, only states of the form(23) are relevant in the
high-energy limit. The mass of the state is

√
2(n − 1). The 4-point function associated wi

|n,m,q〉 will be denotedT (n,m,q). The aim of this subsection is to find the ratio betwee
genericT (n,m,q) and the reference 4-point function, which is taken to beT (n,0,0).

Consider the HZNS

(30)L−1|n − 1,2m − 1, q〉 � m̂|n,2m,q〉 + (2m − 1)|n,2m − 2, q + 1〉,
where many terms are omitted because they are not of the form(23). This implies that

(31)T (n,2m,q) = −2m − 1

m̂
T (n,2m−2,q+1).

Using this relation repeatedly, we get

(32)T (n,2m,q) = (2m − 1)!!
(−m̂)m

T (n,0,m+q),

where the double factorial is defined by(2m − 1)!! = (2m)!
2mm! .

Next, consider another class of HZNS

(33)L−2|n − 2,0, q〉 � 1

2
|n,0, q〉 + m̂|n,0, q + 1〉.

Again, irrelevant terms are omitted here. From this we deduce that

(34)T (n,0,q+1) = − 1

2m̂
T (n,0,q),

which leads to

(35)T (n,0,q) = 1

(−2m̂)q
T (n,0,0).

Our main result(13) is an immediate result of combining(32)and(35).

4. Linear relations from Virasoro constraints

In this section we will establish a “dual description” of our approach explained ab
The notion dual to the decoupling of high-energy zero-norm states is Virasoro const

Let us briefly explain how to proceed. First write down a state at a given mass le
linear combination of states of the form Eq.(11) with undetermined coefficients, whic
are interpreted as the Fourier components of spacetime fields. Requiring that the V
generatorsL1 andL2 annihilate the state implies several linear relations on the coeffici
The linear relations can then be solved to obtain ratios among all fields.

To compare the results of the two dual descriptions, we note that the correlation
tions can be interpreted as source terms for the particle corresponding to a chosen
Thus the ratios among sources should be the same as the ratios among the fields,
fields of the same mass have the same propagator. However, some care is neede
normalization of the field variables. One should use BPZ conjugates to determine the

of a state and normalize the fields accordingly.
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4.1. Examples

To illustrate how Virasoro constraints can be used to derive linear relations among
tering amplitudes at high energies, we give some explicit examples in this subsectio
will calculate the proportionality constants among high-energy scattering amplitud
different string states up to mass levelsm2 = 8. The results are of course consistent w
those of previous work[12,13]using high-energy zero-norm states.

4.1.1. m2 = 4
The most general form of physical states at mass levelm2 = 4 are given by

(36)
[
εµνλα

µ
−1α

ν
−1α

λ−1 + ε(µν)α
µ
−1α

ν
−2 + ε[µν]αµ

−1α
ν
−2 + εµα

µ
−3

]|0, k〉.
The Virasoro constraints are

(37)ε(µν) + 3

2
kλεµνλ = 0,

(38)−kνε[µν] + 3εµ − 3

2
kνkλεµνλ = 0,

(39)2kνε[µν] + 3εµ − 3(kνkλ − ηνλ)εµνλ = 0.

By replacingP by L, and ignoring irrelevant states (we have justified this in Section3 for
the high-energy limit), one easily gets

(40)εT T T : ε(LLT ) : ε(LT ) : ε[LT ] = 8 : 1 : 3 :−3.

After including the normalization factor of the field variables4 and the appropriate symm
try factors, one ends up with

TT T T :T(LLT ) :T(LT ) :T[LT ]
(41)= 6εT T T : 6ε(LLT ) :−2ε(LT ) :−2ε[LT ] = 8 : 1 :−1 : 1.

Here the definitions ofTT T T ,T(LLT ),T(LT ),T[LT ] and similar amplitudes hereafter can
found in [12,13] and the result obtained is consistent with the previous zero-norm
calculation in[12] or Eq.(13).

4.1.2. m2 = 6
The most general form of physical states at mass levelm2 = 6 are given by[

εµνλσ α
µ
−1α

ν
−1α

λ−1α
σ−1 + ε(µνλ)α

µ
−1α

ν
−1α

λ−2 + εµν,λα
µ
−1α

ν
−1α

λ−2

(42)+ ε
(1)
(µν)α

µ
−1α

ν
−3 + ε

(1)
[µν]α

µ
−1α

ν
−3 + ε

(2)
(µν)α

µ
−2α

ν
−2 + εµα

µ
−4

]|0, k〉,
whereεµν,λ represents the mixed symmetric spin three states, that is, one first symm
µν and then anti-symmetrizesµλ. The Virasoro constraints are calculated to be

(43)2kσ ε(µνλσ) + ε(µνλ) = 0,
4 The normalization factors are determined by the inner product of a state with its BPZ conjugate.
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ee
(44)2kλε(µνλ) + kλ(ελµ,ν + εµλ,ν) + 3
(
ε
(1)
(µν) + ε

(1)
[µν]

)+ 4ε
(2)
(µν) = 0,

(45)kµε
(1)
(µν) + kµε

(1)
[µν] + 4εν = 0,

(46)6ηλσ ε(µνλσ) + 2kλε(µνλ) + 1

2
kλ(εµν,λ + ενµ,λ) + 3ε

(1)
(µν) = 0,

(47)ηµνε(µνλ) + ηµνε(µν,λ) + 4kµε
(2)
(µν)

+ 4ελ = 0.

In the high-energy limit, similar calculation as above gives

T(T T T T ) :T(T T LL) :T(LLLL) :TT T ,L :T(T T L) :T(LLL) :T(LL)

= 4!ε(T T T T ) : 4!ε(T T LL) : 4!ε(LLLL) :−4εT T ,L :−4ε(T T L) :−4ε(LLL) : 8ε
(2)
(LL)

(48)= 16 :
4

3
:
1

3
:−2

√
6

3
:−4

√
6

9
:−

√
6

9
:
2

3
,

which is consistent with the previous zero-norm state calculation in[13] or Eq.(13).

4.1.3. m2 = 8
The most general form of physical states at mass levelm2 = 8 are given by (for sim-

plicity, we neglect terms containingαµ
−n with n � 3)[

εµνλσρα
µ
−1α

ν
−1α

λ−1α
σ−1α

ρ
−1 + ε(µνλσ)α

µ
−1α

ν
−1α

λ−1α
ρ
−2 + ε(µνλ)α

µ
−1α

ν
−2α

λ−2

(49)+ εµνλ,σ α
µ
−1α

ν
−1α

λ−1α
ρ
−2 + εµ,νλα

µ
−1α

ν
−2α

λ−2

]|0, k〉,
whereεµνλ,σ represents the mixed symmetric spin four states, that is, first symme
µνλ and then anti-symmetrizesµσ . Similar definition for the mixed symmetric spin thr
statesεµ,νλ. The Virasoro constraints are calculated to be

(50)5kσ ε(µνλσρ) + 2ε(µνλσ) = 0,

3kλε(µνλσ) + 1

2
kλ
[
(εµνλ,σ + ελµν,σ + εµλν,σ ) + (µ ↔ ν)

]
(51)+ 4ε(µνσ) + εµ,νσ + εν,µσ = 0,

(52)kµε(µνλ) + 1

2
kµ(εµ,νλ + εµ,λν) = 0,

(53)5ηρσ ε(µνλσρ) + kσ ε(µνλσ) + 1

3
kσ (εµνλ,σ + ενλµ,σ + ελµν,σ ) = 0,

3ηνλε(µνλσ) + ηνλ(εµνλ,σ + ελµν,σ + ενλµ,σ ) + 4kλε(µσλ)

(54)+ 2kλ(εµ,σλ + εµ,λσ ) = 0.

In the high-energy limit, similar calculation as above gives

T(T T T T T ) :T(T T T L) :T(T T T LL) :T(T LLL) :T(T LLLL) :T(T LL) :TT ,LL :TT LL,L :TT T T,L

= 5!ε(T T T T T ) : 3! × 2ε(T T T L) : 5!ε(T T T LL) : 3! × 2ε(T LLL) : 5!ε(T LLLL)

: 8ε(T LL) : 8εT ,LL : 3! × 2εT LL,L : 3! × 2εT T T ,L

√ 3
√

2 3 1 2
√

2 √

(55)= 32 : 2 : 2 :

16
:
8

:
3

:
3

:
16

: 3 2,
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which can be checked to be remarkably consistent with the results of Eq.(13)after Young
tableaux decomposition.

4.2. General mass levels

In this section we calculate the ratios of string scattering amplitudes in the high-e
limit for general mass levels by imposing Virasoro constraints. The final result wi
course, be exactly the same as what we obtained by requiring the decoupling o
energy zero-norm states. In the presentation here we use the notation of Young’s ta

We consider the general mass levelm2 = 2(n−1). The most general state can be writt
as

(56)|n〉 =
{∑

mj

k⊗
j=1

1

jmj mj ! µ
j

1 · · · µ
j
mj

α
µ

j
1···µj

mj

−j

}
|0, k〉,

where we defined the abbreviation

(57)α
µ

j
1···µj

mj

−j ≡ α
µ

j
1−j · · ·αµ

j
mj

−j ,

with mj is the number of the operatorα
µ
−j . The summation runs over all possible com

nations ofmj ’s with the constraints

(58)
k∑

j=1

jmj = n and 0� mj � n,

so that the total mass isn. It is obvious thatk is less or equal ton. Since the upper indice

{µj

1 · · ·µj
mj

} in α
µ

j
1−j · · ·αµ

j
mj

−j are symmetric, we used the Young tableaux notation to de
the coefficients in Eq.(56). The direct product⊗ acts on the Young tableaux in the stand
way, for example,

(59)1 2 ⊗ 3 = 1 2 3 ⊕ 1 2

3
.

Finally, 1/(jmj mj !) are the normalization factors. To be clear, for examplen = 4, the state
can be written as

|4〉 =
{

1

4! µ1
1 µ1

2 µ1
3 µ1

4 α
µ1

1−1α
µ1

2−1α
µ1

3
−1α

µ1
4−1 + 1

2 · 2! µ1
1 µ1

2 ⊗ µ2
1 α

µ1
1−1α

µ1
2−1α

µ2
1−2

(60)

+ 1

3
µ1

1 ⊗ µ3
1 α

µ1
1−1α

µ3
1−3 + 1

22 · 2! µ2
1 µ2

2 α
µ2

1−2α
µ2

2−2 + 1

4
µ4

1 α
µ4

1−4

}
|0, k〉.

Next, we will apply the Virasoro constraints to the state Eq.(56). The only Virasoro con
straints which need to be considered are
(61)L1|n〉 = L2|n〉 = 0,
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with Lm the standard Virasoro operator

(62)Lm = 1

2

∞∑
n=−∞

αm+n · α−n.

After taking care the symmetries of the Young tableaux, the Virasoro constraints bec

L1|n〉 =
∑
mj

[
kµ1

1

k⊗
j=1

µ
j

1 · · · µ
j
mj

+
m1∑
i=2

µ1
2 · · · µ̂1

i · · · µ1
m1

⊗ µ1
i µ2

1 · · · µ2
m2

k⊗
j �=1,2

µ
j

1 · · · µ
j
mj

+
k∑

l=3

(l − 1) µ1
2 · · · µ1

m1
⊗

ml−1∑
i=1

µl−1
1 · · · µ̂l−1

i · · · µl−1
ml−1

⊗ µl−1
i µl

1 · · · µl
ml

k⊗
j �=1,l,l−1

µ
j

1 · · · µ
j
mj

]
1

(m1 − 1)!α
µ1

2···µ1
m1−1

(63a)×
k∏

j �=1

1

jmj mj !α
µ

j
1···µj

mj

−j |0, k〉 = 0,

and

L2|n〉 =
∑
mj

[
1

2
ηµ1

1µ
1
2

k⊗
j=1

µ
j

1 · · · µ
j
mj

+ µ1
3 · · · µ1

m1
⊗ µ2

1 · · · µ2
m2+1 k

µ2
m2+1

k⊗
j �=1,2

µ
j

1 · · · µ
j
mj

+
m1∑
i=3

µ1
3 · · · µ̂1

i · · · µ1
m1

⊗ µ1
i µ3

1 · · · µ3
m3

k⊗
j �=1,3

µ
j

1 · · · µ
j
mj

+
k∑

l=4

(l − 2) µ1
3 · · · µ1

m1
⊗

ml−2∑
i=1

µl−2
1 · · · µ̂l−2

i · · · µl−2
ml

⊗
k

µl−2
i µl

1 · · · µl
ml

⊗
j �=1,l,l−2

µ
j

1 · · · µ
j
mj

]
1

(m1 − 2)!α
µ1

3···µ1
m1−1

(63b)×
k∏

α
µ

j
1···µj

mj

−j |0, k〉 = 0.
j �=1
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A hat on an index means that the index is skipped there (and it should appear som
else). In the above derivation we have used the identity for the Young tableaux

1 · · · p = 1

p

[
1+ σ(21) + σ(321) + · · · + σ(p···1)

]
2 · · · p ⊗ 1

(64)= 1

p

p∑
i=1

σ(i1) 2 · · · p ⊗ 1 ,

whereσ(i···j) are permutation operators.
States which satisfy the Virasoro constraints are physical states. What we are g

show in the following is that, in the high-energy limit, the Virasoro constraints turn
to be strong enough to give the linear relationship among the physical states. To ta
high-energy limit in the above equations(63a)and(63b), we replace the indices(µi, νi)

by L or T , and

(65)kµi → m̂eL, ηµ1µ2 → eT eT ,

wherem̂ is the mass operator. The Virasoro constraints at high energy are derived
pendix C.1 as Eqs.(C.4a) and (C.4b). To solve the constraints, we need the followi
lemma to further simplify them.

Lemma.

(66)T · · · T L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
m2−l2

L · · · L ⊗ · · ·︸ ︷︷ ︸
{mj ,j�3}

≡ 0,

except for(i) l2 = m2, mj = 0 for j � 3 and (ii) l1 = 2m.

This lemma is equivalent to part of the results of Section3, but will also be proved in
AppendixC.2 by applying Virasoro constraints. Finally, the Virasoro constraints at h
energy reduce to

m̂ T · · · T︸ ︷︷ ︸
n−2q−2−2m

L · · · L︸ ︷︷ ︸
2m+2

⊗ L · · · L︸ ︷︷ ︸
q

(67a)+ (2m + 1) T · · · T︸ ︷︷ ︸
n−2q−2−2m

L · · · L︸ ︷︷ ︸
2m

⊗ L · · · L︸ ︷︷ ︸
q+1

= 0,

m̂ T · · · T︸ ︷︷ ︸
n−2q−2−2m

L · · · L︸ ︷︷ ︸
2m

⊗ L · · · L︸ ︷︷ ︸
q+1

(67b)+ 1

2
T · · · T︸ ︷︷ ︸
n−2q−2m

L · · · L︸ ︷︷ ︸
2m

⊗ L · · · L︸ ︷︷ ︸
q

= 0,
where we have renamedm2 → q andm1 → n − 2q.
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By mathematical recursion, Eq.(67a)leads to

(68a)

T · · · T︸ ︷︷ ︸
n−2q−2m

L · · · L︸ ︷︷ ︸
2m

⊗ L · · · L︸ ︷︷ ︸
q

= (2m − 1)!!(−m̂)q

(2m + 2q − 1)!! T · · · T︸ ︷︷ ︸
n−2q−2m

L · · · L︸ ︷︷ ︸
2m+2q

,

and similarly, Eq.(67b)leads to

(68b)T · · · T︸ ︷︷ ︸
n−2q−2m

L · · · L︸ ︷︷ ︸
2m

⊗ L · · · L︸ ︷︷ ︸
q

=
(

− 1

2m̂

)q

T · · · T︸ ︷︷ ︸
n−2m

L · · · L︸ ︷︷ ︸
2m

.

Combining Eqs.(68a) and (68b), we get

(69)T · · · T︸ ︷︷ ︸
n−2q−2m

L · · · L︸ ︷︷ ︸
2m

⊗ L · · · L︸ ︷︷ ︸
q

=
(

− 1

2m̂

)q
(2k − 1)!!

4m(n − 1)m
T · · · T︸ ︷︷ ︸

n

.

This is equivalent to Eq.(13).
To get the ratio for the specific physical states, we make the Young tableaux dec

sition

T · · · T︸ ︷︷ ︸
n−2q−2m

L · · · L︸ ︷︷ ︸
2m

⊗ L · · · L︸ ︷︷ ︸
q

(70)=
min{n−2q−2m,q}∑

l=0

T · · · T L · · · L

L · · · L
· (l!Cl

qCl
n−2q−2m

)
,

whereCl
q = q!

l!(q−l)! and we have(n − 2q − 2m) T ’s and (2m + q − l) L’s in the first
column,(l) L’s in the second column in the second line of the above equation. Ther
we obtain

T · · · T L · · · L

L · · · L
· (l!Cl

qCl
n−2q−2m

)

(71)= l!Cl
qCl

n−2q−2m∑min{n−2q−2m,q}
l=0 l!Cl

qCl
n−2q−2m

(
− 1

2m̂

)q
(2m − 1)!!
4m(n − 1)m

T · · · T︸ ︷︷ ︸
n

,

which is consistent with the ratios Eqs.(41), (48) and (55)for m2 = 4,6,8, respectively.

5. Saddle-point approximation for stringy amplitudes

In previous sections, we have identified the leading high-energy amplitudes and d
the ratios among high-energy amplitudes for members of a family at given mass
based on decoupling principle. While deductive arguments help to clarify the unde

assumptions and solidify the validity of decoupling principle, it is instructive to compare
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it with a different approach, such as the saddle-point approximation[14]. Therefore, we
shall perform direct calculations to check the results obtained above and make comp
between these two approaches.

In this section, we give a direct verification of the ratios among leading high-en
amplitudes based on the saddle-point method. The four-point amplitudes to be calc
consist of one massive tensor and three tachyons. Since we have shown that in th
energy limit the only relevant states are those corresponding to

(72)
(
αT−1

)n−2m−2q(
αL−1

)2m(
αL−2

)q |0, k〉, −k2 = 2(n − 1),

we only need to calculate the following four-point amplitude

(73)T (n,2m,q) ≡
∫ 4∏

i=1

dxi

〈
V1V

(n,2m,q)

2 V3V4
〉
,

where

(74)V
(n,2m,q)

2 ≡ (
∂XT

)n−2m−2q(
∂XP

)2m(
∂2XP

)q
eik2X2,

(75)Vi ≡ eikiXi , i = 1,3,4.

Notice that here for leading high-energy amplitudes we replace the polarizationL by P .
Using either path-integral or operator formalism, afterSL(2,R) gauge fixing, we obtain

thes − t channel contribution to the stringy amplitude at tree level

T (n,2m,q) ⇒
1∫

0

dx x(1,2)(1− x)(2,3)

[
eT · k1

x
− eT · k3

1− x

]n−2m−2q

(76)×
[
eP · k1

x
− eP · k3

1− x

]2m[
−eP · k1

x2
− eP · k3

(1− x)2

]q

,

where we have simplified the inner products among momenta by defining(1,2) ≡ k1 · k2.
In order to apply the saddle-point method, we need to rewrite the amplitude abov

the “canonical form”. That is,

(77)T (n,2m,q)(K) =
1∫

0

dx u(x)e−Kf (x),

where

(78)K ≡ −(1,2) → s

2
→ 2E2,

(79)τ ≡ − (2,3)

(1,2)
→ − t

s
→ sin2 φ

2
,

(80)f (x) ≡ lnx − τ ln(1− x),

(81)u(x) ≡
[
(1,2)

]2m+q

(1− x)−n+2m+2q(f ′)2m(f ′′)q
(−eT · k3

)n−2m−2q
.

m̂
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The saddle-point for the integration of moduli,x = x0, is defined by

(82)f ′(x0) = 0,

and we have

(83)x0 = 1

1− τ
, 1− x0 = − τ

1− τ
, f ′′(x0) = (1− τ)3τ−1.

From the definition ofu(x), it is easy to see that

(84)u(x0) = u′(x0) = · · · = u(2m−1)(x0) = 0,

and

(85)

u(2m)(x0) =
[

(1,2)

m̂

]2m+q

(1− x0)
−n+2m+2q(2m)!(f ′′

0 )2m+q
(−eT · k3

)n−2m−2q
.

With these inputs, one can easily evaluate the Gaussian integral associated w
four-point amplitudes, Eq.(77),

1∫
0

dx u(x)e−Kf (x)

=
√

2π

Kf ′′
0

e−Kf0

[
u

(2m)
0

2m m! (f ′′
0 )m Km

+ O

(
1

Km+1

)]

(86)=
√

2π

Kf ′′
0

e−Kf0

[
(−1)n−q 2n−2m−q(2m)!

m! m̂2m+q
τ− n

2 (1− τ)
3n
2 En + O

(
En−2)].

This result shows explicitly that with one tensor and three tachyons, the energy and
dependence for the high-energy four-point amplitudes only depend on the leveln, and we
can solve for the ratios among high-energy amplitudes within the same family,

lim
E→∞

T (n,2m,q)

T (n,0,0)
= (−1)q(2m)!

m!(2m̂)2m+q

(87)=
(

−2m − 1

m̂

)
· · ·

(
− 3

m̂

)(
− 1

m̂

)(
− 1

2m̂

)m+q

,

which is consistent with Eq.(13).
We conclude this section with three remarks. Firstly, from the saddle-point appr

it is easy to see why the product ofαP−1 oscillators induce energy suppression. Their c
tribution to the stringy amplitude is proportional to powers off ′(x0), which is zero in
the leading order calculation. Secondly, one can also understand why only even
bers ofαP−1 oscillators will survive for high-energy amplitudes based on the structu
Gaussian integral in Eq.(77). While for a vertex operator containing(2m + 1) αP−1’s,
we haveu(x0) = u′(x0) = · · · = u(2m)(x0) = 0, and the leading contribution comes fro
u(2m+1)(x0)(x − x0)

2m+1, this gives zero since the odd-power moments of Gaussian

gral vanish. Finally, for the alert readers, since we only discuss thes–t channel contribution
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to the scattering amplitudes, the integration range for thex variable seems to devoid of
direct application of saddle-point method. Presumably, we can apply the saddle-po
proximation to the full amplitudes whose integration range extends over whole rea
However, it is curious to see whys–t channel alone has the same functional form as
full amplitude in the high-energy limit. To see this, one can check that the leading
tribution Eq.(86) is actually “form-invariant” under any monotonous change of varia
x = ξ(y), v(y) ≡ ξ ′(y)u(ξ(y)), g(y) ≡ f (ξ(y)). If the analytic structure of the integran
is no concern, we can justify the use of saddle-point approximation even for the cases–t

channel.

6. Remarks

6.1. Virasoro generators at high energies

In retrospect, the main result(13) can be very easily obtained from the Virasoro gen
ators if we accept that we only need to consider states of the form

(88)
(
αT−1

)n−m−2q(
αL−1

)m(
αL−2

)q |0, k〉.
On the space of these states, the Virasoro generators are effectively

(89)L̃−1 = m̂αL−1 + αL−2α
L
1 ,

(90)L̃−2 = m̂αL−2 + 1

2
αT−1a

T−1,

(91)L̃−n = 0 for n � 3,

where we have also replacedeP by eL.
Using these deformed Virasoro generators, we create high-energy approximat

spurious states. On the back of an envelope, one can check that the decoupling of t
rious states created bỹL−1 andL̃−2 implies(32) and(35), respectively (withP replaced
by L). In short,L̃−1 tells us how to tradeαL−1α

L−1 for αL−2, andL̃−2 tells us how to trade
αL−2 for αT−1α

T−1.

Similarly, the Hermitian conjugates of̃L1 andL̃2 can be used to derive the same res
by demanding that they annihilate states in the high-energy limit.

6.2. 2-dimensional string

Although we have shown that there exist infinitely many linear relations among 4-
functions which uniquely fix their ratios in the high-energy limit, it is not totally clear
there is a hidden symmetry responsible for it. However, we would like to claim that
linear relations are indeed the manifestation of the long-sought hidden symmetry of
theory, and that we are on the right track of understanding the symmetry. To persua
readers, we test our claim on a toy model of string theory—the 2-dimensional string t

While the hidden symmetry of the 26-dimensional bosonic string theory is still at l

the symmetry of the 2-dimensional string theory is much better understood. It is known to
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of

-

n
he dis-

orre-
so for
p, or
be associated with the discrete states

(92)ψ±
JM ∼ ∆

(
J,M,−i

√
2X

)
exp

[√
2
(
iMX(0) + (±J − 1)φ(0)

)]
.

Half of themψ+
JM generate thew∞ algebra[16]

(93)
∫

dz

2πi
ψ+

J1M1
ψ+

J2M2
∼ (J2M1 − J1M2)ψ

+
(J1+J2−1)(M1+M2)

.

Let us now check whether thew∞ symmetry is generated by the high-energy limit
zero-norm states. In[15], explicit expression for a class of zero-norm states was given

G+
JM ∼ (J − M)!∆(

J,M,−i
√

2X
)
exp

[√
2(iMX + (J − 1)φ

]
+ (−1)2J

J−M∑
j=1

(J − M − 1)!
∫

dz

2πi
D
(
J,M,−i

√
2X(z), j

)
(94)× exp

[√
2
(
i(M + 1)X(z) + (J − 1)φ(z) − X(0)

)]
.

The notation needs some explanation. Here∆(J,M,−i
√

2X) is defined by

(95)∆
(
J,M,−i

√
2X

)=

∣∣∣∣∣∣∣
S2J−1 S2J−2 · · · SJ+M

S2J−2 S2J−3 · · · SJ+M−1
· · · · · · · · · · · ·

SJ+M SJ+M−1 · · · S2M+1

∣∣∣∣∣∣∣ ,
where

(96)Sk = Sk

({−i
√

2

k! ∂kX(0)

})
, and Sk = 0 if k < 0,

andSk({ai})’s denote the Schur polynomial defined by

(97)exp

( ∞∑
k=1

akx
k

)
=

∞∑
k=0

Sk

({ai}
)
xk.

D(J,M,−i
√

2X(z), j) is defined by a similar expression as Eq.(95), but with thej th
row replaced by{(−z)j − 1− 2J, (−z)j − 2J, . . . , (−z)j−J−M−2}. It was shown[15] that
zero-norm states in Eq.(94)generate aw∞ algebra.

In the high-energy limit, the factors∂kXA are generically proportional to a lin
ear combination of the momenta of other vertices, so it scales with energyE. Thus
D(J,M,−i

√
2X,j) is subleading to∆(J,M,−i

√
2X). Ignoring the second term i

Eq. (94) for this reason, we see that these zero-norm states indeed approach to t
crete statesψ+

JM above! Thus, thew∞ algebra generated by Eq.(94) is identified tow∞
symmetry in Eq.(93). This result strongly suggests that the linear relations among c
lation functions obtained from HZNS are indeed related to the hidden symmetry al
the 26-dimensional strings. Although we still do not know what is the symmetry grou

how it acts on states, this work sheds new light on the road to finding the answers.
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Appendix A. Kinematic variables and notations

For the readers’ convenience, we list the expressions of the kinematic variables in
in the evaluation of a 4-point function in this appendix. InFig. 1, we take the scatterin
plane to be theX1–X2 plane. The momenta of the particles are

(A.1)k1 =
(√

p2 + m2
1,−p,0

)
,

(A.2)k2 =
(√

p2 + m2
2,p,0

)
,

(A.3)k3 =
(
−
√

q2 + m2
3,−q cosφ,−q sinφ

)
,

(A.4)k4 =
(
−
√

q2 + m2
4, q cosφ,q sinφ

)
.

They satisfyk2
i = −m2

i . In the high-energy limit, the Mandelstam variables are

(A.5)s ≡ −(k1 + k2)
2 = 4E2 +O

(
1/E2),

(A.6)t ≡ −(k2 + k3)
2 = −4

(
E2 −

∑4
i=1 m2

i

4

)
sin2 φ

2
+O

(
1/E2),

(A.7)u ≡ −(k1 + k3)
2 = −4

(
E2 −

∑4
i=1 m2

i

4

)
cos2

φ

2
+O

(
1/E2),

whereE is related top andq as

(A.8)E2 = p2 + m2
1 + m2

2

2
= q2 + m2

3 + m2
4

2
.

The polarization bases for the 4 particles are

(A.9)eL(1) = 1

m1

(
p,−

√
p2 + m2

1,0
)
, eT (1) = (0,0,−1),

(A.10)eL(2) = 1

m2

(
p,

√
p2 + m2

2,0
)
, eT (2) = (0,0,1),

eL(3) = 1

m3

(
−q,−

√
q2 + m2

3 cosφ,−
√

q2 + m2
3 sinφ

)
,

T
 (A.11)e (3) = (0,−sinφ,cosφ),



C.-T. Chan et al. / Nuclear Physics B 725 (2005) 352–382 373

some
nt to
lations.
utions
f zero-

e
al
states
eL(4) = 1

m4

(
−q,

√
q2 + m4 cosφ,

√
q2 + m2

4 sinφ
)
,

(A.12)eT (4) = (0,sinφ,−cosφ).

Appendix B. High-energy zero-norm states

In this subsection, we explicitly calculate high-energy zero-norm states (HZNS) of
low-lying mass level. We will also show that the decoupling of these HZNS is equivale
the decoupling of those spurious states used in the text to derive the desired linear re
In the old covariant first quantization spectrum of open bosonic string theory, the sol
of physical state conditions include positive-norm propagating states and two types o
norm states. The latter are[7]

(B.1)Type I: L−1|x〉, whereL1|x〉 = L2|x〉 = 0, L0|x〉 = 0;

(B.2)

Type II:

(
L−2 + 3

2
L2−1

)
|x̃〉, whereL1|x̃〉 = L2|x̃〉 = 0, (L0 + 1)|x̃〉 = 0.

Based on a simplified calculation of higher mass level positive-norm states in[17], some
general solutions of zero-norm states of Eqs.(B.1) and (B.2)at arbitrary mass level wer
calculated in[18]. Eqs.(B.1) and (B.2)can be derived from Kac determinant in conform
field theory. While type I states have zero-norm at any spacetime dimension, type II
have zero-normonlyatD = 26.

The solutions of Eqs.(B.1) and (B.2)up to the mass levelm2 = 4 are listed as follows
[18]:

(1) m2 = −k2 = 0:

(B.3)L−1|x〉 = k · α−1|0, k〉, |x〉 = |0, k〉, |x〉 = |0, k〉.
(2) m2 = −k2 = 2:

(B.4)

(
L−2 + 3

2
L2−1

)
|x̃〉 =

[
1

2
α−1 · α−1 + 5

2
k · α−2 + 3

2
(k · α−1)

2
]
|0, k〉, |x̃〉 = |0, k〉,

(B.5)
L−1|x〉 = [

θ · α−2 + (k · α−1)(θ · α−1)
]|0, k〉, |x〉 = θ · α−1|0, k〉, θ · k = 0.

(3) m2 = −k2 = 4:(
L−2 + 3

2
L2−1

)
|x̃〉 =

{
4θ · α−3 + 1

2
(α−1 · α−1)(θ · α−1) + 5

2
(k · α−2)(θ · α−1)

+ 3

2
(k · α−1)

2(θ · α−1) + 3(k · α−1)(θ · α−2)

}
|0, k〉,
(B.6)|x̃〉 = θ · α−1|0, k〉, k · θ = 0,
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L−1|x〉 = [
2θµνα

µ
−1α

ν
−2 + kλθµνα

λ−1α
µ
−1α

ν
−1

]|0, k〉,
(B.7)|x〉 = θµνα

µν
−1|0, k〉, k · θ = ηµνθµν = 0, θµν = θνµ,

L−1|x〉 =
[

1

2
(k · α−1)

2(θ · α−1) + 2θ · α−3 + 3

2
(k · α−1)(θ · α−2)

+ 1

2
(k · α−2)(θ · α−1)

]
|0, k〉,

(B.8)|x〉 = [
2θ · α−2 + (k · α−1)(θ · α−1)

]|0, k〉, θ · k = 0,

L−1|x〉 =
[

17

4
(k · α−1)

3 + 9

2
(k · α−1)(α−1 · α−1) + 9(α−1 · α−2)

+ 21(k · α−1)(k · α−2) + 25(k · α−3)

]
|0, k〉,

(B.9)|x〉 =
[

25

2
k · α−2 + 9

2
α−1 · α−1 + 17

4
(k · α−1)

2
]
|0, k〉.

Note that there are two degenerate vector zero-norm states, Eq.(B.6) for type II and
Eq.(B.8) for type I, at mass levelm2 = 4. For mass levelm2 = 2, the high-energy limit o
Eqs.(B.5) and (B.4)are calculated to be

(B.10)L−1(θ · α−1)|0〉 → √
2αL−1α

L−1 + αL−2|0〉,
(B.11)

(
L−2 + 3

2
L2−1

)
|0〉 →

(√
2αL−2 + 1

2
αT−1α

T−1

)
|0〉

(B.12)+ 3

2

(
2αL−1α

L−1 + √
2αL−2

)|0〉.
Note that Eq.(B.12) is the high-energy limit of the second term of type II zero-norm st
It is easy to see that the decoupling of(B.10) implies the decoupling of(B.12). So one can
neglect the effect of(B.12) even though it is of leading order in energy. It turns out t
this phenomena persists to any higher mass level as well.This justifies that the decouplin
of HZNS is equivalent to the decoupling of those spurious states used in the text to
the desired linear relations. By solving Eqs.(B.10) and (B.11), we get the desired linea
relation,TT T :TL :TLL = 4 :−√

2 : 1. Similarly, the high-energy limit of Eqs.(B.6)–(B.9)
are calculated to be

(B.13)

(
L−2 + 3

2
L2−1

)
|0〉 →

(
4α

(T
−1α

L)
−2 + 1

2
αT−1α

T−1α
T−1

)
|0〉

(B.14)+ 3

2

(
4α

(L
−1α

L−1α
T )
−1 + 4α

(T
−1α

L)
−2

)|0〉,
(B.15)L−1

(
θµνα

µν
−1

)|0〉 → [
2α

(T
−1α

L)
−2 + 2α

(L
−1α

L−1α
T )
−1

]|0〉,
(B.16)L−1

[
2θ · α−2 + (k · α−1)(θ · α−1)

]|0〉 → (
4α

(L
−1α

L−1α
T )
−1 + 4α

(T
−1α

L)
−2

)|0〉,[
25 9 17 2

]

(B.17)L−1

2
k · α−2 +

2
α−1 · α−1 +

4
(k · α−1) |0〉 → 0.
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f
It is easy to see that the decoupling of Eq.(B.15) or (B.16) implies the decoupling o
Eq.(B.14). By solving the equations, one getsTT T T :TLLT :T(LT ) :T[LT ] = 8 : 1 :−1 : 1.

Appendix C. Virasoro constraints

C.1. High-energy limit of Virasoro constraints

To take the high-energy limit for the Virasoro constraints, we replace the indices(µi, νi)

by L or T , and

(C.1)kµi → m̂eL, ηµ1µ2 → eT eT .

Eqs.(63a) and (63b)become

0= m̂ L µ1
2 · · · µ1

m1

k⊗
j �=1

µ
j

1 · · · µ
j
mj

+
m1∑
i=2

µ1
2 · · · µ̂1

i · · · µ1
m1

⊗ µ1
i µ2

1 · · · µ2
m2

k⊗
j �=1,2

µ
j

1 · · · µ
j
mj

+
k∑

l=3

(l − 1) µ1
2 · · · µ1

m1
⊗

ml−1∑
i=1

µl−1
1 · · · µ̂l−1

i · · · µl−1
ml−1

(C.2a)⊗ µl−1
i µl

1 · · · µl
ml

k⊗
j �=1,l,l−1

µ
j

1 · · · µ
j
mj

,

and

0= 1

2
T T µ1

3 · · · µ1
m1

k⊗
j �=1

µ
j

1 · · · µ
j
mj

+ m̂ µ1
3 · · · µ1

m1
⊗ µ2

1 · · · µ2
m2

L

k⊗
j �=1,2

µ
j

1 · · · µ
j
mj

+
m1∑
i=3

µ1
3 · · · µ̂1

i · · · µ1
m1

⊗ µ1
i µ3

1 · · · µ3
m3

k⊗
j �=1,3

µ
j

1 · · · µ
j
mj

+
k∑

l=4

(l − 2) µ1
3 · · · µ1

m1
⊗

ml−2∑
i=1

µl−2
1 · · · µ̂l−2

i · · · µl−2
ml

(C.2b)⊗ µl−2
i µl

1 · · · µl
ml

k⊗
µ

j

1 · · · µ
j
mj

.

j �=1,l,l−2
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The indices and{µj
i } are symmetric and can be chosen to havelj of {L} which 0� lj � mj

and{T } for the rest. Thus

0= m̂ µ1
2 T · · · T︸ ︷︷ ︸

m1−2−l1

L · · · L︸ ︷︷ ︸
l1+1

k⊗
j �=1

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+ T · · · T︸ ︷︷ ︸
m1−2−l1

L · · · L︸ ︷︷ ︸
l1

⊗ µ1
2 µ2

1 T · · · T︸ ︷︷ ︸
m2−1−l2

L · · · L︸ ︷︷ ︸
l2

k⊗
j �=1,2

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+ (m1 − 2− l1) µ1
2 T · · · T︸ ︷︷ ︸

m1−3−l1

L · · · L︸ ︷︷ ︸
l1

⊗ µ2
1 T · · · T︸ ︷︷ ︸

m2−l2

L · · · L︸ ︷︷ ︸
l2

k⊗
j �=1,2

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+ l1 µ1
2 T · · · T︸ ︷︷ ︸

m1−2−l1

L · · · L︸ ︷︷ ︸
l1−1

⊗ µ2
1 T · · · T︸ ︷︷ ︸

m2−1−l2

L · · · L︸ ︷︷ ︸
l2+1

k⊗
j �=1,2

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+
k∑

l=3

(l − 1) µ1
2 T · · · T︸ ︷︷ ︸

m1−2−l1

L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
ml−1−1−ll−1

L · · · L︸ ︷︷ ︸
ll−1

⊗ µl−1
1 µl

1 T · · · T︸ ︷︷ ︸
ml−1−ll

L · · · L︸ ︷︷ ︸
ll

k⊗
j �=1,l,l−1

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+
k∑

l=3

(l − 1)(ml−1 − 1− ll−1) µ1
2 T · · · T︸ ︷︷ ︸

m1−2−l1

L · · · L︸ ︷︷ ︸
l1

⊗ µl−1
1 T · · · T︸ ︷︷ ︸ L · · · L︸ ︷︷ ︸ ⊗ µl

1 T · · · T︸ ︷︷ ︸ L · · · L︸ ︷︷ ︸

ml−1−2−ll−1 ll−1 ml−ll ll
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k⊗
j �=1,l,l−1

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+
k∑

l=3

ll−1(l − 1) µ1
2 T · · · T︸ ︷︷ ︸

m1−2−l1

L · · · L︸ ︷︷ ︸
l1

⊗ µl−1
1 T · · · T︸ ︷︷ ︸

ml−1−1−ll−1

L · · · L︸ ︷︷ ︸
ll−1−1

(C.3a)⊗ µl
1 T · · · T︸ ︷︷ ︸

ml−1−ll

L · · · L︸ ︷︷ ︸
ll+1

k⊗
j �=1,l,l−1

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

,

and

0= 1

2
µ1

3 T · · · T︸ ︷︷ ︸
m1−1−l1

L · · · L︸ ︷︷ ︸
l1

k⊗
j �=1

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+ m̂ µ1
3 T · · · T︸ ︷︷ ︸

m1−3−l1

L · · · L︸ ︷︷ ︸
l1

⊗ µ2
1 T · · · T︸ ︷︷ ︸

m2−1−l2

L · · · L︸ ︷︷ ︸
l2+1

k⊗
j �=1,2

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+ T · · · T︸ ︷︷ ︸
m1−3−l1

L · · · L︸ ︷︷ ︸
l1

⊗ µ1
3 µ3

1 T · · · T︸ ︷︷ ︸
m3−1−l3

L · · · L︸ ︷︷ ︸
l3

k⊗
j �=1,3

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+ (m1 − 3− l1) µ1
3 T · · · T︸ ︷︷ ︸

m1−4−l1

L · · · L︸ ︷︷ ︸
l1

⊗ µ3
1 T · · · T︸ ︷︷ ︸

m3−l3

L · · · L︸ ︷︷ ︸
l3

k⊗
j �=1,3

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+ l1 µ1
3 T · · · T︸ ︷︷ ︸

m1−3−l1

L · · · L︸ ︷︷ ︸
l1−1

⊗ µ3
1 T · · · T︸ ︷︷ ︸

m3−1−l3

L · · · L︸ ︷︷ ︸
l3+1

k⊗
µ

j

1 T · · · T︸ ︷︷ ︸ L · · · L︸ ︷︷ ︸
j �=1,3
mj −1−lj lj
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n
ead to
+
k∑

l=4

(l − 2) µ1
3 T · · · T︸ ︷︷ ︸

m1−3−l1

L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
ml−2−1−ll−2

L · · · L︸ ︷︷ ︸
ll−2

⊗ µl−2
1 µl

1 T · · · T︸ ︷︷ ︸
ml−1−ll

L · · · L︸ ︷︷ ︸
ll

k⊗
j �=1,l,l−2

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+
k∑

l=4

(l − 2)(ml−2 − 1− ll−2) µ1
3 T · · · T︸ ︷︷ ︸

m1−3−l1

L · · · L︸ ︷︷ ︸
l1

⊗ µl−2
1 T · · · T︸ ︷︷ ︸

ml−2−2−ll−2

L · · · L︸ ︷︷ ︸
ll−2

⊗ µl
1 T · · · T︸ ︷︷ ︸

ml−ll

L · · · L︸ ︷︷ ︸
ll

k⊗
j �=1,l,l−2

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

+
k∑

l=4

ll−2(l − 2) µ1
3 T · · · T︸ ︷︷ ︸

m1−3−l1

L · · · L︸ ︷︷ ︸
l1

⊗
ml−2∑
i=2

µl−2
1 T · · · T︸ ︷︷ ︸

ml−2−1−ll−2

L · · · L︸ ︷︷ ︸
ll−2−1

⊗ µl
1 T · · · T︸ ︷︷ ︸

ml−1−ll

L · · · L︸ ︷︷ ︸
ll+1

k⊗
j �=1,l,l−2

µ
j

1 T · · · T︸ ︷︷ ︸
mj −1−lj

L · · · L︸ ︷︷ ︸
lj

.

There are still some undetermined parametersµ1
2, µ1

3 andµ
j

1(j � 2), which can be chose
to beL or T , in the above equations. However, it is easy to see that both choices l
the same equations. Therefore, we will set all of them to beT in the following. The final
Virasoro constraints at high energy become

0= m̂ T · · · T︸ ︷︷ ︸
m1−1−l1

L · · · L︸ ︷︷ ︸
l1+1

k⊗
j �=1

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

+ (m1 − 1− l1) T · · · T︸ ︷︷ ︸
m1−2−l1

L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
m2+1−l2

L · · · L︸ ︷︷ ︸
l2

k⊗
j �=1,2

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

+ l1 T · · · T︸ ︷︷ ︸ L · · · L︸ ︷︷ ︸ ⊗ T · · · T︸ ︷︷ ︸ L · · · L︸ ︷︷ ︸
k⊗

T · · · T︸ ︷︷ ︸ L · · · L︸ ︷︷ ︸

m1−1−l1 l1−1 m2−l2 l2+1

j �=1,2
mj −lj lj
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+
k∑

l=3

(l − 1)(ml−1 − ll−1) T · · · T︸ ︷︷ ︸
m1−1−l1

L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
ml−1−1−ll−1

L · · · L︸ ︷︷ ︸
ll−1

⊗ T · · · T︸ ︷︷ ︸
ml+1−ll

L · · · L︸ ︷︷ ︸
ll

k⊗
j �=1,l,l−1

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

+
k∑

l=3

ll−1(l − 1) T · · · T︸ ︷︷ ︸
m1−1−l1

L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
ml−1−ll−1

L · · · L︸ ︷︷ ︸
ll−1−1

(C.4a)⊗ T · · · T︸ ︷︷ ︸
ml−ll

L · · · L︸ ︷︷ ︸
ll+1

k⊗
j �=1,l,l−1

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

,

and

0= 1

2
T · · · T︸ ︷︷ ︸

m1−l1

L · · · L︸ ︷︷ ︸
l1

k⊗
j �=1

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

+ m̂ T · · · T︸ ︷︷ ︸
m1−2−l1

L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
m2−l2

L · · · L︸ ︷︷ ︸
l2+1

k⊗
j �=1,2

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

+ (m1 − 2− l1) T · · · T︸ ︷︷ ︸
m1−3−l1

L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
m3+1−l3

L · · · L︸ ︷︷ ︸
l3

k⊗
j �=1,3

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

+ l1 T · · · T︸ ︷︷ ︸
m1−2−l1

L · · · L︸ ︷︷ ︸
l1−1

⊗ T · · · T︸ ︷︷ ︸
m3−l3

L · · · L︸ ︷︷ ︸
l3+1

k⊗
j �=1,3

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

+
k∑

l=4

(l − 2)(ml−2 − ll−2) T · · · T︸ ︷︷ ︸
m1−2−l1

L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
ml−2−1−ll−2

L · · · L︸ ︷︷ ︸
ll−2

⊗ T · · · T︸ ︷︷ ︸
ml+1−ll

L · · · L︸ ︷︷ ︸
ll

k⊗
j �=1,l,l−2

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

+
k∑

ll−2(l − 2) T · · · T︸ ︷︷ ︸ L · · · L︸ ︷︷ ︸ ⊗
ml−2∑

T · · · T︸ ︷︷ ︸ L · · · L︸ ︷︷ ︸

l=4

m1−2−l1 l1
i=2

ml−2−ll−2 ll−2−1
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e

(C.4b)⊗ T · · · T︸ ︷︷ ︸
ml−ll

L · · · L︸ ︷︷ ︸
ll+1

k⊗
j �=1,l,l−2

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

.

C.2. Proof of the lemma(66)

In this subsection, we prove the lemma given in Section4.2as follows

(C.5)T · · · T L · · · L︸ ︷︷ ︸
l1

⊗ T · · · T︸ ︷︷ ︸
m2−l2

L · · · L ⊗ · · ·︸ ︷︷ ︸
{mj ,j�3}

≡ 0,

except for (i)l2 = m2, mj = 0 for j � 3 and (ii) l1 = 2m.

Proof. In the high-energy limit, we only need to consider the leading energy term
count the energy scaling behavior, the rule is the same as Eq.(20): eachT contributes a
factor of energyE and eachL contributesE2. Any terms with total energy order level le
thann are sub-leading terms and can be ignored.

(i) If l2 �= m2 andmj �= 0, j � 3, then in Eq.(C.4a),
(1) for l1 = 0, all terms except the first term are sub-leading, then

(C.6)T · · · T L · · · L︸ ︷︷ ︸
1

k⊗
j �=1

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

= 0,

(2) for l1 = 1, the third term is sub-leading, and(C.6)implies all other terms except th
first term are vanished, then

(C.7)T · · · T L · · · L︸ ︷︷ ︸
2

k⊗
j �=1

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

= 0,

(3) if for l1 = l′,

(C.8)T · · · T L · · · L︸ ︷︷ ︸
l′−1

k⊗
j �=1

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

= 0,

and

(C.9)T · · · T L · · · L︸ ︷︷ ︸
l′

k⊗
j �=1

T · · · T︸ ︷︷ ︸
mj −lj

L · · · L︸ ︷︷ ︸
lj

= 0,

(C.4a)implies all terms except the first term are vanished, then

(C.10)T · · · T L · · · L︸ ︷︷ ︸
k⊗

j �=1

T · · · T︸ ︷︷ ︸ L · · · L︸ ︷︷ ︸ = 0.
l′+1 mj −lj lj
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(ii) If l2 = m2 andmj = 0 for j � 3, then Eq.(C.4a)reduces to

(C.11)

m̂ T · · · T︸ ︷︷ ︸
m1−1−l1

L · · · L︸ ︷︷ ︸
l1+1

⊗ L · · · L︸ ︷︷ ︸
m2

+l1 T · · · T︸ ︷︷ ︸
m1−1−l1

L · · · L︸ ︷︷ ︸
l1−1

⊗ L · · · L︸ ︷︷ ︸
m2+1

= 0.

Similarly, we have in Eq.(C.11),

(1) for l1 = 0,

(C.12)T · · · T L · · · L︸ ︷︷ ︸
1

⊗ L · · · L = 0,

(2) if for l1 = 2m,

(C.13)T · · · T L · · · L︸ ︷︷ ︸
2m−1

⊗ L · · · L = 0,

then(C.11)implies

(C.14)T · · · T L · · · L︸ ︷︷ ︸
2m+1

⊗ L · · · L = 0. �
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