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Abstract

We study the implication of decoupling zero-norm states in the high-energy limit, for the 26-
dimensional bosonic open string theory. Infinitely many linear relations among 4-point functions
are derived algebraically, and their unique solution is found. Equivalent results are also obtained by
taking the high-energy limit of Virasoro constraints, and as an independent check, we compute all
4-point functions of 3 tachyons and an arbitrary massive state by saddle-point approximation.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Motivation

The high-energy limit of string theory is an old subj¢t+3]. Its motivation is to find
the hypothetical hidden symmetry. It is believed that the higher-spin gauge fields in string
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theory receive their masses via a spontaneous symmetry breaking mecf@disit is

then natural to expect that the gauge fields become effectively massless and the symmetry
is restored in the high-energy limit. The symmetry might also explain mysterious corre-
spondences such as dualities and holography.

This subject has been attacked from various directions. One can take the high-energy
limit of the worldsheet theory and use it to define string theory in the high-energyfijnit
However there is a lot of ambiguity in taking the high-energy limit of a worldsheet. It is not
clear which choice of the high-energy worldsheet action is the one suitable for the purpose
of studying symmetries.

Another approach is to study consistent higher spin gauge thg6tidsturns out that
there is no consistent scale-free nontrivial interactions in the flat spacetime. Usually people
study these theories in the AdS background. In general we need a characteristic length scale
to define consistent interactions. The string seéleannot be used because by definition
a’ — oo in the high-energy limit.

The third approach is to examine correlation functions in string theory and look for
meaningful patterns in the high-energy lirfiit-3]. This is the approach that we will take
in this work. We consider the bosonic open string theory and compare correlation functions
which are different from each other by a single vertex at the same mass level. We claim that
their relative ratios are completely determined at the leading order for any mass level. This
should be viewed as the strongest signal there ever was for a symmetry in the high-energy
limit.

The main idea of our approach is that the decoupling of zero-norm states strongly
restricts the dynamics of string thedi}. One can shoj8,9] that off-shell gauge transfor-
mations of Witten's string field theory, after imposing the no-ghost condition, are identical
to the on-shell stringy gauge symmetries generated by two types of zero-norm states. In
view of the dictating role of gauge symmetry in Witten’s SFT, we believe that the exis-
tence of the huge gauge symmetry represented by zero-norm[§@teE| fixes the theory
uniquely. In particular, we will show in this paper that by taking a self-consistent high-
energy limit[12—14] of arbitrary four-point functions, it will allow us to express them at
the leading order in terms of those of tachyons. We will also take the 2D string as an ex-
ample to establish the connection between the high-energy limit of zero-norm states and
the hidden symmetry. In 2D string, we will show that the high-energy limigf alge-
bra generated by 2D zero-norm stgiEs] can be identified with the., symmetry of 2D
string[16].

1.2. Review

We will focus on 4-point functions in this work, although our discussion can be gener-
alized to higher point correlation functions. Due to Poincaré symmetry, a 4-point function
is a function of merely two parameters. Viewing a 4-point function as the scattering am-
plitude of a two-body scattering process, one can choose the two parameters {ore
half of the center of mass energy for the incoming particles, i.e., particles 1 arid@ iy
and¢ (the scattering angle between particles 1 and 3). For convenience we will take the
center of mass frame and put the momenta of particles 1 and 2 aloid ttigection, with
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Fig. 1. Kinematic variables in the center of mass frame.

the momenta of particles 3 and 4 on tké—X? plane. Readers can refer Appendix A
for expressions of the kinematic variables in this frame.
The high-energy limit under consideration is

o' E? > 00, ¢ =fixed, (1)

Based on the saddle-point approximation of Gross and MEHd&ross and Mane]
computed the high-energy limit of 4-point functions in the bosonic open string theory. To
explain their result, let us first define our notations and conventions. For a particle of mo-
mentumk, we define an orthonormal basis of polarizatiga8, e, ¢’'}. The momentum
polarizatione” is proportional tak, the longitudinal polarizatioa” is the space-like unit
vector whose spatial component is proportional to thak,cinde’i are the space-like
unit-vectors transverse to the spatial momentum. As an example fointing along the
X1-direction,

k= (k&' k?,... . k*®) = (E, p,0,...,0), p>0, 2)

the basis of polarization is

eP=%(,/p2+m2,p,0,0,...,0), eL=%<p,\/p2+m2,0,0,...,0),
eli=(0,0,...,1,...), 3)

wherem is the mass of the particle. In generdl, (fori =3, ..., 25) is just the unit vector
in the X’-direction, and the definitions ef’, ¢~ ande’2 will depend on the motion of the
particle. Fore’2, which is parallel to the scattering plane, we denote itby(seeFig. 1
andAppendix A). The orientations o#2 for each particle are fixed by the right-hand rule,
k x T2 = ¢T3, wherek is the spatial momentum of 4-vectbr We will use the notation
3"XA=er "X for A=P,L,T,T;.
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Each vertex is a polynomial ¢b” X4} times the exponential factor e - X). Among
all possible choices of polarizations for the 4 vertices in a 4-point function, we now argue
that only the polarizationd and 7 need to be considered. The polarizatiBncan be
gauged away using zero-norm staf@s To see why we can ignore al}’'s exceptT, we
note that a prefactad” X# can be contracted with the exponeht X of another vertex.
The contribution of this contraction to a scattering amplitude is proportionaf te E.
If k4 #0 (i.e., if A= L or T), this is much more important in the high-energy limit
than a contraction with another prefactdtX 2, which givesp*® ~ EC. Therefore, if all
polarizations in all vertices are chosen to be eitheasr T, the resulting 4-point function
will dominate over other choices of polarizations.

According to the zeroth-order saddle-point approximafitjn the leading order of a
4-point function is

4
(V(kD)V (k) V (k3) V (ka)) ~ (1‘[ va)T. (4)
a=1

HereT is the correlation function of 4 tachyons, according to the following rules
1 «7 .Esing

n , 5
m—D1° " TS (5)
1 o 11 EZsird ¢
o X T TS T ey ©)
wheré
X
A =sir =. 7
Sl > (7
A peculiar feature of6) is that it vanishes for = 1
axl —o. (8)

Does this mean that all 4-point functions involviag~ are subleading? The answer de-
pends on how we define the notion of “subleading”. What is the reference 4-point function
to be compared with?

Note that it is impossible to have a universal notion of “leading order” for all 4-point
functions, since 4-point functions with vertices at higher mass levels typically dominate
over those with vertices at lower mass levels in the high-energy limit. Having a well defined
limit for all correlation functions is also contradictory to the fact that there is no consistent
interacting higher-spin gauge field theory in the flat spacetime.

We propose that the appropriate question to ask is: How will a 4-point function change if
we replace a vertex by another vertex at the same mass level? For example, we can replace
afactord X’ by dX” in one of the vertices. Naively, the former wiatk - should dominate
over the latter in the high-energy limit since the components‘oécale asE! and those
of eT scale as£®. However, Eq(8) tells us that X~ does not live up to this expectation.

1 However, see correction in Ré1.4].
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Nevertheless, it does not imply thak ~ is subleading compared withx” . It depends on
the rest of the terms in the prefactor.

The purpose of our work is to find linear relations among 4-point functions in the high-
energy limit as a signature of the hidden symmetry propos&t ifT his is not manifest in
the saddle-point resufb), (6), which holds for thenaiveleading order (Oth order saddle-
point approximation). One of the main reasons is that they ignored vertices invél¥ihg
Another main reason is that they did not try to determine the precise power factor of
[14] in a 4-point function (a higher order correction to the saddle-point approximation is
needed), which is crucial for examining linear relations among 4-point functions.

The proper notion of “leading order” in the high-energy limit such that linear rela-
tions among 4-point functions can be established was first discovef&d, k8] A purely
algebraic approach utilizing zero-norm states was developed there to derive the linear rela-
tions explicitly for the first few mass levels. This approach was further explored to obtain
stronger results, and its connection/difference from the saddle-point computation was ex-
plained in detail if14].

The central idea behind the algebraic approach us¢tinl4]was the decoupling of
zero-norm states (i.e., the requirement of gauge invariance). A crucial step in the derivation
is to replace the polarizatiosf” by e in the zero-norm states. It is assumed that, while
zero-norm states decouple at all energies, the replacement leads to states that are decoupled
at high energies.

The new achievements of this paper include:

(1) We studied the implication of the decoupling of zero-norm states in the high-energy
limit. The 4-point functions at the leading order are specified for all mass levels.

(2) Infinite linear relations among 4-point functions are obtained for all mass levels. The
ratio of any two 4-point functions at the leading order is uniquely determined.

(3) We developed a “dual” description of the algebraic approach using the spurious states,
which is to take high-energy limit of the Virasoro constraints.

(4) Using saddle-point approximation, we explicitly computed all 4-point functions for 3
tachyons and one arbitrary massive state, and verified the linear relations obtained via
algebraic methods.

2. Main results

For brevity, we will refer to all 4-point functions different from each other by a single
vertex at the same mass level asfaniily’. When we compare members of a family, we
only need to specify the vertex which is changed.

A 4-point function will be said to bat the leading ordeif it is not subleading to any
of its siblings We will ignore those that are not at the leading order. Our aim is to find the
numerical ratios of all 4-point functions in the same family at the leading order. Apparently,
there are more 4-point functions at the leading order at higher mass levels. Our goal may
seem insurmountable at first sight.

Saving the derivation for later, we give our main results here. A 4-point function is at
the leading order if and only if the vertéx under comparison is a linear combination of
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vertices of the form

V(n,m,q) (k) — (8XT)n—m—2q (aXL)m (BZXL)qeik'X, (9)
where
n>m+2q, m,q=0. (20)

The corresponding states are of the form
n—m—2 m
() T(aky)™ (ak5)?10, k). (11)

The mass squared ig2— 1). All other states invoIvin@zfz, a/_‘g, ... are subleading.
Using the notatiof

Tnmq) _ (VlV(”’m’q)(k)V3V4)7 (12)

all linear relations among different choices vf"-"4) (obtained from the decoupling of
spurious states at high energies) can be solved by the simple expression

. 7 (n.2m,q) 1 2m+q 1\"+4
an e =(-a) (3) en-wn -
T(n,2m+1,q)
lim = =0, (14)

E—oco T 1,00

wherem = /2(n — 1). This formula tells us how to tradex’ and 32X~ for 9X”, so
that all 4-point functions can be related to the one involving @®y in V,. The formula
above applies equally well to all vertices.

Since we know the value of a representative 4-point fundti@n 4]

172, 73,74, ) .
T 5T — ()2t 2E3singom ]|~ T (Eny), (15)
where
1 120 ( ;. Pcm -3 dom >
T =/a(=)" 27"E~+ (smT) <cosT>

5 (16)

_s_ J
is the high-energy limit of% with s + 7 + u = 2¥Xn; — 8, and we have
2 .
calculated it up to the next leading orderfinIn Eq.(15), n; is the number of* of theith
vertex operators anfl’ is the transverse direction of thth particle. We can immediately
write down the explicit expression of a 4-point function if all vertices are nontrivial at the
leading order.

Xexp(_slns—i—tlnt—(s+t)|n(s+t)>

2 More rigorously,V» needs to be a physical state in order for the correlation function to be well-defined. We
should keep in mind that our results should be applied to suitable linear combinati(®)s mdssibly together
with subleading states, to satisfy Virasoro constraints.
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3. Linear relations among 4-point functions

Before we go on, we recall some terminology used in the old covariant quantization.
A state|y) in the Hilbert space iphysicalif it satisfies the Virasoro constraints

(L, —89)1y)=0, n>0. (17)
SinceLl = L_,, states of the form

L_nlx) (18)

are orthogonal to all physical states, and they are calbetlious statesZero-norm states

are spurious states that are also physical. They correspond to gauge symmetries. In the
old covariant first quantization spectrum of open bosonic string theory, the solutions of
physical state conditions include positive-norm propagating states and two types of zero-
norm states. The latter afg]

Typel: L_ilx), whereLi|x)= Lo|x)=0, Lo|x)=0, (29)
3
Type II: (L_2+§L31>|x>, whereL1|%) = Lo|X) =0, (Lo+ 1)|%) =0. (20)

In this section we derive the linear relations among all amplitudes in the same family
by taking the high-energy limit of zero-norm states (HZNS). Solutions of HZNS for some
low lying mass level are presented Appendix B The first step in the derivation is to
identify the class of states that are relevant, i.e., those at the leading order. As we explained
in Sectionl.2, we only need to consider the polarizatiafsande’.

To get a rough idea about how each vertex operator scalesBniththe high-energy
limit, we associate a naive dimension to each prefagtox 4 according to the following
rule

amxT -1, amxt - 2. (21)

The reason is the following. Each factor &@f X has the possibility of contracting with
the exponentk; - X of another vertex operator so that it scales likén the high-energy
limit. Furthermore, components of the polarization vectdrande’ scale withE like E©
andEL, respectively.

When we compare vertex operators at the same mass level, the sum of all the integers
in 9" X4 is fixed. Roughly speaking, it is advantageous to have néafy than having
fewer number ofd” X4 with m > 1. For example, at the first massive level, the vertex
operatord X7 9 X7 ¢’*X has a larger naive dimension thafix 7 etk X

The counting of the naive dimension does not take into consideration the possibility
that the coefficient of the leading order term happens to vanish by cancellation. The true
dimension of a vertex operator can be lower than its naive dimension, although the reverse
never happens.

Through experiences accumulated from explicit computafib®s14] we find that the
highest spin vertex

(3XT)"e* X < (aT1)"10, k) (22)
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is always at the leading order in its family. Since the naive dimension of this state equals
its true dimension, any state with a lower naive dimension than this vertex operator can
be ignored. This implies that we can immediately throw away a lot of vertex operators
at each mass level, but there are still many left. The problem is that, although there are
disadvantages to haw#' X7 with m > 2 or " X~ with m > 3 compared with having
@XxTy™, it may be possible that having extra factorsadf’, which has a higher naive
dimension thard X7, can compensate the disadvantage of these factors. However, explicit
computations at the first few massive levels showed that this never happens.

We will now argue why this is generically true, and show in this subsection that the only
states that will survive the high-energy limit at leweére of the form

n,2m, q) = («74)" 2" (k)" (@L,)710; k). (23)

Our argument is essentially based on the decoupling of zero-norm states in the high-
energy limit. However, note that when we take the high-energy limit, that is, when we
replacee” by ¢ and ignore subleading terms in thé 2 expansior?, the zero-norm
states become positive norm states, although we will still call them “high-energy zero-norm
states”, or HZNS for short. (This is why it is possible to derive relations among positive-
norm physical states by taking the high-energy limit of Ward identities.Apgpendix B
for examples.) As such, it is not essential to maintain the zero-norm condition, and we can
simply take the high-energy limit of spurious states. It can be shown that, as far as the final
results are concerned, the decoupling of those spurious states we are going to use in this
paper are equivalent to the decoupling of high-energy zero-norm states (HZNS).

Thanks to the Virasoro algebra, we only need two Virasoro operators

1
L_]_: EZO[_;H_,, Oy :mafl+a_2'al+"', (24)
nez
275 eZa_ZJm Ap =01 o1 tma a3y
n

to generate all spurious states. Hérés the mass operator, i.é22 = —k2 when acting on
the statgq0, k).

3.1. Irrelevance of other states

To prove that only states of the for(@3) are at the leading order, we shall prove that
(i) any state which has an odd numbero(ﬁf1 is irrelevant (i.e., subleading in the high-
energy limit), and (ii) any state involving a creation operator whose naive dimension is less
than its mode indey, i.e., states belonging to
{afn, n>2 ol  m> 1} (26)

—m>

is also irrelevant. We proceed by mathematical induction.

3 Strictly speaking, we need to justify the replacemeft— . This is not totally trivial, and will be treated
with more rigor in a forthcoming paper.
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First we prove that any state which has a single facter’qfis irrelevant, and that any
state with tWOotfl’S is irrelevant if it contains an operator of naive dimension less than its
index.

Consider the HZNS._1x where x is any state without anyzfl, and it is at level
(n — 1). Note that, excep&fl, the naive dimension of an operator is always less than or
equal to its index (we exclud@f1 as mentioned above). This means that the naive di-
mension ofy is less than or equal to: — 1). Since we know that at level, the state
Eq.(23) has true dimension, when computind._1 x in the high-energy limit, we can ig-
nore everything with naive dimension less thaiThis means that we nedd 1 to increase
the naive dimension gf by no less than 1. In the high-energy limit bf 1

L_g—mak +afaf +al0] +---, (27)

only the first term will increase the naive dimensionyoby 1. All the rest do not change
the naive dimension. This means that, to the leading order,

L_1x N@aflx. (28)

This is a state with a single factor aﬁl and it is a HZNS, so it should be decoupled in
the high-energy limit.
Now consider an arbitrary staje at level (n — 1) which has a single factor (mffl. If
X involves any operator whose naive dimension is less than its index, the naive dimension
of x is at most(n — 1). In the high-energy limit

L,lx—nfw{flx +a£2afx+-~-, (29)

except the first two terms, all other terms are irrelevant because they contain a single factor
of afl. As the second term has a naive dimensior 1) and can be ignored, we conclude
thata®, x is irrelevant.

The next step in mathematical induction is to show that if (a) states @ith— 1)
factors ofa’ , are irrelevant, and (b) states witimZactors ofal 1 are still irrelevant if it
also contains any of the operatorg(#6), then we can prove that both statements are also
valid form — m + 1.

Supposey is an arbitrary state at levéh — 1) which has 2: factors ofafl’s. The
high-energy limit ofL_1 x is given by(29). The second term ha&n — 1) factors ofa’ |
and is irrelevant. The rest of the terms, except the first, are irrelevant because they contains
at least one operator from the $26). Hence the first term is a HZNS and is irrelevant. We
have proved our first claim fapz + 1), i.e., a state with{2m + 1) factors ofozf1 decouple
at high energies.

Similarly, consider the case whenis at level(n — 1) and hag2m — 1) factors ofafl.
Furthermore we assume that it involves operators from th€263t Then the first term
in (29) is what we want to prove to be irrelevant. The second term is irrelevant because
we have just proved that a state withn + 1) factors ofozf1 is irrelevant. The rest of the
terms are irrelevant because they h&¥e — 1) cxfl’s. Thus we conclude that both claims
are correct forn + 1 as well. The mathematical induction is complete.
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3.2. Linear relations

According to the previous subsection, only states of the f(#8) are relevant in the
high-energy limit. The mass of the statei2(n — 1). The 4-point function associated with
|n, m, q) will be denotedZ -9 The aim of this subsection is to find the ratio between a
genericZ ™4 and the reference 4-point function, which is taken tc7t5&%9

Consider the HZNS

L_aln—212m—1,g)>m|n,2m,q)+ 2m —1)|n,2m — 2,q + 1), (30)
where many terms are omitted because they are not of the(R8)nThis implies that

T(n,Zm,q) - _ ZmA_ 1T(n,2m—2,q+l). (31)
m
Using this relation repeatedly, we get
/]-(n,Zm,q) — (2m — 1)”T(n,0,m+q) (32)
(=) ’
where the double factorial is defined Bm — 1)!! = (2?,72,'
Next, consider another class of HZNS
1 N
L_oln—2, O,q):Eln,O,q)—i—mm,O,q—i—l). (33)
Again, irrelevant terms are omitted here. From this we deduce that
1
T(n,o,q+l) — __r]—(n,o,q)7 34
- (34)
which leads to
1
T(n,O,q) — T(n,O,O). 35
2y )

Our main resul{13)is an immediate result of combinir{§2) and(35).

4. Linear relations from Virasoro constraints

In this section we will establish a “dual description” of our approach explained above.
The notion dual to the decoupling of high-energy zero-norm states is Virasoro constraints.

Let us briefly explain how to proceed. First write down a state at a given mass level as
linear combination of states of the form Hd.1) with undetermined coefficients, which
are interpreted as the Fourier components of spacetime fields. Requiring that the Virasoro
generatord.1 andL, annihilate the state implies several linear relations on the coefficients.
The linear relations can then be solved to obtain ratios among all fields.

To compare the results of the two dual descriptions, we note that the correlation func-
tions can be interpreted as source terms for the particle corresponding to a chosen vertex.
Thus the ratios among sources should be the same as the ratios among the fields, since all
fields of the same mass have the same propagator. However, some care is needed for the
normalization of the field variables. One should use BPZ conjugates to determine the norm
of a state and normalize the fields accordingly.
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4.1. Examples

To illustrate how Virasoro constraints can be used to derive linear relations among scat-
tering amplitudes at high energies, we give some explicit examples in this subsection. We
will calculate the proportionality constants among high-energy scattering amplitudes of
different string states up to mass leveld = 8. The results are of course consistent with
those of previous workl2,13]using high-energy zero-norm states.

41.1.m*>=4
The most general form of physical states at mass lefek 4 are given by

[epnatya? 102 1 + e’ 10’ s + et ja” 5 + €,0"5]10, k). (36)

The Virasoro constraints are

3

€uv) T ékkfuvx =0, (37)
3

—k" €1v) + 3€, — Ek“kkem =0, (38)

2k” €[] + 3€, — 3k K — 1"*)€ 0 = 0. (39)

By replacingP by L, and ignoring irrelevant states (we have justified this in Se@ifor
the high-energy limit), one easily gets

€TTT “€(LLT) - €(LT) - €[LT] =8:1:3:—-3. (40)

After including the normalization factor of the field varialflesd the appropriate symme-
try factors, one ends up with

Trrr Tery Twry TiLm
=6€TTT:6€(LLT):_2€(LT):_ZG[LT]:8:1:_1:1- (41)

Here the definitions of 777, Z(LL1), Z(LT), Z[T) @nd similar amplitudes hereafter can be
found in[12,13] and the result obtained is consistent with the previous zero-norm state
calculation in[12] or Eq.(13).

4.12.m*=6
The most general form of physical states at mass lefek 6 are given by

A A A
[epnoaya” 0?10 ) + eyl 10?5 + ey pat @ oty
@
() ¥—
wheree,,, , represents the mixed symmetric spin three states, that is, one first symmetrizes
wv and then anti-symmetrizes.. The Virasoro constraints are calculated to be

1 2
+€ 10513+6[&2,,]“&1“13+€((M)v)aﬁza12+6;1“54]'0» k), (42)

2k €(uvio) + €quvny =0, (43)

4 The normalization factors are determined by the inner product of a state with its BPZ conjugate.
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2k €uvn) + K (€xg0 + €uinn) + 3(€{ oy T €pony) + A€l =0, (44)
kel + kel + 46, =0, (45)
617 €(uvio) + 2k €y + %k)\ (€uva F€vpn) + 36(%)])) =0, (46)
"Y€y + 0" €y + 4hct e uv) +4e;, =0. 47)

In the high-energy limit, similar calculation as above gives

TrrrryTrreny Ty - Irrn  Tarrny Ty - T
. . . . . . 2
=4errrT) MerTLL) -4!6(LLLL) c—dert, L —derTL) —4€LLL) -86((L)L)

which is consistent with the previous zero-norm state calculati¢t3dhor Eq.(13).
41.3.m*>=8

The most general form of physical states at mass lefek 8 are given by (for sim-
plicity, we neglect terms containing’, with n > 3)

I 2z P I A b n 2
[epvropalja? 10t 107 10” ) + €quioyalyjal 1ot 10 ) +equnal 1o ol
n AP m A
+ €pvroa o ot ol 5+ eu,u,xozflaizafz] |0, k), (49)

wheree,,; , represents the mixed symmetric spin four states, that is, first symmetrizes
uvh and then anti-symmetrizeso. Similar definition for the mixed symmetric spin three
states,, . The Virasoro constraints are calculated to be

5k(r€(;wkap) + Ze(uvko) = 07 (50)

1
3kk€(/uz)«7) + Ekk[(euvk,a + €pv,o + Eukv,a) + (< V)]

+ 46(;/.\)(7) + €p v T €y po = 0, (51)
1
k'ue(;w)\) + Eku(eu,vk + fu,)\v) =0, (52)
1
SUPUE(IJ.UAJ,O) + koe(uvko) + §kg (€pvn,o + €vapo T Expvo) = 0, (53)

377V)L€(;kaa) + WVA (ep,uk,o + €rpv,o GVA;J,,U) + 4kk8(uo‘)h)
+ Zkk(gp,,ak + 8;1,,)«7) =0. (54)

In the high-energy limit, similar calculation as above gives

Torrrrr:Taorryy : Taorrin) Doy  Toreeeny : Taoony : ITroe Troe, L Trrr,
=Sleqrrrrr) 3! X 26(r7TL) Se(rTTLL) 3! X 26(TLLL) Se(TLLLL)
‘8errry:8er,ir 3! X 27,13 X 2erTT L
3V2 312 V2

=32:v/2:2: 2= 6 '8°3'3 16 :3V2, (55)
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which can be checked to be remarkably consistent with the results ¢1 &xafter Young
tableaux decomposition.

4.2. General mass levels

In this section we calculate the ratios of string scattering amplitudes in the high-energy
limit for general mass levels by imposing Virasoro constraints. The final result will, of
course, be exactly the same as what we obtained by requiring the decoupling of high-
energy zero-norm states. In the presentation here we use the notation of Young’s tableaux.

We consider the general mass lemél= 2(n — 1). The most general state can be written
as

; — ui- Mm
Z@ i g |, e }|o k), (56)
mj j=
where we defined the abbreviation
(i J 1y
a*; /= oeg. o (57)

with m ; is the number of the operatar‘_‘j. The summation runs over all possible combi-
nations ofm ;’s with the constraints

k
ijj =n and 0<m; <n, (58)
j=1

so that the total mass xs Itis obvious thak is less or equal ta. Since the upper indices

J
{Ml Mm,} ina"L.. a ’ are symmetric, we used the Young tableaux notation to denote
the coefficients in Eq56). The direct produc® acts on the Young tableaux in the standard
way, for example,

2le[=[zEe| L )

Finally, 1/(j™/m ;') are the normalization factors. To be clear, for exampte4, the state
can be written as

1
l‘vz l/-3 H Mz ,u
u ud 2] 2 u2 uz
+3 2. ot }wk
(60)

Next, we will apply the Virasoro constraints to the state &®). The only Virasoro con-
straints which need to be considered are

Li|n) = La|n) =0, (61)
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with L,, the standard Virasoro operator

1 o
= E Z Om+n " OU—p. (62)

n=—oo

After taking care the symmetries of the Young tableaux, the Virasoro constraints become

L1|”>=Z[k“%® ZARRZy

mj j=1

=~

+Z|M|

AL

il \® AR

Jj#1.2

+Z<I—1>IM%\---\M%M\®mf\ué‘l\-~ i
=3 i=1

-1
P

®

1] 1 No< ' ' 1 ey
— mi
Mi | Ml ‘ .. ‘ Mm[‘ ® M']/- .. Ml‘{rlj 7&

JALLI-1 (my ="

j
xl_[ mlm' o 710, k) =0, (63a)

and

k
1 11 - -
L2|n> = Z|:§77M1M2® I’Li e M}{n,

m; j=1

k
+\M%\~-\ufnl\®!uf\'--\Mim\k“iﬁl & |w] - d,
j#12

+ZM

A

] 1) & [l
Jj#L3
mj_p
+Z(l_2)‘“%"”‘“'%11‘®Z‘“llﬁz"" i ‘“ml ‘
1=4

i=1

®

k
u 2] ] & M{,._%};au;..u%

jALLI-2 (ma =2t

W],
X ]‘[a_j 710, k) = 0. (63b)
j#1
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A hat on an index means that the index is skipped there (and it should appear somewhere
else). In the above derivation we have used the identity for the Young tableaux

1
- = ;[1—1-0(21) +o@2p + - +0(p~-1)]®
1 p
S e TpJs [ ©
i=1

D

whereoy;...;) are permutation operators.

States which satisfy the Virasoro constraints are physical states. What we are going to
show in the following is that, in the high-energy limit, the Virasoro constraints turn out
to be strong enough to give the linear relationship among the physical states. To take the
high-energy limit in the above equatio(B3a)and(63b), we replace the indicegu;, v;)
by L orT, and

kY — met, ntH2 s ol el (65)

wherem is the mass operator. The Virasoro constraints at high energy are derived in Ap-
pendix C.1 as Egs.(C.4a) and (C.4b)To solve the constraints, we need the following
lemma to further simplify them.

Lemma.

‘T“THL"L‘@‘T“THL“L‘@ ‘ ‘ =0, (66)
— — ~——
I ma—lp {mj,j=3}
except for(i) Io =mp, m; =0for j > 3 and (i) Iy =2m.
This lemma is equivalent to part of the results of Sec8pbut will also be proved in

AppendixC.2 by applying Virasoro constraints. Finally, the Virasoro constraints at high-
energy reduce to

i(r][r|L] - [e]e[e] L]
S N ——} |——
n—2q—2—2m 2m+2 q
+@n+1[r].[r][L]--[L]e[L]--[1]=0 (67a)
—_—— — —_

n—2q—2-2m  2m q+1

T T 1]
S— S——

[———
n—2q—2—2m 2m q+1

5 [P r) L] [L]e[z]-]L]=0. (67b)
— ——— S———

n—2q—2m 2m q

where we have renamexh — ¢ andm1 — n — 2q.
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By mathematical recursion, E(67a)leads to

BT P A B T i S 7y o P | A B
———— —— (2m+2q—1)!!%/_,%/__,’
n—2q—2m 2m q n—2q—2m 2m+2q
(68a)
and similarly, Eq(67b)leads to
1 q
\T\...\TJ\L\...\L®\L\...\L\=(_%> [AESE P EE P
n—2q—2m 2m q n—2m 2m
Combining Eqs(68a) and (68h)we get
B (k-1
([l Te) o[l i) (—55) gy L7 G

n—2q—2m 2m q

This is equivalent to Eq13).
To get the ratio for the specific physical states, we make the Young tableaux decompo-
sition

FL L el
—_— [——
n—2q—2m 2m q
min{n—2q—2m,q}
= Z Z ‘L‘ ‘T‘L“ ‘ (l'ClCn 2q— Zm) (70)
=0

WhereCé = q ), and we havgn — 29 — 2m) T's and (2m + g — 1) L’s in the first
column, (/) L’s in the second column in the second line of the above equation. Therefore,
we obtain

| el
L[ L]

netct om — )N
_ q - n—2q—2m ( )
- m|n —2g—2m,q} l'Cl Cl ( 2m> 4m (n— 1)m .-. (71)

= —2q—2m

ICt cn 24—2m)

which is consistent with the ratios Eqg.1), (48) and (55Jor m? = 4, 6, 8, respectively.

5. Saddle-point approximation for stringy amplitudes

In previous sections, we have identified the leading high-energy amplitudes and derived
the ratios among high-energy amplitudes for members of a family at given mass levels,
based on decoupling principle. While deductive arguments help to clarify the underlying
assumptions and solidify the validity of decoupling principle, it is instructive to compare
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it with a different approach, such as the saddle-point approximétidh Therefore, we
shall perform direct calculations to check the results obtained above and make comparisons
between these two approaches.

In this section, we give a direct verification of the ratios among leading high-energy
amplitudes based on the saddle-point method. The four-point amplitudes to be calculated
consist of one massive tensor and three tachyons. Since we have shown that in the high-
energy limit the only relevant states are those corresponding to

—2m— 2m
(@) 2" (k)" (ak,)?10.k),  —kB=2(n—1), (72)
we only need to calculate the following four-point amplitude
4
T2ma) = / dei (Vle(n’zm’q)V3V4), (73)
i=1
where
i) = (9 xT)" 2" (X PP (92X P eiheX2, (74)
Vi=ehiXi =134 (75)

Notice that here for leading high-energy amplitudes we replace the polariZatigrP.
Using either path-integral or operator formalism, aé¢2, R) gauge fixing, we obtain
thes — ¢ channel contribution to the stringy amplitude at tree level

]anZq

1
T T
T02m.9) — /dxx(l’z)(l — x)@@[ﬂ _¢ ks
X 1—x
0

P'k P-k 2m P~k P.k q
X[e 1 e 3} [_e 1 e 3} , (76)

X 1—x 2 (1-x)2
where we have simplified the inner products among momenta by defihi@y= k; - k.

In order to apply the saddle-point method, we need to rewrite the amplitude above into
the “canonical form”. That is,

1
Tm2ma) (K = / dxu(x)e K/, (77)
0
where
=—(1,2) — % ~ 2E2, (78)
N Y
T= (1’2)—> S—>S|n22, (79)
f@) =Inx —7In(1—x), (80)

n—2m—2q

2m+q
@ 2)} (81)

u(x) z[ = (L—x)y~mrams2afhamfmya(—el . kg)
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The saddle-point for the integration of moduli= xg, is defined by

f'(x0) =0, (82)

and we have
1
Yo=-——) l-xo=-——, flao=1-0%L (83)
1-1 1-7

From the definition ofi(x), it is easy to see that

u(xo) =u'(x0) = - = u®"V(x0) =0, (84)
and

1,2) 712"+ - 2
@ (xg) = [(m—)] (1 — x0) 220 2m)\(f5)2 4 (=T - ka)" 2"

(85)
With these inputs, one can easily evaluate the Gaussian integral associated with the
four-point amplitudes, Eq.77),

1
/ dx u(x)e K
0

2 _kp ugm) 1
= 7 € 0 17" +0 1
K1y 2m m! (fy)ym Km Km+

2 —Kf, n— 2n_2m_q(2m)! _n 3, n—2
= K—f'o//e O|:(—1) qwf 2(1_7:)2E +O(E ) . (86)

This result shows explicitly that with one tensor and three tachyons, the energy and angle
dependence for the high-energy four-point amplitudes only depend on the: |ewed we
can solve for the ratios among high-energy amplitudes within the same family,

T (C1yi2m)
A TG00 T )2

() (T w

which is consistent with Eq13).

We conclude this section with three remarks. Firstly, from the saddle-point approach,
it is easy to see why the product @f’l oscillators induce energy suppression. Their con-
tribution to the stringy amplitude is proportional to powers f6fxg), which is zero in
the leading order calculation. Secondly, one can also understand why only even num-
bers ofafl oscillators will survive for high-energy amplitudes based on the structure of
Gaussian integral in Eq77). While for a vertex operator containin@m + 1) afl’s,
we haveu (xg) = u’(xg) = - - = u'®" (xg) = 0, and the leading contribution comes from
u@+D (x0)(x — x0)2"+1, this gives zero since the odd-power moments of Gaussian inte-
gral vanish. Finally, for the alert readers, since we only discuss-thehannel contribution
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to the scattering amplitudes, the integration range forthkariable seems to devoid of a
direct application of saddle-point method. Presumably, we can apply the saddle-point ap-
proximation to the full amplitudes whose integration range extends over whole real line.
However, it is curious to see why+ channel alone has the same functional form as the
full amplitude in the high-energy limit. To see this, one can check that the leading con-
tribution Eq.(86) is actually “form-invariant” under any monotonous change of variable
x=&E0),v(y) =& MuE))), g(y) = f(&(y)). If the analytic structure of the integrand

is no concern, we can justify the use of saddle-point approximation even for the case of
channel.

6. Remarks

6.1. Virasoro generators at high energies

In retrospect, the main res\lt3) can be very easily obtained from the Virasoro gener-
ators if we accept that we only need to consider states of the form

—m—2
(ly)" ™" (k)" (k) 10, k). (88)
On the space of these states, the Virasoro generators are effectively

L_1=mal) +akak, (89)
1

L z—mot 2+ ZaTlaTl’ (90)

L_,=0 forn>3, (91)

where we have also replacefl by e”.

Using these deformed Virasoro generators, we create high-energy approximations of
spurious states. On the back of an envelope, one can check that the decoupling of the spu-
rious states created by_; and L _, implies (32) and(35) respectively (withP replaced
by L). In short,L_; tells us how to tradet ol for ot andL_, tells us how to trade
otfz for ot_la_l.

Similarly, the Hermitian conjugates @f; and L, can be used to derive the same result
by demanding that they annihilate states in the high-energy limit.

6.2. 2-dimensional string

Although we have shown that there exist infinitely many linear relations among 4-point
functions which uniquely fix their ratios in the high-energy limit, it is not totally clear that
there is a hidden symmetry responsible for it. However, we would like to claim that these
linear relations are indeed the manifestation of the long-sought hidden symmetry of string
theory, and that we are on the right track of understanding the symmetry. To persuade the
readers, we test our claim on a toy model of string theory—the 2-dimensional string theory.

While the hidden symmetry of the 26-dimensional bosonic string theory is still at large,
the symmetry of the 2-dimensional string theory is much better understood. It is known to
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be associated with the discrete states
Yy~ AL M, —iN2X) exp[v2(iM X (0) + (£J — 1)$(0))]. (92)

Half of themy/ |, generate thev., algebra[16]

dz . +
f o7 ViV g, ~ J2My = IAMY g,y g1y (14 1) (93)

Let us now check whether the,, symmetry is generated by the high-energy limit of
zero-norm states. I[15], explicit expression for a class of zero-norm states was given

Ghy~(J = MNA(J, M, —ivV2X) exf[ V2 MX + (J — D¢]

J—M
dz
—1% J—M—l!/—DJ,M,—' 2X(2), j
+(=D ,-Z=1( ) [ 5D iV2X(2), j)
x exgvV2(i(M + DX (2) + (] — Do (2) — X(0))]. (94)
The notation needs some explanation. Hard, M, —i+/2 X) is defined by
Soj—1 S22 -+ Syym
A(s M. i) = |22 S S, (95)
Sj+m Si+m-1 - Sam+1
where
—i2
Sk=Sk<{ l];/—a"X(O)}>, and S =0 ifk <0, (96)

and Sy ({a; })'s denote the Schur polynomial defined by

eXp(Zakxk) = ZSk ({ai})xk. (97)
k=0

k=1

D(J, M, —i~/2X (z), j) is defined by a similar expression as Eg5), but with the jth
row replaced by{(—z)/ —1—2J, (—z)/ —2J, ..., (—z)/~/~M=2} |t was showr{15] that
zero-norm states in E¢94) generate av, algebra.

In the high-energy limit, the factorg*X4 are generically proportional to a lin-
ear combination of the momenta of other vertices, so it scales with enérgiyhus
D(J, M, —i+/2X, j) is subleading toA(J, M, —i~/2X). Ignoring the second term in
Eq. (94) for this reason, we see that these zero-norm states indeed approach to the dis-
crete states’ij above! Thus, thev., algebra generated by E(@4) is identified tow,
symmetry in Eq(93). This result strongly suggests that the linear relations among corre-
lation functions obtained from HZNS are indeed related to the hidden symmetry also for
the 26-dimensional strings. Although we still do not know what is the symmetry group, or
how it acts on states, this work sheds new light on the road to finding the answers.
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Appendix A. Kinematic variables and notations

For the readers’ convenience, we list the expressions of the kinematic variables involved

in the evaluation of a 4-point function in this appendix.Hig. 1, we take the scattering
plane to be th&t1-X?2 plane. The momenta of the particles are

ky = (m _p, o), (A1)
k= (m p.0). (A2)
e = (—\/m ~gcosp, ~gsing), (A3)
ko = (—\/m, g 08, gsing). (A.4)

They satisfyk.2 = —m.z. In the high-energy limit, the Mandelstam variables are

= —(k1 +k2)? = 4E% + O(1/E?), (A.5)
= —(kp+ks)? = —4<E2 _ Z—Tl’") Sir? % +O(1/E), (A.6)
4 2
u=—(k +ka)? = —4(E2 - %) co % +0(1/E?), (A7)
wherekF is related top andg as
E2=p2+m§—|2—m§:q2+m§;—mﬁ. (A.8)

The polarization bases for the 4 particles are

el (1) = (p, —/p? +ml,0> T (1) = (0,0, —1), (A.9)
L) = (p,,/ +m2,0) T (2)=(0,0, 1), (A.10)

el (3 = ( q.—/q? +mscos¢ —/q? +m3sm¢)

el 3) = (O, —sing, cosyp), (A.12)
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1 .
et (4) = — (=g /g + macosp. /g2 + m3sing).
4

el (4) = (0, sing, — cosp). (A.12)

Appendix B. High-energy zero-norm states

In this subsection, we explicitly calculate high-energy zero-norm states (HZNS) of some
low-lying mass level. We will also show that the decoupling of these HZNS is equivalent to
the decoupling of those spurious states used in the text to derive the desired linear relations.
In the old covariant first quantization spectrum of open bosonic string theory, the solutions
of physical state conditions include positive-norm propagating states and two types of zero-
norm states. The latter afg]

Typel: L_1|x), whereLq|x)=L2|x)=0, Lo|x)=0; (B.1)

3
Type Il <L2 + EL31>|)Z), whereL|x) = L»|x) =0, (Log+ 1)|x) =0.

(B.2)

Based on a simplified calculation of higher mass level positive-norm staf@é3Jinsome
general solutions of zero-norm states of H@s1) and (B.2)at arbitrary mass level were
calculated if18]. Egs.(B.1) and (B.2)can be derived from Kac determinant in conformal
field theory. While type | states have zero-norm at any spacetime dimension, type Il states
have zero-nornonly at D = 26.

The solutions of EqgB.1) and (B.2)up to the mass levet? = 4 are listed as follows
[18]:

(1) m?=—-k?>=0:
L_q|x)=k-a_1]|0,k), |x)=1]0,k), |x)=0,k). (B.3)

(2) m?=—-k?>=2:

3 1 5 3
(L—z + ELil)m = [—a_l ot koot Sk a_1)2]|o, k), |%)=10,k),

2 2
(B.4)
Loalx)=[0-a2+ (k-a_1)@-a-D]I0,k),  |x)=6-a_1/0,k), 6 -k=0.
(B.5)

(3) m?>=—k*>=4:

3,0\, 1 5
(Lz + §L—1)|x> = {49 co_3+ 5(0671 co—1)(0 1) + E(k ca2)(0 1)

3
+ 5k @-1)%0-a—1) +3(k -a_1)(0 -az)} |0, k),
|¥)=6-a_1|0,k), k-6 =0, (B.6)
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L_q|x) = [20,00" 10”5 + ki fuva™ 10 1”110, k),
lx) = ,woz_1|0 k), k-0 = n’“’@,w =0, 6, =64, (B.7)

Llx)= E (k-a-1)%0-0-1)+20 a_3+ g(k ca_1)(0 - a_2)
ok a0 -m)} 10,4,
Ix) =[20 - a—2+ (k- a—1)(0 -¢—1)]I0,k), 6 -k =0, (B.8)
Lglx)= [177 (k-a_1)*+ g(k co_1)(o—1 - a—1) + No—1 - a_2)
+ 21k - a—1) (k - ot_2) + 25(k - a_g):| |0, k),

25 9
|x) = |:2k o 2+2a 1-0_ 1+—(k o_1) ]IO,k). (B.9)

Note that there are two degenerate vector zero-norm state$BE.for type Il and
Eq.(B.8) for type |, at mass leveh? = 4. For mass leveh? = 2, the high-energy limit of
Egs.(B.5) and (B.4)are calculated to be

L_1(6 -a-1)|0) - v2al ok +ak,))0), (B.10)
3 1
(L_2+§L31)|0) — (ﬁa o+ Za af >|o> (B.11)
3

Note that Eq(B.12)is the high-energy limit of the second term of type 1l zero-norm state.

It is easy to see that the decoupling(Bf10)implies the decoupling dB.12). So one can
neglect the effect ofB.12) even though it is of leading order in energy. It turns out that
this phenomena persists to any higher mass level asTed.justifies that the decoupling

of HZNS is equivalent to the decoupling of those spurious states used in the text to derive
the desired linear relationsBy solving Egs.(B.10) and (B.11)we get the desired linear
relation, 777 : 77 : T = 4:—+/2: 1. Similarly, the high-energy limit of Eq$B.6)—(B.9)

are calculated to be

3 1
(Lz + EL%1)|O) — ( (TlozL)z + zaTlaTla >|0) (B.13)
3
2(4<x( skl 4 aa et 0), (B.14)
L_1(0,0™)10) — [2a 0"} + 20% 0t 10")]10), (B.15)

L_1[20-a_p+ (k-a_1)(6 -a_ 1)]|o> (4% ot ") + 40" ")) i0),  (B.16)

25 9
L_ 1|:2k o_ 2+2a 1-0_ 1+—(k o_1) i||0)—>0. (B.17)
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It is easy to see that the decoupling of EB.15) or (B.16) implies the decoupling of
Eq.(B.14). By solving the equations, one g&sr7 : 717 : Tty i 71 =8:1:—-1: 1.

Appendix C. Virasoro constraints

C.1. High-energy limit of Virasoro constraints

To take the high-energy limit for the Virasoro constraints, we replace the indiges;)
by L orT,and
kM — mel, k2 s ol el (C.2)

Egs.(63a) and (63blpecome

k
L‘“%““iﬂ‘® A

0
j#1
mi i .
4_253‘“%‘”'|ﬁi‘ lﬂml‘ ‘ ‘MiZ‘CgD wyloe “%/
i=2 j#1,2
k my_1
+ 3= 0ud] - Jud @ Y (Wl
=3 j—
k
® it |-y | Qg | (C.2a)
J#LLI-1

and

k
0= [T S]] & [wd]- [k,
J#1

k
o pd] [k @ (i3] 2, [ L] @ ]|k,

j#12
m1
+Z‘u%‘--~ k| © [ut| ] ‘uﬁzg‘@ 1| i,
i j#13
+Z<l—2>\ﬂs\ \ﬂrlm\@Z\Miz\ A2 [
k
o[ TAT] & W-TiL) e

j#LLI=2
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The indices an(ﬁu{} are symmetric and can be chosen to hiavef {L} which 0<1; <m;
and{T'} for the rest. Thus

o=l 1] Jr[L[ | @[ud]r]-r]e ]z
m1—2—Iy I1+1 mj—l—lj lj

+r [ Jr]e]-Ji]elud|ud|T] | T|L] | L]
D e — | S —
m1—2—I1 I mp—1—Ip 7]

®,u{T~--TL-~-L
j#L2

mj—l—lj lj
+ oy —2— 1| pd| 7] [T[L ] |L|@| k2] 1] | T[L] |1
—_— —
m1—3—I1 Iy ma—Ip l2
k
Q (| T|---|T|L|-|L
j#L2 —_—
m/-—l—lj lJ
+11‘,u% T‘~-~‘T L‘...IL ®‘M% T‘...‘T L‘-u‘L
—_— —_—
my1—2—I1 I1—1 mo—1—Ip I+1
k
Q (gl T|---|T|L |- |L
j#1,2 —_—
mj—1-I; ¥

k
+ 30— o[t [r[e]- [t (Pl [r e[ ]d]
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There are still some undetermined parameﬂ%r,su% andu{(j > 2), which can be chosen

to beL or T, in the above equations. However, it is easy to see that both choices lead to
the same equations. Therefore, we will set all of them t@be the following. The final
Virasoro constraints at high energy become
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C.2. Proof of the lemmé66)
In this subsection, we prove the lemma given in Secli@as follows
‘T“THL“L‘@‘T"THL“L‘@ ‘ ‘ =0, (C.5)
— —_— ~——

I mp—Ip {mj,j=3}

except for (i)l =mp, m; =0for j > 3 and (ii)/y = 2m.

Proof. In the high-energy limit, we only need to consider the leading energy terms. To
count the energy scaling behavior, the rule is the same agBj.eachT contributes a
factor of energyE and each. contributest?2. Any terms with total energy order level less
thann are sub-leading terms and can be ignored.

(i) If Iz #mpandm; #0, j > 3, then in Eq(C.4a)
(1) forly =0, all terms except the first term are sub-leading, then

T 7 e[ @[ el ]2 -o (€6)
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mj—lj lj

(2) fori1 =1, the third term is sub-leading, af@.6)implies all other terms except the
first term are vanished, then
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3) ifforiy =7,
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and
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(C.4a)implies all terms except the first term are vanished, then
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(i) If I, =mpandm; =0 for j > 3, then Eq(C.4a)reduces to

a(r]-[r[e]-[L]@[L] [L|+u[r]--|7[L]- [L]®[L] . [L|=0.
—_ [—— —_— [ ——;
m1—1—I1 I1+1 m2 m1—1—I1 I1—-1 mo+1
(C.11)
Similarly, we have in Eq(C.11)
(1) forly =0,
‘TI"'IT‘LI""L‘@‘L""‘L‘:0’ (C.12)
~—
(2) iffor Iy =2m,
‘T‘n-‘THL‘W‘L‘@‘L‘M‘L‘=0, (C.13)
———
2m—1
then(C.11)implies
‘TI"'IT‘ILI"'IL‘@)‘LI“"L‘=0' O (C.14)
| ——
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