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Abstract. In economics, several parametric regression-based models have been 
proposed to measure the technical efficiency of decision making units (DMUs). 
However, the problem of misspecification restricts the use of these methods. In 
this paper, symbolic regression is employed to obtain the approximate optimal 
production function automatically using genetic programming (GP). Monte 
Carlo simulation is used to compare the performance of data envelopment 
analysis (DEA), deterministic frontier analysis (DFA) and GP-based DFA with 
respect to three different production functions and sample sizes. The simulated 
results indicated that the proposed method has better performance than that of 
others with respect to nonlinear production functions. 
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(GP); Monte Carlo simulation; data envelopment analysis (DEA). 

1   Introduction 

Traditionally, data envelopment analysis (DEA) and regression-based methods, such 
as deterministic and stochastic models, are widely used to measure the technical 
efficiency of decision making units (DMUs). The mainly difference between DEA 
and regression-based methods is that DEA is a non-parametric approach while 
regression-based methods are parametric approaches. Several papers have been 
proposed to compare DEA with regression-based methods, with respect to efficiency, 
flexibility, robust, assumption and sample size [1-3]. 

DEA has been suggested to be abandoned for measuring technical efficiency, due 
to the disadvantages of sensitive to outlier and ignoring measurement error [4,5]. 
However the most critical problem of using regression-based methods is the problem 
of misspecification [6-7]. That is, it is necessary to specify a particular production 
function (e.g., Cobb-Douglas or translog form) before measuring the frontier of 
DMUs, and different production functions may yield different results. However, it is 
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hard to specify a correct production function in advance, because of the complex 
relation between input and output variables. Therefore, this paper attempts to provide 
a flexible and robust way for finding the production function automatically so that the 
linear/nonlinear relation between input and output variables can be considered. 

The problem of misspecification for regression-based models has recently been 
attracted much attention [6-7]. Although artificial neural network (ANN) was 
employed to find the nonlinear production function [7-9], it only performs better in 
large sample size [10]. This shortcoming restricts its application for measuring the 
technical efficiency of DMUs in realistic problems.  

In this paper, symbolic regression is employed to obtain the approximate optimal 
production function automatically using the concept of genetic programming (GP). 
The main advantage of GP is that it can generate an optimal production function 
without specifying a particular production function, whether linear/nonlinear, to 
describe the relation between input and output variables of DMUs. In addition, unlike 
the restriction of ANN, GP can work well regardless of the sample size of DMUs [10]. 

In order to justify the performance of the proposed method, Monte Carlo 
simulation is used to compare symbolic regression with DEA and deterministic 
frontier analysis (DFA), with respect to three different production functions, including 
linear, Cobb-Douglas and nonlinear functions, and sample sizes, including 25, 50 and 
100 samples. Then, spearman’s rank correlation is used to compare the performance 
of models. The results reveal that the proposed model is very suitable for describing 
the nonlinear relation between input and output variables.  

The rest of this paper is organized as follows. Reviews of regression-based frontier 
models are introduced in Section 2. The way to use symbolic regression and GP for 
measuring the efficiency of MDUs is described in Section 3. In section 4, Monte 
Carlo simulation is used to compare the performance of DEA, DFA and GP-based 
DFA. Discussions and conclusions are presented in the last section. 

2   Regression-Based Frontier Models 

Several regression-based frontier models have been proposed to evaluate the technical 
efficiency of DMUs. These methods can be roughly classified into DFA and 
stochastic frontier analysis (SFA). The only difference between DFA and SFA is the 

assumption of the residuals. In DFA, all deviations (
i

ε ) are assumed to be the random 

error. However, in SFA, the error term is composed by the measurement error (
i

u ) 

and random error (
i

v ), such that 
i i i

v uε = − . Hence, if we assume that 0
i

u = , SFA 

is reduced to DFA. 
In this paper, the problem of misspecification is highlighted for regression-based 

frontier models. Since both DFA and SFA suffer the problem of misspecification, 
DFA is used to compare with the proposed model, due to its simplicity of operation. 
Next, we discuss the DFA model and the processes of deriving technical efficiency 
score. 

A production frontier model can be represented as  
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( , )
i i

y f= +x β ε  (1) 

where 
i

y  denotes the output of the ith firm, 
i

x  is the input vector, β  is the unknown 

parameter vector and ε  is the random term. The production frontier model shows the 
maximum output which input vectors can achieve. Traditionally, the production 
function is assumed as Cobb-Douglas form and can be expressed as 

1 2

1 2
, 0i

i i i i
y ββ β ε ε= ≥LAx x x  (2) 

By taking logarithms of Eq. (2), we can rewrite the above equation as 

1 1 2 2
ln ln ln ln ln ,

i i i i
y eβ β β= + + + + −LA x x x  where ln

i i
e ε= − . (3) 

Next, we can use the ordinal least square (OLS) method to estimate the unknown 
parameter vector. Moreover, in order to ensure the error term to be nonnegative, the 
corrected OLS (COLS) is expressed as 

ˆ ˆ ˆmin{ }COLS

i i i
e e e= −  (4) 

Finally, the efficiency can be obtained by  

ˆexp( )COLS

i i
eε = −  (5) 

Although regression-based frontier models are often used to evaluate technical 
efficiency of DMUs in economics, they have the common problem of 
misspecification. These parametric models must first assume the form of production 
function in advance. Incorrect assumption will lead to improper ranking for DMUs. 
However, it is hard to quantify the production function in advance, especially when 
the relation between input and output variables is nonlinear. 

In order to derive the production function more accurately and objectively, 
symbolic regression is used to obtain the approximate optimal linear/nonlinear 
production function automatically. Since the problem of symbolic regression is a NP-
hard problem, genetic programming is considered to solve that problem. In addition, 
both concepts will be discussed in next section. 

3   Symbolic Regression 

Symbolic regression is proposed by Koza [11] to find an unknown regression function 
from a given sample set {( , ( ) | )}x f x x X∈  using GP and has been used in various 

applications [12-15]. The representation of GP can be viewed as a tree-based structure 
composed of the function set and terminal set. The function set is the collection of 
operators, functions or statements, such as arithmetic operators ( { , , , }+ − × ÷ ) or 

conditional statements (If …then…). On the other hand, the terminal set contains all 
inputs, constants and other zero-argument in the GP-tree. Consider expressing the 
equation 3 /xy x+  for example, the GP tree can be represented as. 
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Fig. 1. The presentation of a GP-tree 

Once we initialize a population of the GP tree, the following procedures are similar 
to genetic algorithms (GAs), including defining the fitness function, genetic operators, 
such as crossover, mutation and reproduction, and the termination criterion. Next, we 
introduce three main operators, crossover, mutation and reproduction, to show the 
procedures of finding the (approximate) optimal generation. 

 

 

 

 

Fig. 2. The crossover operator of GP tree 
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For GP, the crossover operator is used to swap the sub-tree from the parents to 
reproduce the children using mating selection policy rather than exchange bit string in 
GAs. An example of crossover in GP is shown in Figure 2. Similar to GAs, GP uses 
the mutation operator in order to avoid falling into local optimal solution. The 
mutation operator is used to randomly choose a node in a sub-tree and replace it with 
a new created sub-tree randomly. Finally, a new generation can be reproduced from 
two parents using the reproduction operator to represent a better solution. 

It should be highlighted that the function set and terminal set should be rich enough 
to represent the relation between independent and response variables. Moreover, in 
order to satisfy the principle of parsimony, the depth of the GP-tree should also be 
limited. In this paper, the depth of the GP-tree is limited to 10 levels. Next, we 
incorporate the concept of symbolic regression to find the approximate true 
production function and Monte Carlo simulation is used for testing the results in the 
next section. 

4   Monte Carlo Simulation 

In this section, Monte Carlo simulation is used for testing the efficiency of the GP-
based frontier model. In order to test the ability of GP in fitting production function, 
three different models (i.e., linear, Cobb-Douglas and nonlinear functions) are 
specified to generate different data sets, including 25, 50 and 100 samples, as shown 

in Table 1. Each input variable (
1

x  and 
2

x ) is randomly generated by a uniform 

distribution within the interval 5 to 15 (i.e., ~ (5,15), 1, 2
i

x U i = ), respectively. 

Table 1. The assumption of production functions in Monte Carlo simulation 

Production Function Type Model 

Linear 
1 2

3 2.5 3.6y x x= + +  

Cobb-Douglas 0.3 0.7

1 2
4y x x=  

Nonlinear 3 3

1 2
0.05 0.01y x x= +  

In order to fit the production function curve automatically, the problem of 
symbolic regression is considered. Before using GP in symbolic regression, some 
parameters are assigned as shown in Table 2. Some special operations, such as sin, 
cosine, log, exponent, are used in order to fit nonlinear models more efficiently. In 
addition, the fitness function used in symbolic regression can be defined as 

Fitness function = 
1

ˆ| |
m

i i

i

y y
=

−∑  (6) 

where m is the number of DMUs, 
i

y  denotes the observe output of the ith firm and ˆ
i

y  

is the predict output of the ith firm which is obtained by symbolic regression. 
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Table 2. The parameter settings in symbolic regression 

Parameter Value 
Population Size 20 

Fitness Function 
1

ˆ| |
m

i ii
y y

=
−∑  

Function Set { , , , , , , ,sin cos log e+ − × ÷ } 

Terminal Set {random, 1, 2, 3, 4, 5, 1x , 2x } 

Maximum Number of Generation 200 
Maximum Tree Depth 10 
Crossover Rate 0.5 
Mutation Rate 0.01 

*{random} denotes the value randomly generated between [0,1]. 

Here, we demonstrate the fitness and tree-level of GP for Cobb-Douglas form with 
the sample size is equal to 25 as shown in Figures 3 and 4, respectively, other forms 
or sample sizes are similar to this situation.  

 

Fig. 3. The fitness of generations 

 

Fig. 4. The level of the GP-tree 

Next, Spearman’s rank correlation is used to test the correlation between the true 
and estimated technical efficiency of DEA, DFA and GP-based DFA models. We 
adopt input-oriented DEA with constant return to scale (CRS) in this simulation. On 
the other hand, Cobb-Douglas production form is assumed in DFA. Note that no 
further assumption is needed for the proposed method. These results of the above 
models are listed in Table 3. 
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Table 3. The comparisons of DEA, DFA and GP-DFA with Spearman’s correlation 

Production Function N DEA DFA GP-DFA 
25 0.965 0.885 0.945 
50 0.840 0.850 0.932 Linear Function 

100 0.922 0.843 0.917 
Average  0.909 0.859 0.931 

25 0.988 0.9723 0.929 
50 0.979 0.8860 0.894 Cobb-Douglas 

Function 
100 0.985 0.9080 0.965 

Average  0.984 0.9221 0.922 
25 0.826 0.1100 0.765 
50 0.577 0.1681 0.694 Nonlinear 

Function 
100 0.649 0.1574 0.669 

Average  0.684 0.1452 0.709 

5   Discussion 

From the results of Monte Carlo simulation, we can conclude that DFA is much 
suitable for correct or simple linear production functions, because DFA perform well 
only in the linear and Cobb-Douglas functions. However, it poses problems when the 
production function is nonlinear. Therefore, if the frontier of DMUs belongs to 
nonlinear, DFA is not suitable for dealing with this problem, because it is hard for 
researcher to specify the correct nonlinear production function. On the other hand, 
since DEA does not need to consider the form of production functions, it is more 
robust and outperforms to DFA in all kinds of the production functions. However, 
DEA suffers the problems of sensitive to outlier and ignoring the measurement error. 

In contrast, unlike DFA has the problem of misspecification, GP-based DFA can 
search the approximate true production function automatically from simulated data 
sets. According to the simulated results, it can be seen that GP-based DFA performs 
well not only for linear functions but also for nonlinear functions. Even though GP-
based DFA does not perform the best in all situations, it shows the great ability for 
dealing with nonlinear situations. In addition, the performance of GP-DFA is not 
affected by different sample sizes and is more robust than that of DEA and DFA. 

The advantage of GP-based frontier models, e.g., GP-based DFA and GP-based 
SFA, is obvious. Without needing the prior knowledge, GP-based models can obtain 
the approximate true production function from empirical data sets. In addition, it can 
provide a solution for dealing with the problem of misspecification in traditional 
regression-based frontier models. Although only GP-based DFA is discussed in this 
paper, GP-based SFA should also share the advantages above and can be explored in 
further research. 

6   Conclusion 

Although many parametric methods have been proposed to measure the efficiency of 
DMUs, the form of production function is hard to determine in advance. It is 
dangerous to use these regression-based methods when the production function is 
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mis-specified. In this paper, the problem of misspecification in regression-based 
frontier models is highlighted and symbolic regression is used here to fit approximate 
optimal production function automatically. Three models, including DEA, DFA and 
GP-based DFA, are compared using Monte Carlo simulation. From the simulated 
results, it can be shown that GP-based DFA is very suitable for dealing with the 
problem of measuring the technical efficiency of MUs, while the relation between 
input and output variables are unknown. 
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