Available online at www.sciencedirect.com

SCIENCE‘dDIRECT@

INTERNATIONAL JOURNAL OF

MACHINE TOOLS
& MANUFACTURE

o ¥ S¥es DESIGN, RESEARCH AND APPLICATION
ELSEVIER International Journal of Machine Tools & Manufacture 45 (2005) 1531-1541
www.elsevier.com/locate/ijmactool
Tooth profile design for the manufacture of helical gear
sets with small numbers of teeth
. . b,*
Chien-Fa Chen®, Chung-Biau Tsay
*Department of Mechanical Engineering, National United University, Miaoli 36003, Taiwan, ROC
®Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC
Received 16 June 2004; accepted 13 January 2005
Available online 11 May 2005

Abstract

Based on gear theory and generating mechanism, this investigation presents a complete mathematical model of a helical gear set with
small number of teeth. The unavoidable tooth-profile undercutting of the gears with small number of teeth is examined by using the
developed mathematical model and the conventional method of tooth-profile shifting. Furthermore, an alternative method for lessening the
tooth-profile undercutting is also presented by considering a modification of the basic fillet geometry using a modified rack cutter. A third
method, combining the aforementioned two methods for the design of helical gears with small number of teeth is also proposed to yield a gear
set without tooth undercutting. The mating gear with profile shifting is generated using the pinion as a shaper. The tip fillet and root fillet are
modified and a clearance between the pinion and the mating gear is also included in the design. Analysis results indicate that the change of
distance between the centers of gear set depends only on gear shifting. Moreover, computer graphs are demonstrated the profile-shifted and

the proposed modified gear tooth profiles.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is known that spur and helical gears with small number
of teeth may exhibit tooth undercutting. Gears with small
number of teeth are typically not used in power trans-
missions. However, helical gears are extensively used in
industry, and may be generated by hobs, shapers and rack
cutters. Several researchers [1-5] and AGMA publications
[6,7] have significantly contributed to the design and
manufacturing of this type of gearing. Many researchers
have also studied gear design and manufacturing with tooth-
profile shifting. Ishibashi et al. [8] derived a mathematical
model of the spur gear with two or three pinion teeth,
according to the basic geometry. Their mathematical model
was used to investigate the design, manufacture and load
capacity. Ishibashi and Yoshino [9] also determined the load
capacity of Novikov gears with three to five pinion teeth.
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Additionally, Komori et al. [10] developed a spur gear with
LogiX tooth profiles which have zero relative curvature at
many contact points. Arikan [11] determined the maximum
possible contact ratios using an x-zero gear pair for spur
gears with small number of teeth. Analysis results were also
compared with addendum modification coefficients rec-
ommended by ISO.

Tooth undercutting occurs at the generated gear tooth
surfaces, under certain conditions, such as small number of
teeth, small pressure angles and negatively shifted profiles.
If tooth undercutting occurs, the tooth thickness near the
gear fillets is reduced and the gear bending moment capacity
is also decreased. Mabie and Reinholtz [12] considered
geometric relationships to study the tooth undercutting of
spur gears generated by shaper cutters. Many researchers
[13,14] studied tooth undercutting for various types of
gearing. Litvin [15,16] presented a detailed theory of the
gear non-undercutting conditions. Tsai and Tsai [17]
proposed a method of designing high-contact-ratio spur
gears with quadratic parametric tooth profiles, that have a
short addendum without tooth undercutting.
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Nomenclature

a; tool setting of rack cutter generating the involute
gear (i=0, 1)

e total profile shifting coefficient

e; profile shifting coefficient (i=1, 2, p, g)

C clearance of the mating gears

E center distance of the mating gears (or shaper
and generated gear)

E operating center distance of the mating gears

[L;] projection transformation matrix (from S; to S;)

l surface parameter of rack cutter (in mm)

(M;;] coordinate transformation matrix (from S;

to S;)

mio gear ratio

m, normal module of the gear

nl(/) unit normal vector of rack cutter surface j j=1,
2 and 3, which represent part 1, 2 and 3 of rack
cutter normal section (Fig. 1), respectively)

A represented in coordinate system i (i=c, a)
n(l’) unit normal vector of generated gear surface j

(=1~3)

RY position vector of surface j (j=1, 2 and 3,
which represent part 1, 2 and 3 of rack cutter
normal section (Fig. 1), respectively, and
their corresponding generated gear tooth
surfaces) represented in coordinate system i
(i=1, 2, ¢, a)

r distance between gear rotational center and
beginning point of modified region (in mm)

r; radius of pitch circle of pinion and gear (i=1, 2)

(in mm)

radius of centrode of pinion and gear (j=p, g)

(in mm)

<3

Iy radius of the modified root fillet of shaper (in
mm)

T radius of the modified tip fillet of shaper (in mm)

S; coordinate system i (i=1, 2, a, ¢, h)

T tangent vector to a curve

T; number of teeth of pinion and gear (i=1, 2)

xii), y,(j), z,(»i) position vector of modified fillet surface j
(j=r, t where r represents root fillet and ¢
indicates tip fillet) represented in coordinate
system i (i=1, 2)

u surface parameter of rack cutter (in mm)

v D" transfer velocity of the contact point

v relative velocity of the contact point with the
gear

Ve relative velocity of the contact point with the
rack cutter

PN normal section of rack cutter surface

e rack cutter surface

Yo operating pressure angle of helical gear

[/ normal pressure angle of rack cutter (in degrees)

Yy transverse pressure angle helical gear

pi radius of tip and root fillets of rack cutter (i=0,
1) (in mm)

0, variable parameter of root fillet of rack cutter (in
degrees)

¢, variable parameter of tip fillet of rack cutter (in
degrees)

o; rotational angle of pinion and gear (i=1, 2) (in
degrees)

A lead angle of gear (in degrees)

g; spanned angle of modified root and tip fillet (i=
r, t) (in degrees)

Tooth undercutting may reduce the gear strength and
contact ratio. Undercutting is therefore an important
problem in gear design. Of course, tooth undercutting can
be eliminated by increasing teeth to the gear. However, the
use of more teeth is occasionally not allowable. This study
aims to obtain a spur or helical gear with small number of
teeth, without tooth undercutting. Based on the gear theory
and the gear generating mechanism, a mathematical model
of the helical gear has been developed. Moreover, the
condition for gear non-undercutting is also derived by
considering the relative velocity between the rack cutter and
the gear blank, and by considering the differentiated
equation of meshing. The conventional tooth-profile shift-
ing method is used to solve the tooth undercutting problem.
Nevertheless, this method always increases the tooth
thickness of the fillets and reduces the contact ratios. An
alternative method, which considers the modification of
fillet geometry, is presented to develop a gear set without
tooth undercutting. Based on the tooth-profile shifting and

the basic fillet geometry modification methods, a third
method that combines these two methods is presented to
obtain a gear set with a higher contact ratio and fillet
strength without tooth undercutting. Furthermore, the use of
a modified pinion with modified tip fillets is proposed to
generate the mating gear pair and thus prevents the
occurrence of singular points on the generated gear tooth.
In such a generation process, tooth-profile shifting and gear
clearance have also been considered. Finally, a computer
program is developed to generate the complete geometry of
the gear, including the involute tooth surfaces, the modified
root fillets and the modified tip fillets. Results of this study
can be used to design not only spur and helical gears with
small number of teeth, but also one-stage high contact ratio
gear pairs. Consequently, the total volume of the gearbox
can be reduced, the structure of the gear transmission
mechanism can be simplified and the gear assembly can also
be made easier. Besides, the cost of a on-stage gearbox is
cheaper than that of the multi-stage gearbox.
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2. Mathematical model of the modified tooth surface

2.1. Rack cutter surfaces

Fig. 1 depicts the normal section of rack cutter =, used
to generate involute helical gears. Part 1 of the tip fillet of
the generating rack cutter is an arc of radius py, which
generates the root fillet of the gear; part 2 of the tool profile
is a straight line MyM, that generates the involute profile of
the gear, and part 3 of the bottom fillet of the generating
rack cutter is an arc of radius p;, which generates the tip
fillet of the gear. The position vector of the straight line
MyM,of the rack cutter normal section can be represented
in the coordinate system S,(X,,Y,,Z,) by the following
equations.

[cosy, —ay
R? | +(Isiny, —aptany, — by) |, 0< 1< (ag +a;)/cos ¥,
0
(1)

Similarly, the equation of the tip fillet of the normal
section of the generating rack cutter can be expressed as
follows:

—ap + po sin Y — Po sin Cn

R = | £(—aptany, — by — pycosy, + pocos’,) |,

0
Vv, <, <m/2.
(2)
X,
P M, MM, |=1
M,
L 0,
v, a

(@ : Part 1, the Tip Fillet MM,
@ : Part 2, the Strength Line Fillet MM,
(® : Part 3, the Bottom Fillet @4

Fig. 1. Normal section of rack cutter =,.

The equation of the bottom fillet of the generating rack
cutter normal section are as follows.

a; — ppsiny, +pysind,

R = | £(a, tany, — by + p; cosy, — p cosb,) |, )
0

v, <0, <.

The upper signs in Egs. (1)—(3) refer to the left-side of
the rack cutter normal section while the lower signs refer to
the right-side of the rack cutter normal section. /, {,,, and 6,
are the design parameters of the rack cutter surface that
determine the location of points on the straight line, tip
fillet, and bottom fillet, respectively.

In simulating the rack cutter surface for the helical gear
generation, the normal section of the rack cutter £, attached
to the coordinate system S, with its origin O,, is translated
along the line 0,0, as shown in Fig. 2. Therefore, u=
|0,0.]| is also one of the design parameters of the rack cutter
surface, and A is the lead angle of the generated helical gear.
The rack cutter surface Z. for helical gear generation can be
represented in the coordinate system S.(X.,Y.,Z.) by
applying the following homogeneous coordinate transform-
ation matrix equation:

RY = [M_IRY, (4)
where

1 0 0 0

0O sinA cosA wucosAi
(M.l = i .

0O —cosA sinA wusinA

0 0 0 1

and i=1, 2 and 3. Substituting Eq. (1) into Eq. (4), enables
the position vector of the rack cutter surface = traced out by
the straight line MyM, (part 2 in Fig. 1), to be represented in
coordinate system S, as
[ cos Y, —agy
Rgz) = | (I sin ¥, — ag tan y,, — by)sin A + u cos A
! sin Y, — ag tan ,, — by)cos A + u sin A
4)

0. Y.

Fig. 2. Formation of rack cutter surface . for helical gear generation.
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Based on the differential geometry, the unit normal
vectors of the above-mentioned rack cutter surface rep-
resented in coordinate system S, are

R , oRY
B — _dl 7" du__
e = Tar0 k0] ©
C C
al du

2.2. Generated tooth surfaces

Fig. 3 illustrates the relationship between rack cutter Z.
and generated gear of the gear generation mechanism. In
deriving equations for the gear tooth surface, the coordinate
systems Sc(Xc,Ye,Zo), S1(X1,Y1,Z1) and Sy(Xp,Yhn.Zn) are
attached to the rack cutter, generated gear and gear housing,
respectively. Based on gear theory, the generated gear
surface can be obtained by simultaneously considering the
locus of the imaginary rack cutter represented in coordinate
system S; and the equation of meshing [3,15,16] of the
cutter and the generated gear. Thus, the mathematical model
of the gear tooth surface is

RY = [M,RY, (7)
and
XO ) YO — 0 _ 70—
o O o 3
Nex Ncy Nez
where
cos¢p; —sing; 0 ri(cos¢; + ¢ sin ¢;)
sing, cos¢, O ri(sin¢g, — ¢ cos ¢p)
M ] =
0 0 1 0
0 0 0 1

Symbols X\, Y and Z represent the coordinates of a
point on the instantaneous axis of gear rotation I—I in
coordinate system Sc; x\, y{) and z{ are coordinates of the
instantaneous contact point on the rack cutter surface =;
and n{), n) and n{) are the direction cosines of the rack
cutter surface unit normal ng). Substituting Egs. (5) and (6)
into Eq. (8), yields the equation of meshing for the rack

cutter and generated gear.

Z,,Zy

Pitch Plane of
Rack Cutter

Gear Axode

Y

Fig. 3. Coordinate relationship between rack cutter and generated gear.

)

fl(l’u’¢l) =i (COS\//

+ (ri¢py —ucos Asiny, = 0.

+ by sin Y, —l)sinA
’ ©

n

Substituting Eqs. (5) and (9) into Eq. (7) yield the
generated helical gear with involute profile tooth surface as
follows:

x(lz) = (I cos ¥, —ay + ry)cos ¢ F(ag
— [ cos y,)cot Y, sin A sin ¢y,

¥y = (L cos ¥, — ap + ry)sin ¢; % (ag

— [ cos Y, )cot Y,sin A cos ¢, and (10)

Z(lz) =+(ag — [ cos Y, )coty, tan A sin A

i aptany, +by —Ilsiny,
- cos A

> +I"1¢1 tan A.

The following matrix equation gives the unit normal of
the tooth surface.

n{ = LI, (11)
where
cos¢p; —sing, O
[Lic] = |sing; cos¢p; O
0 0 1

2.3. Tooth undercutting analysis

At any instantaneous contact point of the rack cutter and
generated gear, the absolute velocities of the rack cutter and
generated gear are the same. Nevertheless, the absolute
velocity can be decomposed into components, the relative
velocity VI and VIV and transfer velocity VI and V{ of
the rack cutter and generated gear, respectively. Therefore,

VEOHVE =VvP+ VP, or VO + VY - vy

=V 4 v =y, (12)

When tooth undercutting occurs, a singular point appears
on the generated gear tooth surface and its surface tangent
T =0 at this singular point. The mathematical definition of
singularity of the generated gear can be represented in
coordinate system S, by equation V(" = 0. Therefore, Eq.
(12) becomes

VO 4 vl =, (13)

Recalling Fig. 3, the conditions under which a singular
point may appear on the working surface of the helical gear
generated by the straight line (line MyM, shown in Fig. 1) of
the rack cutter are considered here. The relative tranfer
velocity between the gear blank and the rack cutter,
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represented in coordinate system S., can be obtained as
follows:

ré _)’g)
Vi =ow | @ | (14)
0

Notably, Eq. (5) specified the position vector of the rack
cutter surface, R%?. Eq. (13) can thus be rewritten by

OR® dl  IRP d
= VY, (15)

al dt du dt
Differentiating the equation of meshing, Eq. (9), yields

O dl | Of du _  afi dgy

ol dr  Ou dt  d¢, dr

(16)

Egs. (15) and (16) form a system of four linear equations
in two unknowns, d//d¢ and du/dt. This system of equations
has a unique solution for the unknowns if the matrix

GR?  OR?

—yeD
dl du r
A= 17
o oh o doy 4
ol ou d¢p, dr

has a rank of two. This yields the following four
determinants equal zero:

axgz) axgz) - V(C 1)
dl du ot
HD ey
A == < —yeb =0, (18)
"o Tou yir
o o _ O doy
a0 ou 9g, ar
axgz) axgz) —V(Cl)
al du ot
aZ(Z) aZ(Z) ]
A, == < —yeb | =0, (19)
o o 2ir
o o _ O dey
o ou 9p, dt
5 00
dl ou e
02 9
Ay = | = < —yeb | =0, (20)
T o o
o o _ O doy
a0 ou 9g, ar
and
axgz) axéz) N V(C i
dl du ol
(2) (2)
A, = dye dy; _V(cl) =0. (1)
dl du »t
0z 0z ey
dl u ot

Eq. (21) is the same as the equation of meshing, and
it is satisfied since the points of tangency of the rack
cutter and the generated tooth surfaces are considered.
Thus, only Egs. (18)-(20) should be applied to
determine the conditions of singularity for the generated
tooth surface. Therefore, a sufficient condition for the
occurrence of a singularity of the generated tooth surface
is

G(lu,¢;) = A} + A + A2 =0. (22)

Eq. (22) yields the condition of tooth undercutting as
follows:

o sin® xpn>’ (23)

1
= ap
cos ¥, B

where

) 2 . 2
B =sin” y,, + cos” ¥, sin” A.

2.4. Generating nonstandard gears by rack cutters

Nonstandard gears can be generated by a standardized
tool used for generation of standard gears but with
modified tool settings with respect to the gear being
generated. Usually, modified tool settings are applied to
prevent tooth undercutting of the generated gear.
Referring to Fig. 4 and Eq. (23), the rack cutter will
not undercut the gear tooth if the following inequality is

satisfied.

e,my, 1 in ¥,

» > = ay — ry sin” Y . 24)
cos ¥, cos ¥, B

Thus, the normal shifting coefficient of the rack cutter
setting e,, which corresponds to gear tooth non-under-
cutting is

ap T, sin’y,

e, |— — —
m, 2sinA B

P =

) (25)

Fig. 4. Nonstandard gears generated by a rack cutter.
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Table 1

Some major design parameters for helical gears with small number of teeth

Parameters Pinion Gear Notes
Normal module m,, 1.75 mm/teeth Given
Pressure angle 20°

Lead angle 60°

Teeth number 2 60

Shifting coefficient e; =0.7, e,=0.7 e,=e;=0.7 e,=—ete,=—14

Total shifting coefficient e=e,te,=e;=—0.7 Calculated
Center distance 61.106 mm

[ corresponding to undercutting 0.236 mm

[ corresponding to point C 0.246 mm

Radius of root fillet r, 1.045 mm

Spanned angle of root fillet o, —60.14°<0,<0°

Clearance C 0.4 mm

Radius of tip fillet r, 0.332 mm

Spanned angle of tip fillet g, 0°<0,<26.69°

where T represents the number of teeth on the generated
gear; m,, is the normal module, and ay is the standardized
parameter of the rack cutter, as shown in Fig. 1.

Example 1. Nonstandard gears generated by different
profile shifting coefficients.

Table 1 lists some important design parameters for
helical gears with small number of teeth. Fig. 5 plots
the profiles of the pinion with shifting coefficients e, of
0.5 and 1.0. Tooth undercutting on the gear root is found
to be reduced by increasing the profile shifting
coefficient. However, the thickness of the gear tooth is
increased compared with the standard gear for nonstan-
dard gears.

3. Modification of the root fillet surfaces of the pinion

In a one-stage gear set with a high gear ratio, one of the
gears must be extremely small. Tooth undercutting on the
gear root may occur when the small number of teeth are
used. This work proposes a modified curvilinear root profile,
rather than an ordinary gear root profile, to improve

4 Beginning Point of Tooth Undercutting
Profile Shifting Coefficient €,=0.5
........ Profile Shifting Coefficient €, = 1.0

Fig. 5. Computer graph of the nonstandard gear.

the bending strength of the pinion root. Fig. 6 shows the
cross section of the pinion tooth surface on plane z; =0 mm.
Since tooth undercutting occurs on the involute profile of
the generated pinion tooth surface, the mathematical model
of the involute profile (refer to Eq. (10)) of the first quadrant
is expressed as follows:

x1 = (I cos ¥, —ag + ry)cos ¢p; — (I cos ¢,
— ag)cot Y, sin A sin ¢4,
(26)
y1 = (I cos ¥, —ag + ry)sin ¢ + (I cos y,

— ag)cot Y, sin A cos ¢y,

AV
A
I
Y, :
|
|
|
18
c, r
|
I
Rl
I

Modified Root

| Fillet
B/\OH !
c |
F I
o, r |
yl(C):
i)

0, D G g X
%2

Fig. 6. Geometries of tooth undercutting and modified fillet.
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and

71 = —(ag tan ¥, — I sin y,))cos A

)tan Asin A — bo
cos A

ap l
+ : -
cosy, siny, siny,
+ ri¢; tan A.

Closely examining Fig. 6 reveals that the curve EF is
an involute profile generated by the straight line of the
rack cutter, and point F is the beginning point at which
tooth undercutting occurs. Notably, the parameter
| corresponding to point F can be obtained using Eq.
(23). Consider a point C, which is close to point F, where
the parameter / of the rack cutter profile (Fig. 1) that
corresponds to point C slightly exceeds that of the rack
cutter profile that corresponds to point F. x(lc) and y(lc)
are the components of the line O,;C represented in
coordinate system S; and are given by Eq. (26). An
expression for the length |O,C|=r should be derived
firstly as follows:

r= /(x(lc))Z +(y(1C))2

E % 11 — [(Icos Y, — ap)(1 + cot? Y, sin” 2) + r]?
1 1 + cot?y, sin® A .

@7

The line BC is the tangent to the involute curve EF at
point C, while the line AC is the normal to the involute
curve EF at point C. Angle A’O;E depends on the number
of teeth T}, and is expressed as follows:

T
/AOE=—. (28)
T

In this study, the length_m is the proposed radius of
the modified root fillet: |AC|=r,. Applying the law of
sine to triangle AO;C yields the following equation:

1% _ r

= . 29
sine, sing, 29

Differentiating Eq. (26) yields the tangent vector to the
involute profile at point C

+—=i- (30)

According to Eq. (28), the unit vector of the slope of
line O A is

T, . T,
m=cosF111 +SmT1']1' (€2)]

Taking the dot product of vectors T and m yields the
angle formed by lines BA and BC:

x| dy in=E )9
| (COST,) FT (smTl) 1

(5" + (3’

0. =cos~ 32)

According to Fig. 6, the angle (. equals m/2—4..
Substituting @, into Eq. (29) yields the radius r, of the
modified root fillet.

With reference to Fig. 6, the modified circular arc CH
with a radius of r; and a center at point A is proposed for the
modified root fillet when the pinion exhibits serious tooth
undercutting. The screw motion of the modified circular arc
performs the helical pinion root-fillet surface. Conse-
quently, the cross sections of the helicoids corresponding
to z; =0 and z, =constant, represent the same plane curve in
two positions. One cross section coincides with the other
after a rotation about the z; axis through an angle 7 in a
screw motion. The proposed modified root fillet of the
pinion can be represented in coordinate system S; as
follows.
(©)
1

x\? =2 cos n Fy\ @ sing + r, sin(6, £ 1) — r, sin(a, £ 1),

)’Y) = x(lc) sinn+ y(lc) cos n+r, cos(, = 1)+ r, cos(a, T 1),

and z(lr) = ryntan 2,
(33)

where 6, =%—=—0,, 6, <0, <0,+ 0, and o, represents

the spanned anglle of the modified root fillet.

4. Modification of the tip fillet surface of the shaper

The pointed teeth are an important issue in gear design
and manufacture, especially for helical gears with small
number of teeth. Since the gear teeth are generated by a
pinion-type shaper, the tip fillet of the shaper must be
considered to avoid the occurrence of singular points in
the generation process. Fig. 7 depicts the cross section of
the shaper on the plane z;=0mm. Point J is the
beginning point of the tip fillet that lies on the involute
profile, and the coordinates of point J are x(lj) and y(lj);
point K is the point of intersection of the X; axis and the
vector T that is tangent to the involute tooth profile at

Y,
Addendum Circle
of the Pinion
Involute
Profile
0,
) | Clearance

Fig. 7. Modified tip fillet of the shaper.
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point J. Oy is the point of intersection of the X; axis and
the normal vector that is perpendicular to the involute
profile at point J, and point Oj is also the center of the
modified tip fillet. The length O,J is the proposed radius
of the modified tip fillet, |O,J|=r,. Eq. (26) determines
the coordinates of point J. Following the procedure similar
to that of previous section, the angle formed by the axis
X, and line JK can be expressed by

0, =cos ' —— (34)

According to Fig. 7, angle 8, equals /2 —6,. Applying
the law of sine to triangle JO;L yields the radius of the
modified tip fillet, r,=y'"/sin B,.

Similarly, the proposed modified tip fillet of the shaper
can be represented in coordinate system S; as follows:

x\" =" cos n — 1, cos B, cos n + r, cos(a, Fn),

y(lt) = x(lj) sin 7 — r; cos B, sin nFr, sin(a, +7), (35)

and z\” = ryntan A

where o, is the spanned angle of the modified tip fillet and
0<0,<8.

The radius of the modified tip fillet, r;, is determined by
the location of point J. Point J is selected as the point that at
which the modified tip fillet makes a clearance between the
addendum of the pinion and the dedendum of the generated
gear, as shown in Fig. 7. AGMA’s fundamental formula for
the recommended clearance of fine pitch gears is suggested
as follow:

C =0.2m, + 0.05, (36)

where C represents the clearance and m, is the normal
module of the gear.

5. Mathematical model of the gear generated by shapers

Fig. 8 displays the kinematic relationship between the
shaper and the generated gear. Coordinate systems
S1(X1,Y1,Zy) and S»(X,,Y»,Z,) are rigidly attached to the
shaper cutter and the gear, respectively. The position vector
of the shaper cutter can be transformed from coordinate
system S, to S, by applying the following homogeneous
coordinate transformation matrix equation.

RY = M ). @

X,. X,
X

Pitch Circle of
¢z Generated Gear

0,,0, Yh X

n
Y,
I E
X, Y,
9
Y,
h ‘Ol’j h

Pitch Circle of Shaper Cutter

Fig. 8. Kinematic relationship between the shaper and generated gear.

where
cos(¢py + o) sin(¢; +¢y) 0 —Ecosg,
(M, ] = —sin(¢; +¢1) cos(¢py +¢,) 0 Esing, ,
0 0 1 0
0 0 0 1

and E is the center distance between the shaper and the
generated gear. The equation of meshing between the shaper
and the generated gear is

(@) (@) (i) (1) (@) (@)
Xi—x _ Y=y _Z —z

(@) () - () ’
1x nly ny

(38)

n

where X", Y\? and Z{" are coordinates of the instantaneous
contact point I, and x\”, y\, " and n!", n({\), n{) are the
coordinates and the normal vector components of an
instantaneous point on the shaper profile, respectively,
represented in coordinate system S;. According to gear
theory, the profile of a generated gear can be obtained by
simultaneously considering the equation of meshing and the
loci of the shaper cutter represented in the gear’s coordinate
system. Thus, the involute gear profile generated by the
shaper (i.e. involute profile shown in Fig. 7) is expressed as

follows:
x§2> = (lcosy,, —ag +r)cos ¢,
+ (ag — lcos Y, )coty, sin Asin ¢, — E cos ¢,,
y(zz) = —(lcosy, —agy + ry)sin ¢,  (ay — Icosy,)
X coty, sinAcos ¢, + Esin¢, and

2P = +(ay — Lcos Y, )cot Y, tan Asin A

t + by — Isi
N (ao any, +by — Isin 1//n> +rmppytand,  (39)
cos A
where m12=%=$—;-
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Similarly, the modified gear root fillet generated by the
modified tip of the shaper (Fig. 7) can be represented as
follows:

K =" — 1, cos B)cos(dy + dy — 1)
+ ry coslo, +(n — ¢1 — ¢)] — E cos ¢,,

¥ ==& — 1, cos Bsin(g; + ¢, — 1) (40)
+rysinfo. +(n — ¢ — ¢p)] + E sin ¢y,

Z(zt) = rymtan 4,
and

AD = —r sin(e, Fnt¢y) + & — r, cos Bsin o, = 0.
41)

Similarly, the modified gear tip fillet generated by the
modified root fillet of the shaper (Fig. 6) is as follows:

2 =xO cos(d) + dy — ) sin(g, + ¢, — )
+ 1y sin[6, = (1 — ¢ — )]
—rpsinfo, = (n — ¢ — ¢y)] — E cos ¢,
¥ = = sin(g, + ¢ — MW cos(¢; + dr —m)
+rcos[o, = (n — ¢ — ¢y)]
+ r; cos[a, (7 — ¢y — ¢2)] + E sin ¢y,
2 = rmtan A,
(42)

and

) = —ri cos(o, =0 Fpy) + x5 cos g, + 317 sin o,

+ r, sin(6, —a,) = 0.
(43)

6. Designing a nonstandard gear generated by shapers

The center distance of gear pairs depends on the profile-
shifting coefficient. The total profile-shifting coefficient of
the gear pairs is e=e,+e, when the profile-shifting
coefficients are e, and e, for the pinion and gear,
respectively. Thus, the operating center distance [16] is

_(r; +ry)cos ¥
COS Y

E' , (44)
where y is the transverse pressure angle, and the operating
pressure angle, vy, is given by the following involute
function [16].

ep—{—eg
T, +T,

invyy, = 2 tan ¢S< ) + invy, (45)
where e, and e, represent the normal profile shifting
coefficients of the rack cutter and the generated gear,
respectively, and T, and T, represent the number of teeth of
the pinion and gear. The involute function can be

Xh sXh'
Pitch Circle of Gear
/ \s
Centrode of Gear
h r. 2 \\
Centrode of ( } Y
Shaper (Pinion) ]
Pitch Line of \ ! el
. -£,m, )
Rack Cutter — = /\(\_ e,zm L
Ordinary Centrode —/ / g TN \\\
of Rack Cutter r \\ 1 E
)4
\ [ Yh
n ;
ay
/
//
O;d’f"?ry Centrode R—Pitch Circle of Pinion with
of Pinion a Positive Profile Shifting

Coefficient e;

Fig. 9. Visualization of profile shifting.

alternatively expressed as follows [16].
inV‘//bs = tan V/bs - ‘//bs~ (46)

The operating center distance can be obtained by
substituting Eqs. (45) and (46) into Eq. (44). Notably, the
operating center distance depends on the sum of profile
shifting coefficients. Fig. 9 presents the profile shifting
relationship of the pinion and the gear during their
generation. The pinion is generated using a rack cutter
with a positive profile shifting coefficient e,,=e;, and then
using the pinion as the shaper (i.e. the same pinion-type
shaper) to generate the mating gear with a negative profile
shifting coefficient e,. This generating procedure changes
the instantaneous center of rotation from point I to point I',
such that the profile shifting coefficient of the generated gear
is e,= —e; +e,. Hence, the total profile shifting coefficient
of the mating gear pair is e=e,+e,=e,. Restated, the
change of the center distance depends only on the profile
shifting coefficient e,. The change of center distance does
not impact the gear ratio m,,, but does affect the radii of
pinion and gear centrodes. The new pitch radii of the pinion
and the gear [16] are

E E
dr,=—--—.
an rg 1+ 1/m12

7

= 47
4 1 +m|2 ( )

Example 2. Computer graphs of the pinion and gear with
profile shifting coefficients.

Table 1 lists the major parameters of the pinion and gear.
Table 1 also shows all other corresponding design parameters
calculated according to the proposed tip and fillet modifi-
cation method. Based on the developed pinion and gear
mathematical models expressed in Egs. (10), (33) and
(39)—(47), Fig. 10 displays the computer graphs of the pinion
and the gear with profile shifting and modified tooth surfaces.
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(a) Pinion e,= 0.7

(b) Gear e, = -1.4

L 1 ]
0 30 60 mm

Fig. 10. Computer graphs of the pinion and gear with profile shifting and
modified tooth surface.

7. Discussion

The conventional method of applying positive profile-
shifted cutting is widely used in industry to manufacture
helical gears with small number of teeth, to avoid tooth
undercutting. However, positive profile-shifted cutting
causes the increase of gear fillet thickness as the number of
teeth decreases. The increase of fillet thickness results in the
decrease of gear addendum. This study proposes an
alternative method that modifies the geometry of the fillet.
A third method, combining the profile-shifted cutting and
fillet modification, is also proposed, to yield an improved
result. Fig. 11 compares the tooth profiles of the pinion
obtained by applying the methods of the tooth-profile shifting
and the combination of profile-shifted cutting and tooth fillet
modification, respectively. The parameters are the same as
those shown in Table 1. Differences between the tooth
surfaces obtained by these two methods are observed.

(@) €,=03 (b) =05
(c) 6,=0.7 d) ¢,=09

...... Profile-shifted Method

—— Proposed Method (Combination of Profile-shifted Cutting
and Tooth Fillet Modification)

Fig. 11. Comparisons on profile-shifted and modified tooth profiles.

Applying the positive profile-shifting coefficients with
values of 0.3 and 0.5 reduces but does not eliminate the
tooth undercutting problem, when the tooth-profile shifting
method is applied. According to Fig. 11, when the shifting
coefficient equals 0.7, the tooth profiles generated by these
two methods are very similar. When the shifting coefficient
equals 0.9, the generated root fillets of the profile-shifted
pinion are higher than those generated by the combination of
profile shifting and tooth modification method. In other
words, by applying the conventional profile-shifted method,
an increase in the shifting coefficient leads to a decrease of
the gear addendum, and thus reducing the gear contact ratio.
Furthermore, the change of the center distance between the
pinion and the gear depends on the profile shifting coefficient
of the shaper when the gear is generated by shapers according
to the proposed method. According to the simulated results, a
combination of the tooth modification method and the tooth-
profile shifting method can solve the tooth undercutting
problem. Additionally, the clearance between the pinion and
the gear can be determined during the gear generation
process. According to the proposed method, the change of the
center distance depends only on gear shifting coefficient
when the gear is generated by shapers. Mathematical models
developed in this study can be used in designing spur and
helical gear sets with small number of teeth. Fig. 12 displays
the pinion and the gear that designed and manufactured by

0 10 20 30mm

Fig. 12. Pinion and gear with profile shifting and modified tooth surface.
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using the proposed method and the gear pair has already been
used to a motor-driven wheelchair.

8. Conclusion

A mathematical model of the modified helical gear with
small number of teeth has been developed by tooth-profile
shifting and basic geometry modification. The condition of
tooth undercutting for the involute profile gears has been
investigated using the developed mathematical models.
Computer graphs of the pinion and gear profiles generated
by various methods are displayed for comparison. Figs. 10,
11 and 12 have shown the verification and validation of the
proposed methods and their corresponding gear tooth
mathematical models. The proposed methods and devel-
oped mathematical models of the modified helical gear can
be helpful to facilitate to design and manufacture of spur
and helical gears with small number of teeth.

References

[1] E. Buckingham, Analytical Mechanics of Gears, Dover Publications
Inc, New York, 1949.

[2] D.W. Dudley, Practical Gear Design, McGraw-Hill Book Co, New
York, 1982.

[3] F.L. Litvin, C.B. Tsay, Helical gears with circular arc teeth:
simulation of conditions of meshing and bearing contact, Transactions
of the ASME, ASME Journal of Mechanisms Transmissions
Automation Design 107 (1985) 556-564.

[4] F.L. Litvin, Methods for generation of gear tooth surface and basic
principals of computer aided tooth contact analysis, Proceeding of
Computers in Engineering 1 (1985) 556-564.

[51 J.R. Colbourne, The Geometry of Involute Gears, Springer, New
York, 1987.

[6] AGMA, Information Sheet-Geometry Factors for Determining the
Strength of Spur, Helical, Herringbone and Bevel Gear Teeth.
AGMA, 226.01, 1970.

[71 AGMA, Design Guide for Vehicle Spur and Helical Gears. AGMA,
170.01, 1976.

[8] A. Ishibashi, H. Yoshino, I. Nakashima, Design and manufacturing

processes and load carrying capacity of cylindrical gear pairs with 2 to

4 pinion teeth for high gear ratios (1st report design and manufacture

and surface durability of gears with 2 to 3 pinion teeth), Transactions

of the Japan Society of Mechanical Engineers, Series C 47 (416)

(1981) 507-515.

A. Ishibashi, H. Yoshino, Design, manufacture and load carrying

capacity of Novikov gears with 3-5 pinion teeth for high gear ratios

(1st report, design, manufacture and power transmission efficiency),

Transactions of the Japan Society of Mechanical Engineers, Series C

49 (447) (1983) 2039-2047.

[10] T. Komori, Y. Ariga, S. Nagata, A new gears profile having zero
relative curvature at many contact points (LogiX Tooth Profile),
Transactions of the ASME, Journal of Mechanical Design 112 (1990)
430-436.

[11] M.A.S. Arikan, Determination of maximum possible contact ratios for
spur gear drives with small number of teeth, Proceedings of the ASME
Design Technical Engineering Conferences 82 (1) (1995) 569-576.

[12] HH. Mabie, C.F. Reinholtz, Mechanisms and Dynamics of
Machinery, 4th ed., Wiley, New York, 1987.

[13] V. Kin, Limitation of Worm and Worm gear surfaces in order to avoid
undercutting, Gear Technology 1990; 33-35.

[14] Z.H. Fong, C.B. Tsay, The undercutting of circular-cut spiral bevel
gears, Transactions of the ASME, ASME Journal of Mechanical
Design 114 (1992) 317-325.

[15] F.L. Litvin, Theory of Gearing, NASA Publication RP-1212,
Washington DC, 1989.

[16] F.L. Litvin, Gear Geometry and Applied Theory, Prentice-Hall, New
Jersey, 1994.

[17] M.H. Tsai, Y.C. Tsai, Design of high-contact-ratio spur gears using
quadratic parametric tooth profiles, Mechanism and Machine Theory
33 (5) (1998) 551-564.

[9

—



	Tooth profile design for the manufacture of helical gear sets with small numbers of teeth
	Introduction
	Mathematical model of the modified tooth surface
	Rack cutter surfaces
	Generated tooth surfaces
	Tooth undercutting analysis
	Generating nonstandard gears by rack cutters

	Modification of the root fillet surfaces of the pinion
	Modification of the tip fillet surface of the shaper
	Mathematical model of the gear generated by shapers
	Designing a nonstandard gear generated by shapers
	Discussion
	Conclusion
	References


