
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 5, OCTOBER 2005 881

Optimal Static Output Feedback Simultaneous
Regional Pole Placement

Jenq-Lang Wu and Tsu-Tian Lee, Fellow, IEEE

Abstract—The problem of optimal simultaneous regional pole
placement for a collection of linear time-invariant systems via a
single static output feedback controller is considered. The cost
function to be minimized is a weighted sum of quadratic perfor-
mance indices of the systems. The constrained region for each
system can be the intersection of several open half-planes and/or
open disks. This problem cannot be solved by the linear matrix
inequality (LMI) approach since it is a nonconvex optimization
problem. Based on the barrier method, we instead solve an auxil-
iary minimization problem to obtain an approximate solution to
the original constrained optimization problem. Moreover, solution
algorithms are provided for finding the optimal solution. Fur-
thermore, a necessary and sufficient condition for the existence of
admissible solutions to the simultaneous regional pole placement
problem is derived. Finally, two examples are given for illustration.

Index Terms—Barrier method, constrained optimization, re-
gional pole placement, simultaneous stabilization.

I. INTRODUCTION

THE problem of simultaneous stabilization for a collection
of linear systems via a single controller is an important

issue in robust control theory (see [1], [2], [4], [13], and [25]).
This problem concerned with the determination of a single con-
troller which will simultaneously stabilize a finite collection
of systems. The simultaneous stabilization problem arises fre-
quently in practice, due to plant uncertainty, plant variation,
failure modes, plants with several modes of operation, or non-
linear plants linearized at several different equilibria. In [24], a
nonlinear state feedback controller which simultaneously stabi-
lizes a collection of single input systems is presented. In [10], a
necessary and sufficient condition, embedded in the solvability
of a constrained optimization problem, for the existence of con-
trollers to simultaneously stabilize a collection of single input
systems is obtained. In [11], [18], and [23], the optimal simul-
taneous stabilizing state feedback controllers are found via nu-
merically solving a minimization problem. The cost function
to be minimized is a weighted sum of the quadratic perfor-
mance indices of the systems. In [6] and [7], necessary and suffi-
cient conditions for simultaneous stabilizability of a collection
of multi-input multi-output (MIMO) systems via static output
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feedback and state feedback are obtained in the form of coupled
algebraic Riccati inequalities. Moreover, in [20] and [21], linear
periodically time-varying controllers are used for simultaneous
stabilization and performance or disturbance rejection.

Although many researches have focused on the simultaneous
stabilization problem in recent years, the optimal simultaneous
regional pole placement problem has not been considered yet.
The minimization of quadratic cost functions can indeed im-
prove the systems’ static responses (see [5] and [17]). How-
ever, it cannot guarantee that the closed-loop systems have good
transient responses. The systems’ transient responses are deter-
mined mainly by the locations of the systems’ poles. If we can
assign the systems’ poles to some specified regions, then good
transient responses can be guaranteed. For the single system
case, in [8], [14]–[16], and [26], the authors determined a feed-
back controller for a system such that the closed-loop poles lie
within a specified region. Moreover, a quadratic cost function
being minimized by the resultant controller is found. Never-
theless, for a given cost function, how to find the optimal con-
troller subject to the regional pole’s constraint has not been dis-
cussed. In [9], the authors solved a modified Lyapunov equa-
tion to obtain a controller which minimizes an auxiliary cost
and guarantees that the resultant closed-loop poles lie in a de-
sired region. This auxiliary cost provides a guaranteed upper
bound on the original quadratic cost function. However, how to
find the optimal controller to minimize the actual cost subject
to the regional pole’s constraint is still unsolved. Up until now,
the existing results about the (optimal) regional pole placement
problem are focused on single system case. The optimal simul-
taneous regional pole placement problem for a collection of sys-
tems has yet to be addressed.

In this paper, we provide a new method to solve output feed-
back optimal simultaneous regional pole placement problem
for a collection of systems. The considered cost function is a
weighted sum of quadratic performance indices of the systems;
and the constrained region for each system can be the intersec-
tion of several open half-planes and/or open disks. This is a con-
strained optimization problem and its minimum point may not
exist. It often happens that its infimum point lies on the boundary
of the admissible solution set, and it is not a stationary point.
Therefore, the Lagrange multiplier method cannot be employed
to derive the necessary conditions for optimum for this problem.
To solve this problem analytically is quite difficult. Moreover,
this problem cannot be solved via the linear matrix inequality
(LMI) approach since the admissible solution set may be non-
convex. In general, static output feedback control problems are
very difficult to solve [28]. It has been shown in [3] that simul-
taneous stabilization by static output feedback is NP-hard. In
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this paper, based on the barrier method (see [22]), we instead
solve an auxiliary minimization problem to obtain an approxi-
mate solution of the original problem. The new cost function is
the sum of the actual cost function of the original problem and a
weighted “barrier function.” Necessary and sufficient conditions
for the existence of admissible solutions are given. We prove
that the minimal solution of the auxiliary minimization problem
exists if the admissible solution set is nonempty. Moreover, it
is a stationary point. Then the Lagrange multiplier method can
be used to derive the necessary conditions for optimum of the
auxiliary minimization problem. In fact, the minimal solution
of the auxiliary minimization problem converges to the infimal
solution of the original problem if the weighting factor of the
barrier function approaches zero. Unlike the approaches pre-
sented in [8], [14]–[16], and [26] for the single-system case, in
our approach, we can get a solution very close to a local in-
fimal solution of the considered problem. When the poles’ con-
straint is relaxed, a necessary and sufficient condition for the
existence of the simultaneous stabilizing static output feedback
controller is found in form of coupled matrix equalities. Finally,
two numerical examples are provided for illustration. Based on
the gradient method, numerical algorithms are provided in Ex-
ample 1 to demonstrate how to solve the auxiliary minimization
problem.

A. Notations

expected value;
spectrum of the matrix ;

Tr trace of the matrix ;
(conjugate) transpose of the matrix ;

, the spectral norm
of the matrix ;
matrix is positive (semi)definite;
complex conjugate of ;

approaches ;
order of.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a collection of linear time-invariant systems

(1)

where is the state of the th system, is the
control input of the th system, and is the output of the

th system; , , and are constant matrices of appropriate
dimensions. Suppose that is controllable, is
observable and has full row rank for all . Let , ,

, and . Define

Re

Note that denotes an open half-plane and is an
open disk with radius and centered at . The region
is the open left half-plane.

The design goal is to find a static output feedback gain such
that the controllers

(2)

achieve the infimum of the cost function

(3)

subject to the constraints that

where , , are weighting factors and
is defined as

Suppose , with
being observable, and the constrained region is represented
by

Re

and

Each can be the intersection of several open half-planes and
open disks. Note that the region must be symmetric with
respect to the real axis in order to obtain a real feedback gain.
The selection of weighting factors , , depends
on requirements of practical applications. If we want the -th
system has better LQ performance, then we can choose larger

. In contrast, if the LQ performance of the -th system is less
important comparing to the other systems, then we can choose
smaller .

Let and let

and

The set is the collection of all matrices such that
the th closed-loop system is stable; the set is the collection
of all matrices such that all the closed-loop systems
are stable; the set is the collection of all matrices
such that all the closed-loop poles of the th system lie in the
region ; and the set is the collection of all matrices

such that all the closed-loop poles of the systems are
located in the desired regions.

It is shown in [17] that the objective function is equiv-
alent to

Tr if
otherwise

where and is the unique
solution of

(4)
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Therefore, the cost function becomes

Tr if

otherwise.
(5)

Suppose that , , are positive definite. Two
useful lemmas are introduced in the following.

Lemma 1 [12]: All the eigenvalues of the matrix lie in the
region if, and only if, for any given matrix

, the equation

has a unique solution .
Lemma 2 [8]: All the eigenvalues of the matrix lie in the

region if, and only if, for any given matrix
, the equation

has a unique solution .

III. AUXILIARY MINIMIZATION PROBLEM

The considered problem is a constrained optimization
problem. To solve this problem analytically is difficult since
its minimal solution may not exist. In fact, its infimal solution
may lie on the boundary of the set ; and furthermore, it
may not be a stationary point. In this paper, motivated by the
barrier method (Luenberger [22]), we instead solve an auxiliary
minimization problem to obtain an approximate solution of
the original problem. The auxiliary cost function is
the sum of the actual cost function and an additional
weighted barrier function . The auxiliary minimization
problem is formulated as: Find , over , to minimize the
auxiliary cost function

where the term is defined in (3), is the weighting factor

Tr Tr if

otherwise
(6)

and matrices and are the solutions of

(7)

and

(8)

respectively, with and .
Let denote the Kronecker product, vec denote the op-

erator of stacking the column vectors of a matrix to a
1 nm column vector, and vec be the inverse operator of vec
(see [9]). As shown in [22], a barrier function must satisfy: 1)
it is continuous, 2) it is non-negative over the set , and 3) it
will approach infinity as approaches the boundary of the set

. Now we will show that the function satisfies these
three conditions.

Lemma 3: The function defined in (6) satisfies the
following.

1) is continuous in the set .
2) over the set .
3) approaches infinity as approaches the

boundary of the set .
Proof:

1) We first show that Tr is continuous in the set
for fixed and . Using vec operator in (7) yields

vec vec

where

If , then is nonsingular and

Tr Tr vec vec
(9)

The right-hand side of (9) is smooth in .
Note that the solution of discrete Lyapunov equation

(8) can be expressed as (10), shown at the bottom of
the page, which is a rational function of the matrix .
So, Tr is smooth in the set (see [19]). From the
definitions of and , it follows that
is continuous in the set .

2) As stated in Lemmas 1 and 2, and are positive
definite in the set . Therefore, in the
set .

3) Let be an infinite sequence of gain ap-
proaching the boundary of from the interior. Then
there exists an eigenvalue
approaching the boundary of as . Sup-
pose and are the solutions of (7)
and (8), respectively, with being replaced by

. We first show that if the sequence is
such that Re , then

(10)
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Tr . Suppose is the normalized
eigenvector corresponding to . Premultiplying and
postmultiplying (7) by and , respectively,
and after some manipulations, we have

Since

we have as
. Note that since is positive

definite, as

. Similarly, we can prove if the se-
quence is such that

, then Tr . These show that
Tr Tr if the

sequence approaches the boundary of .
From the definitions of and , we can conclude that

if approaches the boundary of .
As stated in [22], although the auxiliary minimization

problem is, from a formal viewpoint, a minimization problem
with inequality constraints; for a computational viewpoint it
is unconstrained. The advantage of the auxiliary minimization
problem is that it can be solved by unconstrained search tech-
niques.

Remark 1: It is shown in [22] that the optimal solution of
the auxiliary minimization problem converges to the solution
of the original problem as the weighting factor . This
suggests a way to approximate the infimal solution of the orig-
inal problem in our approach. It should be noted that even for
the single system case, the optimal solutions obtained by the
approaches presented in [9], [27], and [29] might be far away
from the infimal solutions of the original constrained optimiza-
tion problems.

Next, we will prove that if the set is nonempty, then the
auxiliary cost function has a minimum point in the set

.
Lemma 4: If the admissible set is nonempty, then the aux-

iliary cost function has a minimum point in the interior
of the set .

Proof: From (4), we have

Tr Tr

For matrices and , Tr Tr (see
[29]). Therefore

Tr
Tr

(11)

Since has full rank, , and , then the right hand
side of (11) is as . This means Tr
as . Moreover, since is by assumption positive
definite, then Tr as . This implies
that as . As a result, the level set

is bounded for

any . Moreover, since is continuous in the set
and as approaches the boundary of the

set from the interior, the set is closed and then is
compact. From the Weiestrass theorem (see [19]), there exists a

such that

This implies that

and completes the proof.
Since the minimum point of the auxiliary cost function

lies in the interior of the admissible solution set, it
must be a stationary point. The Lagrange multiplier method
can be employed to derive the necessary conditions for local
optimum of cost function .

Theorem 1: Let minimize . Then there exist
, , , , , and

( , , and )
satisfying

vec vec

vec vec (12)

(13)

vec vec

vec vec (14)

(15)

vec vec

vec vec (16)

and

(17)

where we have the first equation at the bottom of the next page,
and

vec vec

such that the optimal feedback gain is given by

vec vec (18)

Proof: The Lagragian is defined as the second
equation at the bottom of the next page. The necessary condi-
tions for local optimum are , ,

, , ,
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, and . After some ma-
nipulations, we have (19)–(25), shown at the bottom of the
page. From (19), we can derive (18). By substituting (18) into
(19)–(25), (12)–(17) can be obtained.

The above theorem provides not only a necessary conditions
for optimum but a method to calculate the gradient direction of

at a given point as well. The gradient of at a
fixed point is shown in the equation at the bottom of the next
page, where , , , , , and ( ,

, and ) are the solution of

(20)–(25). In the solution algorithms, this gradient direction is
used as the searching direction.

Note that if , then the solution of (4) is positive
definite. Based on the Theorem 1, a necessary and sufficient con-
dition for the existence of admissible solutions to the simulta-
neous static output feedback regional pole placement problem
is given in the following.

Corollary 1: The set is nonempty if, and only if, for
any given positive definite Hermitian matrices , , ,

, , and ( , , and

Tr Tr Tr

Tr

Tr

Tr

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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), there exist positive definite Hermitian
solutions , , , , , and ( ,

, and ) to the cross-coupled (12)
to (17).

Proof: The “Sufficiency” part is obvious and, therefore, is
omitted.

Necessity: Suppose the set is nonempty. From Lemma
4, has a minimum in . It has been shown in the Theorem
1 that there must exist some positive definite matrices , ,

, , , and ( , , and
) satisfying the cross-coupled (12) to (17). This

completes the proof.
When the poles’ constraints are relaxed, the considered

problem is reduced to the optimal simultaneous static output
feedback stabilization problem. It is obvious that is finite
if , and will approach infinity if approaches the
boundary of . Following the same procedure provided above,
we can show that the cost function is continuous in the
set and the level set for
any is compact. Therefore, has a minimum in

. Hence, the following results can be obtained.
Corollary 2: Let minimize . Then there exist

and , , satisfy

vec vec

vec vec

vec vec

vec vec (26)

and

vec vec

vec vec (27)

where

such that the optimal feedback gain is given by

vec vec (28)

Proof: The proof is similar to that of the Theorem 1 and,
therefore, is omitted.

Consequently, a necessary and sufficient condition for the ex-
istence of admissible solutions to the simultaneous output feed-
back stabilization problem can be obtained.

Corollary 3: The set is nonempty if, and only if, for any
given positive definite symmetry matrices and ,

, there exist positive definite symmetry solutions
and , , to the cross-coupled (26) and (27). In
this case, the output feedback gain given in (28) will simul-
taneously stabilize the collection of systems (1).

Proof: The “Sufficiency” part is obvious and, therefore, is
omitted.

Necessity: Suppose the set is nonempty. We have
shown that has a minimum in . It has been shown
in Corollary 2 that there exists positive definite matrices
and , , satisfying the cross-coupled (26) and
(27). In this case, it is obvious that the feedback matrix
given in (28) is a solution to the simultaneous output feedback
stabilization problem.

Remark 2: For state feedback case, we only need to let
for all in the above results.

IV. ILLUSTRATIVE EXAMPLES

Example 1: Consider the following collection of systems

and

where

and

Suppose and
.
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The design goal is to find a static output feedback gain
such that the controllers

and

achieve the infimum of the cost function

subject to the constraints that and
, where

and the constrained regions and are represented by

Re Re

Re Re

Let

Suppose the weighting factors and . As shown
in Section II, we have

Tr Tr Tr Tr

where and are the positive definite solutions of

(29)

(30)

Let the infimal solution of this problem be denoted by
. Choose and

. From the discussions in Section III,
we solve the following auxiliary minimization problem: Find

, over , to minimize the auxiliary cost function

Tr

where is a weighting factor to be chosen, and matrices ,
, , and are the positive definite solutions of

(31)

(32)

(33)

(34)

Suppose matrices , , , , , and are the solu-
tions of

(35)

(36)

(37)

(38)

(39)

(40)

From the Theorem 1, we know that the gradient of at
a fixed point is

Based on the gradient method, an algorithm is presented in
the following to solve the auxiliary minimization problem.

Main-Algorithm: Find the optimal solution of the auxil-
iary minimization problem.

1) Choose a . Set .
2) Solving (29)–(40), where is substi-
tuted by , yields , , ,

, , , , , ,
, , and .

3) Let .
4) If , where is a small
positive number, then , end;
else find , via line search, such
that shall minimize

. Let , go to step 2).

In fact, the step 1) of the Main-Algorithm is not an easy task.
In the following, we will provide a Pre-Algorithm to find a

. Let

Re Re
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for non-negative , , , and . It is clear that
and . Define

and

Note that and .
Let , , , , ,

, , and are the solutions of

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

Let

Tr

From the discussions in Section III, we know that
if approaches the

boundary of from the interior. The
gradient of at a fixed point is

Now we are ready to provide the Pre-Algorithm for finding a
.

Pre-Algorithm: Find a .

1) Choose arbitrary . Find sufficient
large , , , and

such that
. Set .

2) Solving (41)–(48), where is substi-
tuted by , yields , ,

, , , ,
, and .

3) Let
.

4) Find , via line search, such that
shall minimize

5) Let . Suppose , ,
are the eigenvalues of matrix
and , , are the eigenvalues
of matrix . Choose .
If

Re Im

let ,
else .
If

Re Im

let ,
else .

If Re , let

,
else .

If Re ,

let ,
else .

Repeat 2)-5) until , ,
, and . Then, .

From the Pre-Algorithm we know that
if , if

, if , and
if . The values of , ,

, and are monotonically decreasing if they are
nonzero. Thus we can expect that if the admissible solution set

is nonempty and the set
is connected in the iteration, there is some finite such that

, , , , and
.

For the considered problem, we choose the weighting
factor . The Pre-Algorithm is started with an
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initial guess . After some iteration, a ma-

trix is obtained. Then, let

and start the Main-Algorithm

with stop condition . After
some iteration, we get the following results (the solutions of
(29)–(40)):

Since all the above matrices are positive definite, this verifies the
results of the Corollary 1 that the admissible solution set is
nonempty. The resultant optimal feedback gain for the auxiliary
minimization problem is

We have

and

as desired. The resultant optimal value of cost function is

From the discussions in Remark 1, we can expect that it is very
close to the (local) infimal value since is
very small.

Note that the Pre-Algorithm is not sensitive with respect
to the initial guess . Even for the extreme case

, which is far away from the admissible

solution set , a matrix is ob-

tained after some iteration. Note also that since the considered
constrained optimization problem is not a convex optimization
problem, it may have several local infimal (minimal) solutions.
Thus the result obtained via the Main-Algorithm may be a
local optimal solution of the auxiliary minimization problem.
However, for this example, we have started the algorithms with
several different initial guesses; they all finally converge to the

solution .

For comparison, we consider the same optimization problem
with the following new constrained regions:

Re Re

We find that for several different initial guesses , the Sub-
Algorithm never converges. Therefore, we expect that the set

and

is empty and the considered problem is unsolvable.
Example 2: For comparison, we now consider a static state

feedback simultaneous regional pole placement problem. Con-
sider the systems described in Howitt and Luus [11], Paskota et
al. [23], and Petersen [24]

and

where

Suppose , , 2, 3, and 4.
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The design goal is to find a static state feedback gain such
that the controllers

and

achieve the infimum of the cost function

subject to the constraints that

and

where the constrained regions , , 2, 3, and 4, are repre-
sented by

Re

Re Re

and Re

Re

Re Re

and

Let

and

As shown in Section II

Tr Tr

where , , , and are the positive definite solutions of

(49)

(50)

(51)

(52)

Let the infimal solution of this problem be denoted by
.

Note that for this problem, ,
, , and
. Moreover, choose

and

From the discussions in Section III, we solve the following aux-
iliary minimization problem: Find , over , to mini-
mize the auxiliary cost function

Tr Tr

where is a weighting factor to be chosen, and matrices ,
, , , , , , , and are the positive def-

inite solutions of

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

Suppose matrices , , , , , , , , , ,
, , and are the positive definite solutions of

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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From the Theorem 1, we know that the gradient of at
a fixed point is

The solution algorithms are similar to those presented in the
Example 1 and, thus, are omitted here to save space.

The following four cases are considered.
Case 1: The poles’ constraints are relaxed ( ). This

is the optimal simultaneous stabilization problem considered in
[23].

We start the algorithms with the initial guess
. For saving space, we only give the final positive

definite solutions , , , and :

The resultant optimal feedback gain for the auxiliary minimiza-
tion problem is

We have

Moreover, .

Case 2: The weighting factor .
We start the algorithms with the initial guess

. For saving space, we only give the final positive
definite solutions , , , and :

The resultant optimal feedback gain for the auxiliary minimiza-
tion problem is

The final solutions of , , , , , , , ,
, , , , , , , , , , , , ,

and can be easily obtained by solving (53) – (74) with
and thus are omitted

here for the consideration of space.
We can see that

All the closed-loop poles of the four systems are located in
the desired regions. Moreover, we can expect that

will be very close to the (local) infimal value
since is very small.

Case 3: The weighting factor .
For saving space, we only give the final positive definite so-

lutions , , , and :

The resultant optimal feedback gain for the auxiliary minimiza-
tion problem is
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We have

as desired. Moreover, .
Case 4: The weighting factor .
For saving space, we only give the final positive definite so-

lutions , , , and :

The optimal feedback gain for the auxiliary minimization
problem is

We have

as desired. Moreover, .
Note that our results in case 1 are almost the same as the

results presented in [23]. The resultant cost
is the minimal cost for optimal simultaneous stabilization
problem (without regional pole constraints). However, since
the constraints on closed-loop poles are not considered, the
resultant for and 4.

The other cases show that the closed-loop poles of each
system are assigned to the prespecified region as desired
since the constraints on closed-loop poles are considered. The
minimal value of the auxiliary minimization problem
will be closer to its infimal value of the original
constraint optimization problem if the weighting factor
becomes smaller. No matter how small the weighting factor
is, the resultant closed-loop poles of each system will still lie
inside the desired regions. Note that the weighting factor in
case 2 is very small, we can expect that the infimal solution
(may be a local one) of the original problem is very close to

.

V. CONCLUSIONS

In this paper, a new method for approximate solving the
optimal output feedback simultaneous regional pole placement
problem is provided. The constraint region for each system
can be the intersection of several open half-planes and/or open
disks. Good transient responses of the closed-loop systems
can be guaranteed since the closed loop poles are restricted
to lie in some desired regions, and good static state responses
of the systems are also guaranteed since a quadratic type cost
function is minimized. This problem cannot be solved via LMI
approach since its admissible solution set may be nonconvex.
Based on the barrier method, we instead solve an auxiliary
minimization problem to obtain an approximate solution to
the original constrained optimization problem. We have shown
that the minimum point of the auxiliary cost function does
exist if the admissible solution set is nonempty. Moreover,
the necessary conditions for which the optimal solution of the
auxiliary minimization problem must be satisfied have been
derived. Based on gradient method, numerical algorithms have
been provided to find the optimal solution.
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