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Eigenstructure Variability of the Multiple-Source 
Multiple-Sensor Covariance Matrix with 

Contaminated Gaussian Data 
ALIREZA MOGHADDAMJOO, MEMBER, IEEE 

Abstract-Several methods of current interest for counting and lo- 
cating signal sources using data from a passive array depend on the 
accuracy of estimating the eigenstructure of the covariance matrix of 
the array's data vectors. When errors in the measured data vectors are 
Gaussian, conventional covariance estimation is optimal, but robust 
procedures are required for data with non-Gaussian additive contam- 
ination. Two different robust covariance estimators are compared by 
simulation with the conventional one for different degrees of contam- 
ination. Even in relatively good signal-to-noise ratios, however, close- 
ness of signal sources in temporal, spatial frequency domain can cause 
inaccurate signal-related eigenvalue and eigenvector estimates. The 
degree of adversity for these problems is also shown by simulation. 

I. INTRODUCTION 
N radar, sonar, and seismology, we are interested in I estimating the directions of arrival and the spectral den- 

sities of radiating sources from measurements provided 
by a passive array of sensors. In this study we consider 
estimation of the eigenstructure of the covariance matrix 
of the received signal vectors. The utility of the eigen- 
structure has been detailed in a number of recent papers, 
for example, Wax et aZ. [ l ] ,  based on original work by 
Schmidt [2]. Theoretical discussion on the variability of 
the eigenstructure is given in [3]-[5], and considerable 
theoretical work is being done on asymptotic statistics of 
the eigenstructure for non-Gaussian error by Krishnaiah 
et aZ. [6]. The work by Kaveh and Barabell [7], [8] is one 
of the original works relating asymptotic statistics of the 
eigenstructure to the eigenassisted methods in resolving 
plane waves. Eigenstructure variability is an important 
point; we relate it to the method of estimation of the co- 
variance matrix. 

Three different covariance matrix estimation methods 
are considered in this paper. The first method is the con- 
ventional sample covariance estimation; the second one is 
robust, based on rank correlation; and the last one is again 
robust, but based on the weighted M-estimate [9]. The 
last two methods are described in the Appendix. The rea- 
son for considering robust methods is that real world data 
are often contaminated with noise densities which are non- 
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Gaussian and heavily tailed. Other robust schemes for ei- 
genstructure estimation have been reported in [ 101. 
Therein, the vectors are estimated directly (probably a 
method superior to ours), but the covariance matrices 
considered were not specifically related to the multiple 
source problem. Herein, we try techniques which have 
the covariance matrix as an intermediate quantity and use 
practical source configurations to illustrate the variability 
problems by simulation. 

We find that in common situations the spread of signal- 
related eigenvalues is significant. By varying spatial fre- 
quencies, we show that it may often be difficult to sepa- 
rate signal (large) and noise (small) eigenvalues. Also we 
show that in some special cases, where signal eigenvalues 
are close to each other, the space spanned by signal re- 
lated eigenvectors would not be substantially affected, al- 
though the variation of each individual signal eigenvector 
is very high. 

11. BACKGROUND AND SIMULATION SPECIFICATION 

The number of sensors m is chosen to be 3, and they 
are equally spaced in line. For each target (signal source) 
configuration, 500 simulation samples of the resulting ei- 
genvalues and eigenvectors have been found; each simu- 
lation sample corresponds to one N-sample data set an? 
covariance estimate. The 500 samples of eigenvalues A, 
and eigenvectors f l j  thus provide information of their vari- 
ability under the conditions of the simulation. The vari- 
ability may be measured and displayed by various means, 
y c h  as by the normalized sample biases and variances of 
Xj and by the magnitude of the difference between 6, and 
its true value, v,, or the correlation of f l j  with its true value. 
Selection of these parameters, especially those which cor- 
respond to the eigenvectors, should be based on their ef- 
fectiveness in representing the actual variability of the es- 
timated eigenstructure. The asymptotic statistics for the 
eigenvalues and eigenvectors of the sample covariance 
matrix for a complex Gaussian process, as derived in [4] 
and [7], are 

E [  ij] = Xj + O ( N - ' )  (1) 

J 2x; 
E [ ( i j  - E [ i j ] f ]  = - 4- O ( N - 2 )  (2) N 
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EICli] = vi + O ( N - I )  ( 3 )  

E [ ( & ;  - E I O ; ] ) H  (0;  - E [ & ] ) ]  

Equations (1) and (2) are rearranged as follows: 

E [  K - X j ]  = O ( N - I )  

E [  { ( X j  - X j )  - E [  X j  - X j ] } 2 ]  
( 5 )  

= E [ ( X j  - X,,'] - ( E [ X j  - X j ] f  
2x; 

- -  - + O ( N P 2 ) .  
N 

By substituting (5 )  into (6), then solving for E [ ( X j  - X j  )2] 

and dividing the result by A;, we obtain 

= - + O ( N P 2 ) .  (7) N 

Since the first-order term is preserved in (7), the normal- 
ized difference of each eigenvalue from its true value 
would be a good measure of its variability. Similarly, we 
rearrange (3) and (4) as follows: 

E [ 9 ,  - vi] = O ( N - ' )  (8)  
H 

E [ { ( 0 ;  - u; )  - E [ 9 ;  - u ; ] }  ( ( 0 ;  - v;) 
H - E[O,  - . ; ] } I  = E[(Oi  - u;) ( O j  - v;)] 

H 
- (E[(Oi  - Vi)]) ( E [ ( &  - 4 1 )  

(9) 

By substituting (8) into (9) we obtain 
H 

E [ @ ;  - U j )  (0; - v;)] 

= E [  I( 4 - Vi 11'1 
1 

- - _  Xi c 2 + O ( W 2 )  (10) 
Nk=l (A, - 

k # l  k ,  

where 1 is eigenvector dimension, ( - )H denotes Hermi- 
tian, and all eigenvectors are normalized in a way that Or& = 1, vfiv, = 1 f o r i  = 1, 2, - * , 1. Equation (10) 
shows that in E[ 11 8, - v, \ I 2 ] ,  the first-order term is pre- 
served and 11 8, - v, 1 1 2  would be a good parameter to use 
in order to show the individual eigenvector variability. It 
is common to use the correlation of the eigenvectors 0, 
with their true values v, in order to show its variability. 
This will work as well as 11 5, - vi 11 in the case of real 
data, but for complex data the variability of this correla- 
tion, which is defined as 

cos a, = 10; * u, 1, (11) 
would not represent the Variability of the corresponding 

eigenvector. To show this fact, we write (1 1) in the fol- 
lowing form: 

cos2 a; = [( §? - V i )  ( O H  * V i ) * ]  

= ( 0 ;  - ui - 0; * Vi*)  (12) 

where ( * )* denotes conjugate of its argument. Let 6;  = 
Oi - vi. By substitution of 0; = vi + 6i ,  we obtain 

H T 
cos2 a; = (v; + 6 j )  .;(Vi + ai) * V: 

= ( u ~ v ;  + 6 ; ~ ; )  (vTv: + 6 : ~ : ) .  (13) 

Since $vi = ( z / T u * ) ~  = vTv? = 1 we can simplify (13) 
further: 

cos2cY; = (1 + 6Hv;) (1  + 6;v:) 

= 1 + 6HVi  + 6Tv* + 6Hvi6;V* 

= 1 + 6Hv; + ( ~ H v ; ) *  + S ? V ; ( V Y ~ ~ ) ~ .  (14) 

Since vyGi is a complex number, its transpose is equal to 
itself, and hence, 

cos2 ai = 1 + 2 Real [ 6 H v i ]  + ( ~ : 6 ~ 6 H v ~ ) * .  (15) 
Using the following result in [7]: 

" V. + O ( N - 2 )  (16) 
E [ & ]  = -_ 21v k =  1 ( X i  - Ak)2 

X. ' 
k # i  

and (10) we obtain 
1 xi Real ( uy vi ) 

E[cos2 a;]  = 1 - - c 
Nk=l  ( X i  - hk)2 

k # i  

1 + b e  " + O ( N - 2 ) .  (17) 
k = l  (A; - hk) 
k # i  

Since vyvi = 1, (17) simplifies to 

E[cos2a , ]  = 1 + O ( N - 2 ) .  (18) 

In this equation, the term proportional to 1 /N, which has 
the major effect on the variability of eigenvector, is can- 
celled and, hence, cos a would not be a good parameter 
to use for complex dap.  

The parameters e ( Xi ) and e ( 8; ) defined as 

e( X,) = ( X i  - hi ) /h i  (19) 

are used to display the eigenstructure variability. Esti- 
mates of the probability distribution, histogram, and 
(MSE) are also used. In order to show the variability of 
the estimated signal space (space spanned with signal re- 
lated eigenvectors), especially in the cases that signal ei- 
genvectors are mixing, the error of the map of 0; onto the 
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true signal space is also considered C is the velocity of propagation, D is the sensor spacing, 
and (Yk is the angle of incident, with respect to broadside, 

vy6ivj 11 (21) for the kth source, ni9 is a complex, zero mean, circular 
vector with independent elements and contaminated 
Gaussian distribution with E degrees of contamination. m 
is the total number of sensors and h is the total number of 
delays (including zero delay) after each sensor. 

c 
v,ctruesignal eigenvectors 

where 

II.II = 65. 
As it is a major intent to gauge the eigenstructure vari- 

ability in the face of contaminated Gaussian noise (heav- 
ily tailed), the simulated, independent, white noise Sam- 
ples have density 

The covariance matrix with this configuration is 

R = E [ r ( n T )  r " ( n T ) ]  = ASA" + a:Z (26) 
where 

r ( n T )  = [ % l ( n T ) ,  To1 ( n o ,  - - 9 r ( m -  I ) , ( &  I ) ( n T ) ]  

f(n;) = ( 1  - E )  G ( 0 ,  0:) + EG(O, ai) (22) (27) 

(28)  

at = E [  l r ~ ~ ( n T ) ( ~ ]  i = 0, 1, * - , m - 1 .  where G ( 0 ,  a 2 )  is the Gaussian density with mean zero 
and variance a2, and E is the proportion of contaminating 
samples at level a2. We always use a: = 9 a: in our 
simulations. S is the covariance matrix of the source signal vector 

Different numbers of signal sources with different tem- 
poral and spatial frequencies are used. The source signals 
are narrow-band Gaussian, thus, the nth sample of the re- 
ceived process at the qth tap of the ith sensor is 

A =  

. . .  

. . .  

. . .  

and I is an m * h by m h identity matrix. 
K 

r i9 (nT)  = p k ( n T )  exp [ - j2"(vkq 
k =  1 

+ Y k i ) ]  + n i 9 ( n T )  

i = 0, 1 ,  , m - 1  

q = O ,  1 ,  , h  - 1 (23)  

where K is the number of sources, and p k ( n T )  are the 
complex amplitudes of the plane waves with 
E[ Ipk(nT) l21 = Pk. These amplitudes are jointly circular 
Gaussian and jointly independent and independent of n;. 
T is the sampling period which is much larger than the 
time delay between taps. gk are normalized temporal fre- 
quencies. 

v k  = f k T  (24) 

wherefk are centered frequencies of the plane waves, Y k  
are the normalized spatial frequencies which relates di- 
rectly to the direction of arrivals (Yk 

We use N = 106 for producing each sample of R, and 
the sampling intervals in both space and time would be 
appropriate as long as 

and 

For generation of noise in different cases, we wrote our 
own codes and used IMSL Math/Library subroutine for 
generation of independent Gaussian random number se- 
quences. Table I displays the above variables for each 
simulation. 

111. SIMULATION RESULTS 

Simulations are based on 3 sensors each followed by 2 
delay taps yielding 9 X 9 covariance matrix. In this study 
we compare three different methods of covariance matrix 
estimation by calculating histogtam a;d CDF's (Cumu- 
lative Distribution Function) of X i ,  e (  X i )  in (19), e ( & )  
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TABLE I 
SIMULATION VARIABLES 

Number of Sources 
Number of Sensors 
Number of Taps/Sensor 
Contamination Fraction 
Number of SampleslR Element 
Number of R Samples 
Uncontaminated SNRb 
R-Element Estimators in Plots 

K: 
m: 
h: 

N 
L: 
SNR: 
Solid Line - 
Dash Pattern ------- 
Dash Pattern --- 

E :  

1 ,  2 ,  and 3 
3 
3 
0.0, 0.05, and 0.1” 
100 
500 
2,  4 ,  and 8 
(Conventional, Method A )  
(Rank Correlation, Method B )  
(Weighted M-Estimate, Method C )  

“The variance of the contamination noise u: is 9 times variance of uncontaminated noise u:. In this 

bThis is SNR when we set e = 0 (when we assume noise variance is u:). 
case, the overall variance of noise is ui = ( 1 - A) u: + tu:. 

TABLE I1 
MSE COMPARISON 

MSE MSE MSE MSE 
Parameter (Method A) (Method B) (Method C) (Theoly) 

1.237 X lo-’ 

1.523 X lo-’ 
0.307 
8.354 x lo-’ 
0.572 
0.142 
1.524 

8.631 x 
1.67 X lo-’ 
1.476 x lo-’ 
1.973 x IO-’ 
0.191 
0.123 
0.656 
0.168 
1.541 

2.1 x 10-2 0.02 
1.141 x lo-’ 0.02 
1.636 x IO-’ 0.02 
0.316 - 
0.147 0.114 
0.579 0.354 
0.182 0.215 
1.51 - 

in (20), e[map ( & ) I  in (21), ijk, T k ,  and e ( f & )  defined 
as 

4%) = 4 6 ,  - vk? + ( T k  - Y k Y .  (33) 
Estimation of i j k  and Tk in these simulations is based on 
the MUSIC algorithm. All of these parameters have been 
calculated for the three covariance estimation methods : 
A-conventional, B-rank correlation, and C-weighted 
M-estimation. 

For low contamination fraction, E 5 0.05, Method A, 
the conventional, is always better than the robust meth- 
ods, and Method C is better than Method B. But for E = 
0.1 and any SNR (signal-to-noise ratio P / c T : ) ,  Method 
B, the rank correlation, is better than Methods A and C,  
and A is better than C.  

To compare mean square error (MSE) of e (  A )  and 
e ( 0 )  to the predictions in (7) and (lo), respectively, we 
conduct a simulation in which we chosed three equipow- 
ered signal sources with SNR = 10, q l  = v2 = q3 = yI  
= 0.25, y2 = 0.0, y3 = -0.37, and E = 0.0. True signal 
eigenvalues in this case are XI = 129, h2 = 83, X3 = 61, 
and al! noise eigenvalues are equal to 1. Calculated MSE’s 
of e ( Xi ) and e ( Oi ) are compared to the prediction in (7) 
and (10) in Table 11. 

Calculated MSE’s are in agreement with the predictions 
in (7) and (lo), except for e ( 0,) where calculated MSE’s 
are almost twice what we would expect from theory. In 
all cases, Method A shows lower MSE than the other two 
methods. Because it is difficult to interpret which of these 

methods yields the overall best result (just based on aver- 
age bias, variance, and mean square error) over all situ- 
ations, we have produced plots of estimates o,f distripu- 
tion and density (histogram) functions of hi, e( X i  ), 
e(Oi 1, e[map ( f i i  ) I ,  i j k ,  and e ( B k ) ,  and we visualize 
the behavior of different procedures. In these plots, the 
scales of the abscissas are varied for plotting conve- 
nience. 
Situation I: Here we use one signal source with v l  = 

0.35, y1 = 0.2, and different SNR. Fig. 1 shows the 
CDF’s (estimates of the probability distribution func- 
tions) of e ( & ) ,  e ( & ) ,  and e(bl),  for SNR = 2 and E = 
0.0. Fig. 2 shows the same CDF’s for the case that SNR 
= 2 and E = 0.1. Fig. 3 shows the CDF’s of e(  A I ) ,  
e (  f i I ) ,  and e(O1), for SNR = 8 and E = 0.1. Fig. 4 shows 
the same CDF’s and histograms of ijl and for the case 
that SNR = 8 and E = 0.05. By careful study of these 
plots, we reach the following conclusion. For zero con- 
tamination fraction, E = 0.0, Method A and Method C 
are almost the same and always better than the robust 
Method B in estimating signal eigenvalues, eigenvectors, 
and frequencies; Method C is better than Method B in 
estimating signal eigenvalues and eigenvectors but not in 
signal frequencies. For low contamination fraction, E = 
0.05, Methods A, B, and C are almost equal in estipating 
signal eigenvalues and eigenvectors, however, XI has 
negative bias in Method B, but very slight positive in 
Methods A and C. In this case for the signal frequencies 
[ijl and or e (  & ) I ,  Method B works better than Meth- 
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F 
.4k 

.2 -42 . 0  I , ' .  

0 .  2 .  4. 6.  8. l B . X l B - '  
(C) 

Fig. 1 .  One source with v1 = 0.35, y1 = 0.2, E = 0.0, and SNR = 2 .  (a) 
CDFplotofe( A I ) ,  (b)CDFplotofe(D,),  (c )CDFplotofe(Bl ) .  Solid 
line __ (Method A), dash pattern ---- (Method B), dash pattern --- 
(Method C). 

ods A and C. For high contamination fraction, E = 0.1, 
Method B has a better overall performance and Method C 
is very close to Method A. 

Estimates of the eigenvalues cluster about the true val- 
ues and almost always have biases. Estimates of e ( ) 
and e(B1) show that, in general, errors in the estimates 
of signal eigenvectors and frequencies will increase if 
SNR decreases or E increases. 
Situation 2: In order to determine the behavior of es- 

timators in multisource situations under different condi- 
tions, here we use two equipowered signal sources with 
q l  = q2 = y1 = 0.25, SNR = 4, and different second 
source normalized spatial frequency, y2, and variable 
contamination fraction, E.  In this situation we simulate 
cases with dis!inct signal eigenvalues. Fig. 5 shows the 

e[map ( f i 2 ) ] ,  e(&),  and e ( O 2 )  for the case that y2 = 
0.05 and E = 0.0 (true noise eigenvalues are all equal to 
1 and source eigenvalues are X I  = 56.42 and X2 = 17.58). 
Fig. 6 shows CDF's of the same parameters and histo- 
grams of +jl, +j2, ql, and q2 for the case that y2 = 0.05 
and E = 0.1 (true uncontaminated source eigenvalues are 
the same as before and all contaminated eigenvalues are 

CDF's of e ( & ) ,  4 2 1 ,  e(fi11, e(fi2),  e[map ( f i I ) l ,  

.@.QQ0 -050 .I00 -150 -200 -250 .300 

(c) 
Fig. 2 .  One source with q I  = 0.35, yI  = 0.2, e = 0.1, and SNR = 2 .  (a) 

CDFplotofe( A, ) ,  (b)CDFplotofe(D,),  (c )CDFplotofe(Bl ) .  Solid 
line __ (Method A), dash pattern ---- (Method B), dash pattern --- 
(Method C). 

slightly bigger than uncontaminated ones by E U ;  or 0.9 in 
this case). Study of these plots shows that Method A, con- 
ventional, is superior in the case that E = 0, and Method 
C is better than B in this case. But in the situation where 
E = 0.1, Method B works better than A and C, however, 
the error in general is higher than the uncontaminated 
case. 

Estimates of the sources' eigenvalues again have biases, 
but this bias for Method B in the contaminated case, E = 
0.1, is comparatively small. Estimates of parameters cor- 
responding to signal eigenvectors show that errors in each 
individual eigenvector are much higher than the error of 
the map of the corresponding eigenvector onto the true 
signal space. This is an indication of mixing signal eigen- 
vectors, especially in the contaminated case, without any 
significant effect on the whole signal space. Estimates of 
parameters corresponding to signal frequencies show that 
increase of contamination somewhat degrades estimates 
of signal frequencies in Methods A and C, but improves 
the corresponding estimates in Method B. 

Variations of estimates in this situation with respect to 
the variation of SNR is exactly the same as Situation 1 
(plots are not presented). 
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1 . 0 ;  
r 
c 

I- 
-8; 

E 

.0:.4 -22 '-2 - 0  - 2  . 4  

. 4  -4  f 

.2 z 
-0000 .010 -020 .030 .040 - 0 %  

(b) 
1 . 0  

.8 1 
F I 

F I 1. I 

0. 2. 4. 6. 8. 10. 12. 14.X16-' 

(C) 
Fig. 3 .  One source with q I  = 0.35, yI  = 0.2,  E = 0.1, and SNR = 8 .  (a) 

CDFplotofe( X I ) ,  (b)CDFplotofe(D,),  (c )CDFplotofe(8 , ) .  Solid 
line __ (Method A), dash pattern ---- (Method B), dash pattern --- 
(Method C). 

Situation 3: In this situation we are trying to show that, 
in the two-source situation, when both signal eigenvalues 
are almost equal, various estimates of parameters will 
vary. In this situation we have SNR = 4. q l  = 0.1, q2 = 
0.4, y1 = 0.45, y2 = 0.1165, and E = 0.0 (true noise 
eigenvalues are all equal to 1 and source eigenvalues are 
A, = X2 = 37). Fig. 7 shows histograms of e(C1), e ( & ) ,  
e [map ( O1 ) I ,  e [map ( fi2)], G I ,  ij2, and T2. From these 
plots we conclude that as long as signal eigenvectors are 
significantly different from noise ones, the MUSIC algo- 
rithm will work efficiently, because although estimates of 
both signal eigenvectors are completely different from 
their true values, the error between the space that they 
span and the true signal space is negligible. This is in 
agreement with the theoretical findings in [4] and [7]. 
Variations of all parameter estimates with respect to 
changes in SNR and E are as in Situations 1 and 2 (plots 
are not presented). 

Situation 4: In this situation the resolving characteris- 
tic of the system is tested by simulating three close equi- 
powered source signals. In this simulation selected pa- 
rameters are E = 0, SNR = 4, q l  = q2 = 73 = y3 = 0.25, 
y I  = 0.0, and y2 = 0.125. Fig. 8 shows CDF's of e (  8, ) ,  

f 
O.OOOE .0050 . E 1 0 0  . E 1 5 8  . 0 2 0 0  . E 2 5 0  . E 3 0 0  

(b) 

1 .  0 

0 -  

c I\ 120. , \  
L ' ,  

I '  
100. I '  

I '  
80. 

60. 

40. 

E- 

- - 

Fig. 4. One source with q I  = 0.35, yI = 0.2, e = 0.05, and SNR = 8 .  
(a) CDF plot of e (  X I ) ,  (b) CDF plot of e ( D , ) ,  (c) CDF plot of e ( ? l ) ,  
(d) histogram of G I ,  (e) histogram of Solid line __ (Method A), 
dash Dattern ---- (Method B), dash pattern --- (Method C). 
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1. 

1.0 

- 8  

. 6  

- 4  

-2 

-.a -.ZE -.10 . E 0  .1E .ZE .30 

. '. 0000 .E050 .E100 .0150 .E200 .E250 .E300 

(g) 

.O-3 

250. 

200. 

150. 

100. 

50. 

0 .  

Fig. 5. Two sources with v I  = qA2 = yI  = 0.25, yz = 0.05, E = 0.0, and 
SNR = 4. (a) CDF plot of e (  A I ) ,  (b) CDF plot of e (  &), (c) CDF plot 
of e(D,) ,  (d) CDF plot of e (  &), (e) CDF plot of e[map ( f i l ) ] ,  ( f)  CDF 
plot of e[map (02)], (g) CDF plot of e (B1) ,  (h) CDF plot of e (&) ,  (i) 
histogram of ijl, (j) histogram of ij2. 



160 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 36, NO. 2, FEBRUARY 1988 

60. 80-e] 
40. 

1. 

Fig. 5 .  (Continued.) (k) Histogram of ql, ( I )  histogram of q2. Solid line 
__ (Method A), dash pattern ---- (Method B),  dash pattern --- 
(Method C). 

1 . 0  

. 8  

* '. 000 .050 .100 . IS0 .200 .2SQ -300 

( c )  ( f )  

Fig. 6.  Two sources with q I  = r2 = y, = 0.25, yz = 0.05, E = 0.1, and 
SNR = 4. (a) CDF plot of e (  AI), (b) CDF plot of e (  i2), ( c )  CDF plot 
of e (  b I ) ,  (d) CDF plot of e(b2), (e) CDF plot of e[map ( a l ) ] ,  ( f )  CDF 
plot of e[map ( a 2 ) ] .  
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'. 000 .010 -020 -030 -040 .OS0 .060 

. '. 000 .010 .020 .030 .040 -050 -060 

( 0  

Fig. 6.  (Continued.) (g) CDF plot of e ( B , ) ,  (h) CDF plot of e ( b , ) ,  (i) 
histogram of ;II,  (j) histogram of ;I2, (k) histogram of ql, (1) histogram 
of q,. Solid line - (Method A), dash pattern ---- (Method B), dash 
pattern --- (Method C). 

3 
OO.O . 4  . 8  1.2 1.6 2.0 

. Y  

. 0  . 4  - 8  1.2 1.6 2.0 

600. 

400. 

200. 

8 .  
0. 2. '4, 6. 8. 10. 12. 14.XlQ-' 

(b) (d) 

Fig. 7 .  Two sources with v 1  = 0.1, q2 = 0.4, yI  = 0.45, y2 = 0.1165, e 
= 0.0, and SNR = 4. (a) Histogram of e (  D ,  ), (b) histogram of e ( DZ ), 
(c) histogram of e [map ( ir, )], (d) histogram of e 1 map ( it,) I .  
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Fig. 7.  (Continued.) (e) Histogram of ijl, (f) histogram of i2, (g) histogram 
(h) histogram of q2. Solid line - (Method A), dash pattern of 

---- (Method B), dash pattern --- (Method C). 
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Fig. 8. Three sources with v I  = v2 = q3 = y3 = 0.25, y, = 0.0, y2 = 
0.125, E = 0.0, and SNR = 4. (a) CDF plots of e (  8 ,  ), (b) CDF plot of 
e ( & ) ,  (c )  CDF plot of e ( & ) ,  (d) CDF plot of e[map (O,)], (e) CDF 
plot of e[map (O,)], (f)  CDF plot of e[map ( & ) I .  
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Fig. 8. (Continued.) (8) Histogram of GI, (h) histogram of G2, (i) histogram 

of f i 3 ,  (j) histogram of q,, (k) histogram of f2, (1) histogram of q3. Solid 
line - (Method A), dash pattern ---- (Method B), dash pattern --- 
(Method C). 

el, e2, i j3,  +2, and +3, in the case that m = h = 3 (true 
noise eigenvalues are all equal to 1 and signal eigenvalues 
are 1.59243, 25, and 84.4076). Fig. 9 shows the same 
CDF’s and histograms, but in the case that m = 6 and h 
= 2 (true noise eigenvalues are all equal to 1 and signal 
eigenvalues are 21.6863, 60.3138, and 65.0001). Careful 
consideration of these plots shows that we do have mixing 
in signal eigenvectors if one of the signal eigenvalues be- 
comes very close to another signal eigenvalue or to the 
noise eigenvalues, however, those with large eigenvalues 
mix within the true signal space but the one with small 
eigenvalue, 1.59, will be mixed with noise eigenvectors, 
and henceforth, we are unable to locate all three sources 
correctly. As a matter of fact, if we use all three signal 
eigenvectors to estimate the null spectrum, we are able to 
detect three sources, but our estimates would be com- 
pletely off from the true values and hence unreliable. If 
we increase the number of sensors, and hence increase the 
resolution of the system, the estimate of the signal space 
improves substantially. However, estimates of the first 
two eigenvectors in the latter case are mixed up because 
of the closeness of the signal eigenvalues XI  and X2. 

Variations of all estimates with respect to changes in 
SNR and E are again the same as before (plots are not 
presented). 

IV. MAJOR EIGENVECTORS VARIATION WITH BEARING, 
NOISE FREE DATA 

The results in the previous section show that there is a 
large spread in the signal eigenvectors if their correspond- 
ing eigenvalues are bunched or if there is at least one sig- 
nal eigenvalue close to the noise-related eigenvalues. In 
the former case, the MUSIC algorithm will not be hurt 
because the space spanned by the estimated signal eigen- 
vectors is almost the same as the true signal space, but in 
the latter case one of the signal eigenvectors is mixing 
with noise-related eigenvectors which introduces a signif- 
icant error in the estimated signal space and hence bear- 
ing. 

Fig. 10 shows signal eigenvalues versus second source 
normalized spatial frequency, y2, where other parameters 
are kept constant. In this case, the number of sources is 
2, v l  = v2 = y1 = 0.25, and SNR = 8. From this plot 
we realize that it is impossible to locate two sources cor- 
rectly, in this condition, whenever 0.17 < y2 < 0.33. 

Fig. 1 1  shows signal eigenvalues versus third source 
normalized spatial frequency, y3, when other parameters 
are kept constant. In this case, the number of sources is 
3, q l  = q2 = y1 = 0.25, y2 = 0, and SNR = 8. This 
plot shows that the estimate of the signal space will be 
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Fig. 9. Three sources with q I  = v2 = q3 = y3 = 0.25, yI = 0.0, y2 = 

0 . 1 2 5 , ~ = 0 . 0 , a n d S N R = 4 , m = 6 , h = 2 . ( a ) C D F p l o t o f e ( O , ) ,  
(b) CDF plot of e ( & ) ,  (c) CDF plot of e(O,), (d) CDF plot of elmap 
( O , ) ] ,  (e) CDF plot of elmap (4)], ( f )  CDF plot ofelmap ( O , ) ] ,  (g) 
histogram of i j , ,  (h) histogram of i j z ,  (i) histogram of i j 3 ,  (j) histogram 
of ?I  7 
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Fig. 9. (Conrinued.) (k) histogram of q2, ( I )  histogram of q3. Solid line 
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Fig. 10. Signal eigenvalues X I  and X2 versus y2, where number of sources 
is 2,  q I  = q2 = y I  = 0.25, and SNR = 8. 

Fig. 1 1 .  Signal eigenvalues A , ,  X2 and X3 versus y3, where number of 
sources is 3, q ,  = q2 = q3 = y2 = 0.25, y I  = 0,  and SNR = 8. 

unreliable in this case whenever -0.06 < y3 < 0.31. 
This uncertainty will increase if the other two sources be- 
come closer to each other as in the case shown in Fig. 12. 
This effect will vanish if the source’s temporal frequen- 
cies are completely distinct (plots are not presented). 

V.  OVERALL CONCLUSIONS 
In summary, the following five conclusions are given. 
1) In estimation of eigenvalues, all methods under any 

of the test conditions have bias. For low contamination 
fraction, E < 0.05, the conventional method gives the 
better result, but for high contamination, E = 0.1, the 
robust rank method works better than the others, and the 
robust weighted M-estimation method does not work bet- 
ter than the conventional one. This situation is true for 
any SNR. 

2) Study of e (  O i )  shows that in estimation of signal- 
related eigenvectors, as long as their corresponding ei- 
genvalues are significantly different, the conventional 

O_..s - . 4  - . 3  -.2 - . I  . 0  . I  .2 .3 . 4  .5 

Fig. 12. Signal eigenvalues X I ,  h, and X, versus y3, where number of 
sources is 3, q ,  = q2 = q3 = 0.25, y, = -0.25, y2 = -0 .3 ,  and SNR 
= 8. 

method works very well in the low contamination, the ro- 
bust rank method works better in the high contamination 
situations, and the robust weighted M-estimation method 
is worse in the comparison with the conventional one in 
all conditions. In the case where signal-related eigenval- 
ues are bunched or close to noise-related eigenvalues, es- 
timates of signal-related eigenvectors are mixed and they 
will be completely different from their true values. 

3) By careful study of e [map ( Oi ) 1, we conclude that 
as long as signal-related eigenvalues are not close to noise- 
related eigenvalues, there is not any significant mixing 
between signal and noise eigenvectors, and the space 
spanned by the estimated signal eigenvectors is almost the 
same as the true signal space. In the case where one of 
the signal-related eignevalues is close to the noise eigen- 
values, there is a significant mixing between its corre- 
sponding eigenvector and noise-related eigenvectors, and 
that will introduce a substantial error in the estimation of 
bearing for some sources. The only remedy to this prob- 
lem is to increase the overall array signal-to-noise ratio 
by increasing the number of sensors and filtering noise as 
much as possible. In the case of high contamination frac- 
tion, E,  it is advisable to use the robust rank method. 
4) Effects of variation of SNR and contamination frac- 

tion can be summarized as follows. In general, errors in 
estimation of all parameters decrease as SNR increases 
and inversely if E,  the contamination fraction, increases 
error in estimates will increase rapidly. This conclusion 
holds in all test conditions. 

5) Source-bearing configuration will greatly effect the 
spread of the estimate of signal space, space spanned by 
the estimate of signal-related eigenvectors, and in some 
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situations, particularly common frequency, some source 
eigenvalues will be indistinguishable from those related 
to noise. This situation becomes worse as the number of 
sources increases. 

APPENDIX 
Robust Estimator of R Using Nonparametric Statistics 
(Method B) 

One basic approach in estimating a robust covariance 
matrix R is to estimate each off-diagonal element of R 
separately by a robust correlation coefficient r .  This ele- 
mentwise bivariate approach may be contrasted with 
“multivariate” ones, which manipulate all of the vari- 
ables simultaneously. Nonparametric estimators for the 
correlation coefficient are the Spearman, r,, and the Ken- 
dall, rk. The Spearman rank correlation coefficient [ 111, 
rs,,, is calculated using the ranks as the paired measure- 
ments on the two real variables Xi and X, [for a given set 
of paired data { Xik, Xlk; k = 1, 2, * , N } ,  it is obtained 
by ranking the X,’s among themselves, and also the Xr’s ,  
Le., Xi ( k )  and X , ( k )  are the ranks of Xi, and X,, in the 
pair (X ik ,  & ) ,  respectively] in the formula for the esti- 
mator of r.  Thus, 

N 

where each one of these four real covariances can be es- 
timated using the rank correlation method. Thus, a robust 
rank estimator for R,  in general, is formulated. 

Robust Estimator of R Using Weighted M-Estimation 
(Method C) [9] 

In this method, the Mahalanobis squared distance 

dj! = (Xi - X) H R - l ( X i  - X) 
is used to detect atypical multivariate vectors of obser- 
vations and calculate their corresponding weights. In this 
equation, X i  is a random vector and X is a measure of the 
mean. From the applied viewpoint, M-estimators can be 
considered as a simple modification of classical esti- 
mators; they give full weight to observations assumed to 
come from the main body of the data, but reduced weight 
or influence to observations from the tails of the contam- 
inating distribution. In practice, the influence of obser- 
vations with unduly large Mahalanobis distances is down- 
weighted. 

N N 

N X i ( k )  Xr(k)  - X i ( k )  & ( k )  
k =  1 k =  1 k =  1 

The above expression can be algebraically reduced to the 
simpler expression [ 1 11 

N 

6 d j! (k)  
k = l  . ‘ r,,, = 1 - 

N(N’  - 1) 

where d i ( k )  = X i ( k )  - X , ( k ) .  
The rank correlation coefficient of the above expression 

replaces the pij terms in the expression cov [ X i ,  X ,  3 = pij 
uiuL for the correlation matrix. In this case, median devia- 
tion estimate of standard deviation is used for ui in the 
expression of covariance matrix. Hence, the method 
would be robust to outliers and suitable for contaminated 
heavily tailed Gaussian noise. 

In the case of analytic data, all vectors are complex and 
it is necessary to estimate four real covariance matrix in 
order to formulate the complex covariance matrix. In this 
case, we assume that measurements on the two complex 
variables Xi + j &  and X,  + j Y ,  are available. Then using 
the following definition: 

The equations used here to define robust estimators of 
means and covariances are as follows: 

n 

i =  1 i =  1 

and 
n 

R = i = l  c W’(Xi - X ) ( X i  - X ) ”  / ( j l  w’ - 1) 

and 

di = { l ( X i  - X)”R-l  (Xi  - X ) 1 ) 1 / 2 .  
The solutions for X and R are iterative. 

The two-parameter form of w used here is 

we obtain 

cov [X i  + jy,, x, + j Y , ]  
= do if d > do 

d o = & + &  
= cov [ X i ,  X , ]  + cov [ u,, Y, ]  

where v is the dimension of X i .  For comprehensive dis- 
cussion on this method refer to [9]. + j { cov [ X i ,  Y , ]  - cov [ yi, X I ] }  
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