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Abstract

The hypothesis testing and interval estimation are considered for the common mean of several nor-
mal populations when the variances are unknown and possibly unequal. A new generalized pivotal is
proposed based on the best linear unbiased estimator of the common mean and the generalized infer-
ence. An exact confidence interval for the common mean is also derived. The generalized confidence
interval is illustrated with two numerical examples. The merits of the proposed method are numeri-
cally compared with those of the existing methods with respect to their expected lengths, coverage
probabilities and powers under different scenarios.
© 2004 Published by Elsevier B.V.
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1. Introduction

Estimating the common mean of several normal populations with unknown and possibly
unequal variances is one of the oldest and most interesting problems in statistical inference.
This problem arises, for example, when two or more independent agencies are involved
in measuring the effect of a new drug, while utilizing several measuring instruments to
measure the products produced by the same production process to estimate the average
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quality, or when different laboratories are employed to measure the amount of toxic waste
in ariver. If it is assumed that the samples collected by independent studies are from normal
populations with a common mean but possibly with different variances, then the problem
of interest may be to estimate or construct a confidence interval for the commoruméan
these populations. If the variances of these populations are assumed to be equal, then there
are optimal methods available to make inferenceg.ofdowever, when the variances are
unknown and unequal, it is clear that the distribution of any combined estimatansitf
involve nuisance parameters. Consequentially, the standard method has serious limitations
for the purpose of finding an exact confidence interval. Thus, intensive studies have been
made over the last four decades from both classical and decision theoretic points of view.
In the literatureMeier (1953) Maric and Grayhbill (1979)Pagurova and Gurskii (1979)
Sinha (1985)andEberhardt et al. (1989rovided approximate confidence intervals for
u, centered at the well-knowraybill and Deal (1959Fstimatorjigp of u, jigp =
S ki /s?/3i_yni/s?, wherex;, s? are sample means and unbiased sample variances
for theith population; =1, ..., I; Fairweather (1972andJordan and Krishnamoorthy
(1996) provided exact confidence intervals fobased on inverting weighted linear com-
binations of the Studenttsstatistics and the Fisher—Snedecétstatistics, respectively. In
general, there is no clear-cut winner between these two intervals. Fairweather’s intervals
are shorter than Jordan and Krishnamoorthy's when the variance ratios are small; other-
wise Jordan and Krishnamoorthy’s interval is narrower than Fairweather’s. Therefore, some
knowledge regarding the relationship between the population variances is needed to choose
between these two intervals estimates. However, it should be noted that the method consid-
ered byJordan and Krishnamoorthy (199@pes not always produce nonempty intervals.
Yu etal. (1999ronsidered several confidence intervals that are obtained based on pivots and
combinations of appropriately definpevalues. Based on simulation studies, they recom-
mended the methods Bisher (1932)Fairweather (1972andJordan and Krishnamoorthy
(1996)for different scenarios. The methods consideredrbyet al. (1999) however, do
not always produce nonempty confidence intervals except Fairweather’'s method (1972). A
recent work byKrishnamoorthy and Lu Yong (2003)rovided a procedure based on in-
verting weighted linear combinations of the generalized pivotal quantities, which is similar
in spirit to ours, whereas the pivotal quantity derived in this paper is based on the best
unbiased estimator @f. Both works are based on the concepts of generafizeslues and
generalized confidence interval, but with different pivotal quantities.
In this paper, we intend to provide a method that is readily applicable for both hypothesis
testing and interval estimation of the common mgaur approach is based on the concepts
of generalizegh-values and generalized confidence intervals. The notions of genenalized
values and generalized confidence intervals were proposésduiyand Weerahandi (1989)
andWeerahandi (1993)nd since then these ideas have been applied to solve many statistical
problems, for examplekjn and Lee (2003pave provided exact tests in simple growth curve
models and one-way ANOVA modelee and Lin (2004have constructed generalized
confidence intervals for the ratio of means of two normal populations, etc. The methods
are exact in the sense that the tests and the confidence intervals developed are based on
exact probability statements rather than on asymptotic approximations. This means that
the inferences based on the generalipadlues can be made with any desired accuracy,
provided that the assumed parametric model and/or other assumptions are correct. Based
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on the comparison studies, the expected lengths of the new confidence intervals, coverage
probabilities and power performances are compared with classical method and the methods
proposed byrairweather (1972)Jordan and Krishnamoorthy (199&)dKrishnamoorthy

and Lu Yong (2003)The numerical results in Sections 4 and 5 also show that our method
performs better than the existing methods.

This article is organized as follows. The theory of generalizedlues and generalized
confidence interval will be briefly introduced in Section 2. Our procedures for hypothesis
testing and constructing the generalized confidence intervals about the common anean
presented in Section 3. Three existing procedures including those propoBethgather
(1972) Jordan and Krishnamoorthy (199&)dKrishnamoorthy and Lu Yong (2008ill
be briefly addressed in Section 3. We apply these results to two sets of data, and compare our
procedure with the classical method and the other methods with respect to their expected
lengths in Section 4. Three simulation studies are presented in Section 5 to compare the
expected lengths, the coverage probabilities and power performances of these methods in
different combinations of sample sizes and variances.

2. Generalizedp-values and generalized confidence intervals

The concept of generalizgdvalue was first introduced bsui and Weerahandi (1989)
to deal with the statistical testing problem in which nuisance parameters are present and it
is difficult or impossible to obtain a nontrivial test with a fixed level of significance. The
setup is as follows. LeX be a random quantity having a density functipX | {), where
{=(0, n) is avector of unknown parametefss the parameter of interest, anpds a vector
of nuisance parameters. Suppose we are interested in testing

Ho:0<0p versus H: 0> 0, (2.1)

wherel is a specified value.

Letx denote the observed valueXytind consider the generalized test variaiX; x, {),
which depends on the observed valuand the parameteis and satisfies the following
requirements:

(i) Forfixedxand{= (0o, n), the distribution off' (X; X, {) is independent of the nuisance
parameters.
(i) tops= T (X; X, {) does not depend on unknown parameters. (2.2)
(i) For fixed x andn, P(T (X; X, {) >1) is either stochastically increasing or decreasing
in 6 for any givent.

Under the above conditions, 7f(X; X, {) is stochastically increasing # then the gener-
alizedp-values for testing the hypothesis in (2.1) can be defined as

p=sup P{T(X;x, 0, >t} = P{T(X; X, 0o, n) >1}, (2.3)
0< 0o

wherer = T (X; X, Og, 1).
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In the same setup, suppoBgX; X, 0, ) satisfies the following conditions:

(i) Thedistribution ofTy(X; X, 0, ) does not depend on any unknown parameters. (2.4)
(i) The observed value df1(X; X, 0, n) is free of the nuisance parameters.

Then, we sayl1 (X; X, 0, i) is a generalized pivotal quantity. 4f andr, are such that
P{n<Ti(X;x, 0, <2} =1—ua, (2.5)

then,{0 : 11 <T1(X; X, 0, n) <12} is a 10q1— )% generalized confidence interval fbr-or
example, if the value of1(X; X, 0, ) atX =xis 0, then{T1(X; «/2), T1(X; L — a/2)} is a
(1— o) confidence interval fof, whereT (X; ) stands for theth quantile ofT1(X; X, 0, ).

For further details and for several applications based on the generplizdde, we refer
to the book byWeerahandi (1995)

3. Inferences forpu

Suppose we havi(] > 2) independent sampléX;1, X;o, ..., X;,,) from normal pop-
ulations with a common meanand possibly unequal varianoel%. i=1,...,1.Fortheith
population, letX; = 1/n; Z;f":l X;; ands? =1/(n; — 1) Z;f"zl (Xij — X;)? be the sample
mean and sample variance, ther= (\/n_i()_(i — w/S;) follows the student distribution
with n; — 1 degrees of freedom arfd = (n; (X; — ,u)z/Sl.z) follows the Fisher—Snedecor’s
F distribution with 1 andi; — 1 degrees of freedom. In this section, we will first provide a
confidence interval gi based on a generalized pivotal quantity and then briefly review three
other exact confidence intervals pfby Fairweather (1972)ordan and Krishnamoorthy
(1996)andKrishnamoorthy and Lu Yong (2003)espectively.

3.1. Solutions based on the generalized pivotal quantity and generalized test variable

Suppose we have independent samples ffamermal populations with the common
meanu and possibly unequal variance;é i=1,..., 1. We are interested in developing a
confidence interval for the common meanbased on the sufficient statisti&s ands?. It
is noted thatX; andSl.2 are mutually independent with

n; O'~2

1

2 2
_ o n; —1)S: Vi
XI-NN</J’_I>’ Ul-:gza—lzwxiil’ l:ly,l (31)
i

It is known that if the variancesiz’s are known, the best linear unbiased estimatopf

I _
Zi:l”in/Giz
1 2’

with fi ~ N(u, /377y ni /o?) and thug/ 3o/ ni /a2(ji — ) = Z ~ N(0, 1).

= 3.2)
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Ifthe variance;l.2 fortheith populationis unknown, the generalized variable for estimating
2 can be expressed as

2 .
' —Ds?=—, i=1...1, (3.3)

L

i (n: — 1)S12 (n
Wheresi2 andv; denote the observed valuesxff andV;, respectively. Since the observed
value ofR; is o—l.z, the parameter of interest, then an exdct «) confidence interval foarl.2
can be obtained dR; (z/2), R; (1—a/2)}, wherer; (y) stands for theth quantile ofR; for
i=1,...,1.Theresultis the same as the traditional confidence intervaffoonstructed
by usmg Chl -square distribution.

Let X = (X1, ..., X;) andV = (V1, ..., V;) with the corresponding observed valies
andv. We then deflne a generalized pivotal quantity for estimating the common mean
through the best linear unbiased estimator @ (3.2) and (3.3) by

I nj/~
nix; i . L —
o > ’2’,,—; Zl=1;iz(/l 1)
L 4 I n V;
CTgw [Sn
1
1 n.U._
Dt o N 7

= T mU T

Zi:lnlv_,-’ N/Zilzlﬂ
Ui =

Z 1t Yo" v,

I niU
2,1“

wherex; andv; are the observed values &f and V;, respectively. BecausE satisfies

the two conditions in (2.4) and the observed valug, v; X, v) of T is u, T is indeed a
generalized pivotal quantity. Therefore, we can construct a generalized confidence interval
for the common meanbased off. Let 7' (X, v; y) stand for theth quantile off (X, V; X, v),

the exaci1 — «) confidence interval fop is

(3.4)

(T(X,V: 0/2), T(X,V; 1 — o/2)}. (3.5)

Note that the distribution of (X, V; X, V) does not depend on any unknown parameters
and the observed valuE(x, v; X, v) of T(X, V; X, V) is u which is free of the nuisance
parametersz?. Hence, we can utilize Monte Carlo method to find the confidence limits in
(3.5).

We next consider the problem of testing the following hypothesis concerning the common
mean,

Ho:u<pyg versus H:u> . (3.6)

Thep-value for testing this hypothesis can be deduced directly from the generalized pivotal
quantity defined by (3.4). The properties of a generalized pivotal quantity are basically the
same as the first two properties of a generalized test variable and usually one can be deduced
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from the other. The property (ii) of (2.2) can be achieved if we define a potential test variable
T» by settingT> = T — p. Then the observed value @ is 12, which is zero. From (3.4),
the generalized test variabile can be represented as

1 Ui = 1 Ui
T izt nvi Xi — 24 Dim1 nv—, 3.7
2= T - n (37)
21
Since each of the random variabl&s, ..., U; andZ are free of unknown parameters,

it is clear thatP{T> <tp; u} = P{T <} is an increasing function qi. This means that
T, satisfies property (iii) of (2.2) and thi is a generalized test variable. Becadsas
stochastically decreasing jn the generalize@-value for testing (3.6) is

p=P{T2 <t2| = pig}
= P{T < yp}. (3.8)

If u # g, the power function of tests based on the generalzealue is to apply (3.7)
by utilizing

I

> ni/of(i—jp) ~ N

i=1

1

> ni/of = o). 1| (3.9)

i=1

7 =

Itis noted that th@-values and the power of the test can be obtained in a similar manner.
For example, for testing the null hypothesis of the form

Ho:pu=ug versus H:pu# ug, (3.10)
thep-value is
p=2%min{P{T < g}, P(T > ig}}, (3.11)

whereT is defined in (3.4) and {ican be rejected whep < .
3.2. Solutions based on combined tests

We will briefly introduce three exact combined tests in the literature which will be utilized
to compare with our procedure in numerical examples.

3.2.1. Solutions based on linear combinations of t distributions

Fairweather (1972uggested using;, a weighted linear combination of the Student’s
statistics, with weights inversely proportional to varianceg¥arto construct confidence
interval for the common meam where

! -1 _ _
W, = Z wit; = [Var(;)] _ (n; 3)/(”1 1 (312)
i=1

Sy Va1t Y i =3 /i — 1)

Itis noted that mim; > 3 to ensure that Var,) existsforalli =1, ...,/ andZi’:lw,- =1.
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If by/> denotes the cut-off point of the distribution B, such that for given: € (0, 1),
1—a=P(W|<by2), (3.13)

then the 1001l — )% confidence interval for is obtained as

S mwixi/si byy2
[ Y miwi/si - Y /Awi/si|
S ik /si n byy2 ] (3.14)
Si/miwifsi Yy /miwifsi | '

Determination of the cut-off poirit, - is not easy in practice, and approximation may be
necessary. Under the additional requirement of mis 5, Fairweather (1972hoted that
by/2 can be approximated hy;_,/2(v), wherer;_,/2(v) is the(1 — a/2)th quantile of the
student distribution withv degrees of freedom and

1
Y w?/(ni —5) \/ > 1(”1 - 3)/(n; -1

3.2.2. Solutions based on linear combinations of F distributions

Jordan and Krishnamoorthy (1998)ggested usin®;, a weighted linear combination
of the F; statistics, with weights inversely proportional to variance(¥ay to construct the
exact interval for the common meanwhere

v=4+

(3.15)

[(n; — 3%(n; — 5)1/[(n; — 1?(n; — 2)]

Wi = wiF, wi= ) (3.16)
; l Y[ — 32 — 5)1/[(ni — DP(n; — 2)]
Itis noted that mim; > 5to ensure that VaF;) exists foralli =1, ..., andZi’=l wi=1.

If a, denotes the cut-off point of the distribution 8%, such that for given € (0, 1),
1—o=P(W<ay), (3.17)

then the 1001 — )% confidence interval for is obtained as

1 1
|:Z pixi — 4, Z pixi + A:| , (3.18)
i=1 i=1

where

2
win;/s;

pi= 1 2’
2jmawin;/s;

2

A= m Z p,x — (Z pﬂC,) . (319)
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Jordan and Krishnamoorthy (1998)ggested to approximatg by dFy_, (1, u), where
F1_,(1,u) is the(1 — «)th quantile of theF-distribution withl andu degrees of freedom
and

41M2—2(1+2)M2 P
YT M, — 7 d= M1 (3.20)
2— (I +2)Mj u
with
My =EWp) = ~ i (i — 1) -
o v ; ni—3 :
and
1 *2 2 * k(o o
wi (i — 1) w; W (n; 1)(’1] 1)
Mp=EW)2=3y — ' 7 12 229
2 f ; (ni —3)(n; —5) g (i —3)(n; — 3) (3.22)

As noted byJordan and Krishnamoorthy (1996) in (3.19) could be undefined, so the
interval of (3.18) might be empty.

3.2.3. Solutions based on linear combinations of generalized pivot variables
Krishnamoorthy and Lu Yong (2008uggested using/r, a weighted linear combination

ofthe generalized pivot variabl@s with weights inversely proportional to variance /&)

to construct the exact interval for the common maan

1 _
Wr= Z wiT; = w; |:)Ei —\/n_l(xl W [ i ]

i=1 i=1 Oi niUi
Zl n;U; X — Vi 1 n U - 7 1 niUi
i=1"y; i n Ui Zi:l T Zi: o
- - , (3.23)
s b s il
j=1 v; j=1 v

whereZ ~ N(0, 1), U; = ((n; — 1)S;/0?) = Vi/a? ~ ;{5[__1, v; andx; are the observed

values ofV; andX;, respectively. The weight? = ni/af/zjzl n,/a? is taken atV; = v;
and the observed value 8f; is .
Comparing (3.4) with (3.23), we note that the expected length of (3.4) is shorter than

that of (3.23) for the reason th#[le (n:U; /v;) is less thany ! /(n;U; /v;) and both
expected lengths are identical only when one population is involved. Moreovér,isf

replaced by its expectation — 1, then the confidence intervals of the common mgan
constructed by (3.4) and (3.23) become

(3.24)
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and

_ I

Z{_lnixi/siz n; Z 2i=aniXi/s; x,/s

= —Z1 40 . + Z1 42 . (3.25)
Z,‘I:l"i/s,-z ; S Z —17i/s] Y inifs? Z

respectively, where&;_,, is the(1 — o/2)th quantile of the standard normal distribution.
From (3.24) and (3.25), we notice that both intervals are centered at the well-known Graybill
and Deal estimator with the confidence length of (3.24) shorter than that of (3.25).

4. lllustrative examples

Two examples are given to illustrate our proposed method for setting limits on the com-
mon mean of several normal populations. The first example with mild heteroscedastic-
ity is excerpted fromMeier (1953)in which four experiments are used to estimate the
mean percentage of albumin in the plasma protein of normal human subjects. The second
example with serious heteroscedasticity can be found in the recent papEishyardt
et al. (1989) Skinner (1991) Jordan and Krishnamoorthy (199&hd Krishnamoorthy
and Lu Yong (2003)among others. For demonstration purposes, we will provide the
results ofFairweather (1972)Jordan and Krishnamoorthy (199@&rishnamoorthy and
Lu Yong (2003)and the classical procedure with assumption of identical variance to make
a comparison.

4.1. Example 1

The datareported byleier (1953)and analyzed idordan and Krishnamoorthy (19%6E
about the percentage of albumin in plasma protein in human subjects. For ease of reference,
the data based on four independent experiments are reprodugatienl It is assumed
that the samples are from normal populations. Five confidence intervals, giviablie
2, include our proposed intervdfairweather (1972)Jordan and Krishnamoorthy (1996)
Krishnamoorthy and Lu Yong (2003and the classical interval which is based on the pooled
estimate of identical variance and the Studengstistic.

The results inTable 2suggests that when population variances are not significantly
different, four intervals exceptordan and Krishnamoorthy (1998)e comparable with
each other. The interval based on new generalized pivotal quantity turns out to be optimal
in the sense of having the shortest observed width. It may also be noted that the interval

Table 1
Percentage of albumin in plasma protein

Experiment n; Mean Variance
A 12 62.3 12.986
B 15 60.3 7.840
Cc 7 59.5 33.433
D 16 61.5 18.513
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Table 2
Interval estimates fon

Methods Interval Width
Classical (59.92, 62.19) 2.27
Fairweather (1972) (59.90, 62.19) 2.29
Jordan and Krishnamoorthy (1996) (59.56, 62.44) 2.88
Krishnamoorthy and Lu Yong (2003) (59.79, 62.23) 2.44
Generalized interval in (3.5) (59.92, 62.10) 2.18
Table 3

Selenium in non-fat milk powder

Methods n; Mean Variance
Atomic absorption spectrometry 8 105.00 85.711
Neutron activation:

(1) Instrumental 12 109.75 20.748
(2) Radiochemical 14 109.50 2.729
Isotope dilution mass spectrometry 8 113.25 33.640

Table 4

Interval estimates fon

Methods Interval Width
Classical (107.75, 111.11) 3.36
Fairweather (1972) (108.53, 110.77) 2.24
Jordan and Krishnamoorthy (1996) (108.45, 110.67) 2.22
Krishnamoorthy and Lu Yong (2003) (108.67, 110.53) 1.86
Generalized interval in (3.5) (108.75, 110.51) 1.76

derived by classical method performs quite well when the population variances are only

slightly different.

4.2. Example 2

The data for the second example are taken fedyarhardt et al. (198%yho reported the
data on selenium in non-fat milk power by combining the results of four independent mea-
surement methods. The dataliable 3show that serious non-homogeneity is present. For
demonstration purposes, we will also compare our interval with the intervidaibyeather
(1972) Jordan and Krishnamoorthy (199&rishnamoorthy and Lu Yong (2003nd the
classical method. The confidence intervals and confidence widths are giVablin4

For this example, intervals based Bairweather (1972)Jordan and Krishnamoorthy
(1996) are similar to each other and both intervals are wider than those of ours and
Krishnamoorthy and Lu Yong (2003The interval based on our new generalized pivotal



Table 5

Expected lengths of 95% confidence intervals for the five methods

2

2

01 a5 n1 =10, np =10 n1 =15 npy=15
@ ) ®3) (4) (5) 1 ) ®) 4) (5)
5 5 2.067 2.125 2.533 2.266 2.038 1.660 1.682 1.967 1.748
5 10 2.540 2.493 2.935 2.626 2.385 2.026 1.968 2.287 2.027
5 15 2.915 2.708 3.135 2.782 2.539 2.333 2.132 2.424 2.161
5 20 3.264 2.846 3.235 2.880 2.657 2.605 2.249 2.495 2.214
5 30 3.844 3.031 3.359 2.988 2.790 3.084 2.397 2.596 2.293
5 40 4.360 3.175 3.433 3.024 2.828 3.498 2.496 2.659 2.316
5 50 4.819 3.246 3.468 3.046 2.888 3.874 2.563 2.693 2.361
a2 a3 n1 =10, np =30 n1 =30, np =10
@ ) 3) 4) (5) 1) ) ®) 4 (5)
5 5 1.422 1.482 1.612 1.498 1.418 1.420 1.481 1.610 1.499
5 10 1.889 1.838 2.106 1.916 1.788 1.580 1.641 1.683 1.581
5 15 2.257 2.061 2.416 2.159 2.011 1.722 1.726 1.713 1.620
5 20 2574 2.224 2.634 2.317 2.165 1.854 1.781 1.729 1.629
5 30 3.122 2.446 2.928 2.532 2.357 2.090 1.850 1.741 1.644
5 40 3.578 2.614 3.124 2.639 2.468 2.306 1.898 1.747 1.643
5 50 3.983 2.728 3.253 2.732 2.582 2.490 1.926 1.757 1.674

8.9
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Table 6 -

Comparison of 95% coverage probabilities among the five methods >

(&

QD

2 2 Q

=10, npy =10 =15 np=15 o

o1 a5 ny np ny np o

(1) (2 (3) (4) (5) (1) (2 3) (4) (5) g

5 5 0.951 0.948 0.964 0.959 0.946 0.950 0.947 0.958 0.956 0.949§'

5 10 0.951 0.949 0.961 0.959 0.949 0.946 0.949 0.962 0.949 0.9465

5 15 0.947 0.951 0.965 0.951 0.946 0.945 0.947 0.963 0.955 0.949?3i

5 20 0.942 0.952 0.963 0.951 0.947 0.945 0.950 0.959 0.955 0.949,

5 30 0.939 0.953 0.966 0.955 0.949 0.945 0.951 0.962 0.957 O.952§

5 40 0.945 0.950 0.962 0.957 0.948 0.945 0.953 0.966 0.947 0.9452,

5 50 0.942 0.949 0.964 0.952 0.947 0.942 0.951 0.963 0.957 0.95@

T

? 3 n1 =10, ny=30 n1 =30, np=10 5

2

«

(1) 2 (3) 4) (5) (1) (2 3) (4) (5) o

o

5 5 0.949 0.951 0.958 0.946 0.945 0.948 0.949 0.957 0.944 0.944%

5 10 0.948 0.947 0.958 0.953 0.952 0.950 0.952 0.956 0.951 0.9452

5 15 0.949 0.950 0.957 0.954 0.949 0.946 0.951 0.958 0.947 0.9463
5 20 0.949 0.949 0.959 0.951 0.944 0.941 0.950 0.957 0.952
5 30 0.948 0.951 0.961 0.957 0.950 0.934 0.948 0.956 0.951
5 40 0.951 0.951 0.961 0.953 0.945 0.940 0.955 0.961 0.953
5 50 0.949 0.953 0.961 0.953 0.946 0.934 0.947 0.958 0.951

loNoNoNe]
O ©O© ©O© ©
[N NS |
6.5285-895 (R00¢SF¢T



Table 7
Powers of the tests for testinggH 1t =0 versus H : u # 0 (I = 2 andx = 0.05)
05/0% Tests n1=9, np=9 ny =15, np =10
Iz M
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
1 1) 0.13 0.36 0.67 0.89 0.98 0.16 0.49 0.82 0.97 1.00
) 0.13 0.34 0.64 0.87 0.97 0.16 0.47 0.80 0.96 1.00
3) 0.08 0.23 0.48 0.74 0.92 0.11 0.35 0.68 0.91 0.99
4) 0.11 0.29 0.59 0.83 0.96 0.13 0.42 0.77 0.95 0.99
(5) 0.14 0.37 0.67 0.89 0.98 0.17 0.48 0.82 0.97 1.00
4 1) 0.08 0.18 0.34 0.53 0.71 0.11 0.26 0.50 0.73 0.90
) 0.09 0.21 0.41 0.64 0.82 0.12 0.32 0.59 0.83 0.95
3) 0.07 0.15 0.31 0.52 0.72 0.09 0.27 0.55 0.81 0.95
4 0.09 0.20 0.41 0.62 0.83 0.12 0.31 0.63 0.86 0.96
(5) 0.11 0.25 0.49 0.69 0.88 0.14 0.34 0.68 0.88 0.97
9 1) 0.08 0.13 0.20 0.31 0.44 0.08 0.17 0.31 0.48 0.66
) 0.08 0.17 0.34 0.54 0.72 0.10 0.27 0.52 0.76 0.91
3) 0.06 0.13 0.27 0.46 0.66 0.08 0.25 0.52 0.78 0.93
4) 0.08 0.18 0.36 0.60 0.75 0.12 0.32 0.59 0.83 0.95
(5) 0.09 0.22 0.41 0.65 0.80 0.13 0.34 0.62 0.85 0.96
16 1) 0.07 0.10 0.15 0.21 0.30 0.09 0.13 0.22 0.33 0.46
2 0.08 0.16 0.30 0.49 0.66 0.10 0.24 0.47 0.71 0.88
3) 0.05 0.13 0.26 0.44 0.64 0.08 0.24 0.51 0.77 0.92
4) 0.08 0.19 0.36 0.57 0.75 0.12 0.29 0.57 0.82 0.95
(5) 0.10 0.22 0.39 0.60 0.78 0.13 0.34 0.62 0.85 0.96
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quantity turns out to be the best in the sense of having the shortest observed width. Besides,
the four methods allowing heterogeneity are much better than the classical method, which
is calculated basing on the identical variance assumption. Thus the procedures based on an
identical variance assumption would be dangerous to use when the population variances
are seriously non-homogeneous.

5. Simulation studies

Some simulation studies to compare the expected lengths, 95% coverage probabilities
and powers of the tests of five procedures for the common méare been carried out for
I =2, (n1,n2) = (10, 10), (15, 15), (30, 10) and (10, 30), respectively, for comparing the
expected lengths and coverage probabilities @ndn2) = (9, 9), (n1, n2) = (15, 10) for
various values of the ratio 66 /42, with 10,000 replicates for each combination. The results
appear infables 56 and7 . The simulated studies presented in these tables correspond to

(1) Classical method.

(2) Fairweather (1972)

(3) Jordan and Krishnamoorthy (1996)

(4) Krishnamoorthy and Lu Yong (2003)

(5) The generalized interval in (3.5).

From these tables, we find that the classical method is quite robust when the population
variances are identical or with slight non-homogeneity, but, as expected, its performance
grows worse as the degree of heteroscedasticity increases. For overall comparisons, the four
methods allowing heteroscedasticity are much better than the method obtained by classical
approach. However, it is clear from these tables that our proposed method, derived through
the best linear unbiased estimatongthe concept of generalizgdvalue and generalized
confidence interval, is better than any of the existing methods in the senses of having the
shortest expected lengths and highest powers.
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