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Abstract

The hypothesis testing and interval estimation are considered for the commonmean of several nor-
mal populations when the variances are unknown and possibly unequal. A new generalized pivotal is
proposed based on the best linear unbiased estimator of the common mean and the generalized infer-
ence. An exact confidence interval for the common mean is also derived. The generalized confidence
interval is illustrated with two numerical examples. The merits of the proposed method are numeri-
cally compared with those of the existing methods with respect to their expected lengths, coverage
probabilities and powers under different scenarios.
© 2004 Published by Elsevier B.V.
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1. Introduction

Estimating the common mean of several normal populations with unknown and possibly
unequal variances is one of the oldest and most interesting problems in statistical inference.
This problem arises, for example, when two or more independent agencies are involved
in measuring the effect of a new drug, while utilizing several measuring instruments to
measure the products produced by the same production process to estimate the average
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quality, or when different laboratories are employed to measure the amount of toxic waste
in a river. If it is assumed that the samples collected by independent studies are from normal
populations with a common mean but possibly with different variances, then the problem
of interest may be to estimate or construct a confidence interval for the common mean� of
these populations. If the variances of these populations are assumed to be equal, then there
are optimal methods available to make inferences on�. However, when the variances are
unknown and unequal, it is clear that the distribution of any combined estimators of� will
involve nuisance parameters. Consequentially, the standard method has serious limitations
for the purpose of finding an exact confidence interval. Thus, intensive studies have been
made over the last four decades from both classical and decision theoretic points of view.
In the literature,Meier (1953), Maric and Graybill (1979), Pagurova and Gurskii (1979),

Sinha (1985), andEberhardt et al. (1989)provided approximate confidence intervals for
�, centered at the well-knownGraybill and Deal (1959)estimator�̂GD of �, �̂GD =∑I

i=1 nix̄i/s
2
i /
∑I

i=1 ni/s
2
i , wherex̄i , s

2
i are sample means and unbiased sample variances

for the ith population,i = 1, . . . , I ; Fairweather (1972)andJordan and Krishnamoorthy
(1996)provided exact confidence intervals for� based on inverting weighted linear com-
binations of the Student’st statistics and the Fisher–Snedecor’sF statistics, respectively. In
general, there is no clear-cut winner between these two intervals. Fairweather’s intervals
are shorter than Jordan and Krishnamoorthy’s when the variance ratios are small; other-
wise Jordan and Krishnamoorthy’s interval is narrower than Fairweather’s. Therefore, some
knowledge regarding the relationship between the population variances is needed to choose
between these two intervals estimates. However, it should be noted that the method consid-
ered byJordan and Krishnamoorthy (1996)does not always produce nonempty intervals.
Yu et al. (1999)considered several confidence intervals that are obtained based on pivots and
combinations of appropriately definedp-values. Based on simulation studies, they recom-
mended the methods byFisher (1932), Fairweather (1972)andJordan and Krishnamoorthy
(1996)for different scenarios. The methods considered byYu et al. (1999), however, do
not always produce nonempty confidence intervals except Fairweather’s method (1972). A
recent work byKrishnamoorthy and Lu Yong (2003)provided a procedure based on in-
verting weighted linear combinations of the generalized pivotal quantities, which is similar
in spirit to ours, whereas the pivotal quantity derived in this paper is based on the best
unbiased estimator of�. Both works are based on the concepts of generalizedp-values and
generalized confidence interval, but with different pivotal quantities.
In this paper, we intend to provide a method that is readily applicable for both hypothesis

testingand interval estimationof the commonmean�.Our approach is basedon theconcepts
of generalizedp-values and generalized confidence intervals. The notions of generalizedp-
values and generalized confidence intervals were proposed byTsui andWeerahandi (1989)
andWeerahandi (1993)and since then these ideas havebeenapplied to solvemany statistical
problems, for examples,Lin andLee (2003)haveprovidedexact tests in simplegrowth curve
models and one-way ANOVA model,Lee and Lin (2004)have constructed generalized
confidence intervals for the ratio of means of two normal populations, etc. The methods
are exact in the sense that the tests and the confidence intervals developed are based on
exact probability statements rather than on asymptotic approximations. This means that
the inferences based on the generalizedp-values can be made with any desired accuracy,
provided that the assumed parametric model and/or other assumptions are correct. Based
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on the comparison studies, the expected lengths of the new confidence intervals, coverage
probabilities and power performances are compared with classical method and the methods
proposed byFairweather (1972), Jordan and Krishnamoorthy (1996)andKrishnamoorthy
and Lu Yong (2003). The numerical results in Sections 4 and 5 also show that our method
performs better than the existing methods.
This article is organized as follows. The theory of generalizedp-values and generalized

confidence interval will be briefly introduced in Section 2. Our procedures for hypothesis
testing and constructing the generalized confidence intervals about the commonmean� are
presented in Section 3. Three existing procedures including those proposed byFairweather
(1972), Jordan and Krishnamoorthy (1996)andKrishnamoorthy and Lu Yong (2003)will
be briefly addressed in Section 3.We apply these results to two sets of data, and compare our
procedure with the classical method and the other methods with respect to their expected
lengths in Section 4. Three simulation studies are presented in Section 5 to compare the
expected lengths, the coverage probabilities and power performances of these methods in
different combinations of sample sizes and variances.

2. Generalizedp-values and generalized confidence intervals

The concept of generalizedp-value was first introduced byTsui and Weerahandi (1989)
to deal with the statistical testing problem in which nuisance parameters are present and it
is difficult or impossible to obtain a nontrivial test with a fixed level of significance. The
setup is as follows. LetX be a random quantity having a density functionf (X | �), where
�= (�, �) is a vector of unknown parameters,� is the parameter of interest, and� is a vector
of nuisance parameters. Suppose we are interested in testing

H0 : ���0 versus H1 : �> �0, (2.1)

where�0 is a specified value.
Letx denote the observed value ofX and consider the generalized test variableT (X; x, �),

which depends on the observed valuex and the parameters�, and satisfies the following
requirements:

(i) For fixedx and�=(�0, �), the distribution ofT (X; x, �) is independent of the nuisance
parameters�.

(ii) tobs=T (x; x, �) does not depend on unknown parameters. (2.2)
(iii) For fixed x and�, P(T (X; x, �)� t) is either stochastically increasing or decreasing

in � for any givent.

Under the above conditions, ifT (X; x, �) is stochastically increasing in�, then the gener-
alizedp-values for testing the hypothesis in (2.1) can be defined as

p = sup
���0

P {T (X; x, �, �)� t} = P {T (X; x, �0, �)� t}, (2.3)

wheret = T (x; x, �0, �).
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In the same setup, supposeT1(X; x, �, �) satisfies the following conditions:

(i) The distribution ofT1(X; x, �, �) does not depend on any unknown parameters. (2.4)
(ii) The observed value ofT1(X; x, �, �) is free of the nuisance parameters.

Then, we sayT1(X; x, �, �) is a generalized pivotal quantity. Ift1 andt2 are such that

P {t1�T1(X; x, �, �)� t2} = 1− �, (2.5)

then,{� : t1�T1(x; x, �, �)� t2} is a 100(1−�)%generalized confidence interval for�. For
example, if the value ofT1(X; x, �, �) atX = x is �, then{T1(x; �/2), T1(x;1− �/2)} is a
(1−�) confidence interval for�, whereT1(x; �) stands for the�th quantile ofT1(X; x, �, �).

For further details and for several applications based on the generalizedp-value, we refer
to the book byWeerahandi (1995).

3. Inferences for�

Suppose we haveI (I�2) independent samples(Xi1, Xi2, . . . , Xini ) from normal pop-
ulations with a commonmean� and possibly unequal variances�2

i , i=1, . . . , I . For theith
population, letX̄i = 1/ni

∑ni
j=1Xij andS2i = 1/(ni − 1)

∑ni
j=1 (Xij − X̄i)

2 be the sample

mean and sample variance, thenti = (
√
ni(X̄i − �)/Si) follows the studentt distribution

with ni − 1 degrees of freedom andFi = (ni(X̄i − �)2/S2i ) follows the Fisher–Snedecor’s
F distribution with 1 andni − 1 degrees of freedom. In this section, we will first provide a
confidence interval of� based on a generalized pivotal quantity and then briefly review three
other exact confidence intervals of� by Fairweather (1972), Jordan and Krishnamoorthy
(1996)andKrishnamoorthy and Lu Yong (2003), respectively.

3.1. Solutions based on the generalized pivotal quantity and generalized test variable

Suppose we have independent samples fromI normal populations with the common
mean� and possibly unequal variances�2

i , i = 1, . . . , I . We are interested in developing a
confidence interval for the common mean,�, based on the sufficient statisticsX̄i andS2i . It
is noted thatX̄i andS2i are mutually independent with

X̄i ∼ N

(
�,

�2
i

ni

)
, Ui = (ni − 1)S2i

�2
i

= Vi

�2
i

∼ �2ni−1, i = 1, . . . , I. (3.1)

It is known that if the variances�2
i ’s are known, the best linear unbiased estimator for� is

�̂ =
∑I

i=1 niX̄i/�2
i∑I

i=1 ni/�
2
i

, (3.2)

with �̂ ∼ N(�,1/
∑I

i=1 ni/�
2
i ) and thus

√∑I
i=1 ni/�

2
i (�̂ − �) = Z ∼ N(0,1).
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If thevariance�2
i for theith population isunknown, thegeneralizedvariable for estimating

�2
i can be expressed as

Ri = �2
i

(ni − 1)S2i
(ni − 1)s2i = vi

Ui

, i = 1, . . . , I, (3.3)

wheres2i andvi denote the observed values ofS2i andVi , respectively. Since the observed
value ofRi is �2

i , the parameter of interest, then an exact(1− �) confidence interval for�2
i

can be obtained as{Ri(�/2), Ri(1−�/2)}, whereRi(�) stands for the�th quantile ofRi for
i =1, . . . , I . The result is the same as the traditional confidence interval for�2

i constructed
by using chi-square distribution.
Let X̄ = (X̄1, . . . , X̄I ) andV = (V1, . . . , VI ) with the corresponding observed valuesx̄

andv. We then define a generalized pivotal quantity for estimating the common mean�
through the best linear unbiased estimator of� in (3.2) and (3.3) by

T (X̄,V; x̄, v)=
∑I

i=1
ni x̄i
�2i

Vi
vi∑I

i=1
ni
�2i

Vi
vi

−

√∑I
i=1

ni
�2i
(�̂ − �)√∑I

i=1
ni
�2i

Vi
vi

=
∑I

i=1
niUi

vi
x̄i∑I

i=1
niUi

vi

− Z√∑I
i=1

niUi

vi

=
∑I

i=1
niUi

vi
x̄i − Z

√∑I
i=1

niUi

vi∑I
j=1

njUj

vj

, (3.4)

wherex̄i andvi are the observed values ofX̄i andVi , respectively. BecauseT satisfies
the two conditions in (2.4) and the observed valueT (x̄, v; x̄, v) of T is �, T is indeed a
generalized pivotal quantity. Therefore, we can construct a generalized confidence interval
for the commonmean� based onT. LetT (x̄, v; �) stand for the�th quantile ofT (X̄,V; x̄, v),
the exact(1− �) confidence interval for� is

{T (x̄, v; �/2), T (x̄, v;1− �/2)}. (3.5)

Note that the distribution ofT (X̄,V; x̄, v) does not depend on any unknown parameters
and the observed valueT (x̄, v; x̄, v) of T (X̄,V; x̄, v) is � which is free of the nuisance
parameters,�2

i . Hence, we can utilize Monte Carlo method to find the confidence limits in
(3.5).
Wenext consider the problemof testing the following hypothesis concerning the common

mean�,

H0 : ���0 versus H1 : �>�0. (3.6)

Thep-value for testing this hypothesis can be deduced directly from the generalized pivotal
quantity defined by (3.4). The properties of a generalized pivotal quantity are basically the
same as the first two properties of a generalized test variable and usually one can be deduced
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from the other. The property (ii) of (2.2) can be achieved if we define a potential test variable
T2 by settingT2 = T − �. Then the observed value ofT2 is t2, which is zero. From (3.4),
the generalized test variableT2 can be represented as

T2 =
∑I

i=1
niUi

vi
x̄i − Z

√∑I
i=1

niUi

vi∑I
j=1

njUj

vj

− �. (3.7)

Since each of the random variablesU1, . . . , UI andZ are free of unknown parameters,
it is clear thatP {T2� t2;�} = P {T ��} is an increasing function of�. This means that
T2 satisfies property (iii) of (2.2) and thusT2 is a generalized test variable. BecauseT2 is
stochastically decreasing in�, the generalizedp-value for testing (3.6) is

p=P {T2< t2 |� = �0}
= P {T <�0}. (3.8)

If � = �0, the power function of tests based on the generalizedp-value is to apply (3.7)
by utilizing

Z =
√√√√ I∑

i=1

ni/�2
i (�̂ − �0) ∼ N



√√√√ I∑

i=1

ni/�2
i (� − �0),1


 . (3.9)

It is noted that thep-values and the power of the test can be obtained in a similar manner.
For example, for testing the null hypothesis of the form

H0 : � = �0 versus H1 : � = �0, (3.10)

thep-value is

p = 2 ∗ min{P {T <�0}, P {T >�0}}, (3.11)

whereT is defined in (3.4) and H0 can be rejected whenp< �.

3.2. Solutions based on combined tests

Wewill briefly introduce three exact combined tests in the literaturewhichwill be utilized
to compare with our procedure in numerical examples.

3.2.1. Solutions based on linear combinations of t distributions
Fairweather (1972)suggested usingWt , a weighted linear combination of the Student’sti

statistics, with weights inversely proportional to variances Var(ti), to construct confidence
interval for the common mean�, where

Wt =
I∑

i=1

witi, wi = [Var(ti)]−1∑I
i=1[Var(ti)]−1

= (ni − 3)/(ni − 1)∑I
i=1 (ni − 3)/(ni − 1)

. (3.12)

It is noted that minni >3 to ensure that Var(ti) exists for alli =1, . . . , I and
∑I

i=1wi =1.
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If b�/2 denotes the cut-off point of the distribution ofWt , such that for given� ∈ (0,1),

1− � = P(|Wt |�b�/2), (3.13)

then the 100(1− �)% confidence interval for� is obtained as[∑I
i=1

√
niwix̄i/si∑I

i=1
√
niwi/si

− b�/2∑I
i=1

√
niwi/si

,

∑I
i=1

√
niwix̄i/si∑I

i=1
√
niwi/si

+ b�/2∑I
i=1

√
niwi/si

]
. (3.14)

Determination of the cut-off pointb�/2 is not easy in practice, and approximation may be
necessary. Under the additional requirement of minni >5, Fairweather (1972)noted that
b�/2 can be approximated byct1−�/2(v), wheret1−�/2(v) is the(1− �/2)th quantile of the
studentt distribution withv degrees of freedom and

v = 4+ 1∑I
i=1w

2
i /(ni − 5)

, c =
√

v − 2

v
∑I

i=1(ni − 3)/(ni − 1)
. (3.15)

3.2.2. Solutions based on linear combinations of F distributions
Jordan and Krishnamoorthy (1996)suggested usingWf , a weighted linear combination

of theFi statistics, with weights inversely proportional to variance Var(Fi) to construct the
exact interval for the common mean�, where

Wf =
I∑

i=1

w∗
i Fi, w∗

i = [(ni − 3)2(ni − 5)]/[(ni − 1)2(ni − 2)]∑I
i=1 [(ni − 3)2(ni − 5)]/[(ni − 1)2(ni − 2)] . (3.16)

It is noted that minni >5 to ensure that Var(Fi) exists for alli=1, . . . , I and
∑I

i=1w
∗
i =1.

If a� denotes the cut-off point of the distribution ofWf , such that for given� ∈ (0,1),

1− � = P(Wf �a�), (3.17)

then the 100(1− �)% confidence interval for� is obtained as[
I∑

i=1

pix̄i − �,
I∑

i=1

pix̄i + �

]
, (3.18)

where

pi= w∗
i ni/s

2
i∑I

j=1w
∗
j nj /s

2
j

,

�=

√√√√√ a�

	I
i=1w

∗
i ni/s

2
i

−



I∑
i=1

pix̄
2
i −

(
I∑

i=1

pix̄i

)2

. (3.19)
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Jordan and Krishnamoorthy (1996)suggested to approximatea� by dF1−�(I, u), where
F1−�(I, u) is the(1− �)th quantile of theF-distribution withI andu degrees of freedom
and

u = 4IM2 − 2(I + 2)M2
1

IM2 − (I + 2)M2
1

, d = u − 2

u
M1 (3.20)

with

M1 = E(Wf ) =
I∑

i=1

w∗
i (ni − 1)

ni − 3
(3.21)

and

M2 = E(Wf )
2 = 3

I∑
i=1

w∗2
i (ni − 1)2

(ni − 3)(ni − 5)
+ 2

∑
i>j

w∗
i w

∗
j (ni − 1)(nj − 1)

(ni − 3)(nj − 3)
. (3.22)

As noted byJordan and Krishnamoorthy (1996), � in (3.19) could be undefined, so the
interval of (3.18) might be empty.

3.2.3. Solutions based on linear combinations of generalized pivot variables
Krishnamoorthy and LuYong (2003)suggested usingWT , a weighted linear combination

of thegeneralizedpivot variablesTi ,withweights inversely proportional to varianceVar(X̄i)

to construct the exact interval for the common mean�,

WT =
I∑

i=1

w◦
i Ti =

I∑
i=1

w◦
i

[
x̄i −

√
ni(x̄i − �)

�i

√
vi

niUi

]

=
∑I

i=1
niUi

vi

(
x̄i − Z

√
vi

niUi

)
∑I

j=1
njUj

vj

=
∑I

i=1
niUi

vi
x̄i − Z

∑I
i=1

√
niUi
vi∑I

j=1
njUj

vj

, (3.23)

whereZ ∼ N(0,1), Ui = ((ni − 1)Si/�2
i ) = Vi/�2

i ∼ �2ni−1, vi and x̄i are the observed

values ofVi andX̄i , respectively. The weightw◦
i = ni/�2

i /
∑I

j=1 nj/�
2
j is taken atVi = vi

and the observed value ofWT is �.
Comparing (3.4) with (3.23), we note that the expected length of (3.4) is shorter than

that of (3.23) for the reason that
√∑I

i=1 (niUi/vi) is less than
∑I

i=1
√
(niUi/vi) and both

expected lengths are identical only when one population is involved. Moreover, ifUi is
replaced by its expectationni − 1, then the confidence intervals of the common mean�
constructed by (3.4) and (3.23) become


∑I

i=1 nix̄i/s
2
i∑I

i=1 ni/s
2
i

− Z1−�/2

√√√√ I∑
i=1

ni

s2i

,

∑I
i=1 nix̄i/s

2
i∑I

i=1 ni/s
2
i

+ Z1−�/2

√√√√ I∑
i=1

ni

s2i


 (3.24)
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and{∑I
i=1 nix̄i/s

2
i∑I

i=1 ni/s
2
i

− Z1−�/2

I∑
i=1

√
ni

s2i

,

∑I
i=1 nix̄i/s

2
i∑I

i=1 ni/s
2
i

+ Z1−�/2

I∑
i=1

√
ni

s2i

}
, (3.25)

respectively, whereZ1−�/2 is the(1− �/2)th quantile of the standard normal distribution.
From (3.24) and (3.25), we notice that both intervals are centered at thewell-knownGraybill
and Deal estimator with the confidence length of (3.24) shorter than that of (3.25).

4. Illustrative examples

Two examples are given to illustrate our proposed method for setting limits on the com-
mon mean of several normal populations. The first example with mild heteroscedastic-
ity is excerpted fromMeier (1953)in which four experiments are used to estimate the
mean percentage of albumin in the plasma protein of normal human subjects. The second
example with serious heteroscedasticity can be found in the recent papers byEberhardt
et al. (1989), Skinner (1991), Jordan and Krishnamoorthy (1996)andKrishnamoorthy
and Lu Yong (2003), among others. For demonstration purposes, we will provide the
results ofFairweather (1972), Jordan and Krishnamoorthy (1996), Krishnamoorthy and
Lu Yong (2003)and the classical procedure with assumption of identical variance to make
a comparison.

4.1. Example 1

Thedata reportedbyMeier (1953)andanalyzed inJordanandKrishnamoorthy (1996)are
about the percentage of albumin in plasma protein in human subjects. For ease of reference,
the data based on four independent experiments are reproduced inTable 1. It is assumed
that the samples are from normal populations. Five confidence intervals, given inTable
2, include our proposed interval,Fairweather (1972), Jordan and Krishnamoorthy (1996),
Krishnamoorthy and Lu Yong (2003)and the classical interval which is based on the pooled
estimate of identical variance and the Student’st statistic.
The results inTable 2suggests that when population variances are not significantly

different, four intervals exceptJordan and Krishnamoorthy (1996)are comparable with
each other. The interval based on new generalized pivotal quantity turns out to be optimal
in the sense of having the shortest observed width. It may also be noted that the interval

Table 1
Percentage of albumin in plasma protein

Experiment ni Mean Variance

A 12 62.3 12.986
B 15 60.3 7.840
C 7 59.5 33.433
D 16 61.5 18.513



S.-H. Lin, Jack C. Lee / Journal of Statistical Planning and Inference 134 (2005) 568–582577

Table 2
Interval estimates for�

Methods Interval Width

Classical (59.92, 62.19) 2.27
Fairweather (1972) (59.90, 62.19) 2.29
Jordan and Krishnamoorthy (1996) (59.56, 62.44) 2.88
Krishnamoorthy and Lu Yong (2003) (59.79, 62.23) 2.44
Generalized interval in (3.5) (59.92, 62.10) 2.18

Table 3
Selenium in non-fat milk powder

Methods ni Mean Variance

Atomic absorption spectrometry 8 105.00 85.711
Neutron activation:

(1) Instrumental 12 109.75 20.748
(2) Radiochemical 14 109.50 2.729

Isotope dilution mass spectrometry 8 113.25 33.640

Table 4
Interval estimates for�

Methods Interval Width

Classical (107.75, 111.11) 3.36
Fairweather (1972) (108.53, 110.77) 2.24
Jordan and Krishnamoorthy (1996) (108.45, 110.67) 2.22
Krishnamoorthy and Lu Yong (2003) (108.67, 110.53) 1.86
Generalized interval in (3.5) (108.75, 110.51) 1.76

derived by classical method performs quite well when the population variances are only
slightly different.

4.2. Example 2

The data for the second example are taken fromEberhardt et al. (1989)who reported the
data on selenium in non-fat milk power by combining the results of four independent mea-
surement methods. The data inTable 3show that serious non-homogeneity is present. For
demonstration purposes, wewill also compare our interval with the intervals byFairweather
(1972), Jordan and Krishnamoorthy (1996), Krishnamoorthy and Lu Yong (2003)and the
classical method. The confidence intervals and confidence widths are given inTable 4.
For this example, intervals based onFairweather (1972), Jordan and Krishnamoorthy

(1996) are similar to each other and both intervals are wider than those of ours and
Krishnamoorthy and Lu Yong (2003). The interval based on our new generalized pivotal
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Table 5
Expected lengths of 95% confidence intervals for the five methods

�21 �22 n1 = 10, n2 = 10 n1 = 15, n2 = 15

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

5 5 2.067 2.125 2.533 2.266 2.038 1.660 1.682 1.967 1.748 1.641
5 10 2.540 2.493 2.935 2.626 2.385 2.026 1.968 2.287 2.027 1.911
5 15 2.915 2.708 3.135 2.782 2.539 2.333 2.132 2.424 2.161 2.031
5 20 3.264 2.846 3.235 2.880 2.657 2.605 2.249 2.495 2.214 2.106
5 30 3.844 3.031 3.359 2.988 2.790 3.084 2.397 2.596 2.293 2.199
5 40 4.360 3.175 3.433 3.024 2.828 3.498 2.496 2.659 2.316 2.244
5 50 4.819 3.246 3.468 3.046 2.888 3.874 2.563 2.693 2.361 2.285

�21 �22 n1 = 10, n2 = 30 n1 = 30, n2 = 10

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

5 5 1.422 1.482 1.612 1.498 1.418 1.420 1.481 1.610 1.499 1.417
5 10 1.889 1.838 2.106 1.916 1.788 1.580 1.641 1.683 1.581 1.515
5 15 2.257 2.061 2.416 2.159 2.011 1.722 1.726 1.713 1.620 1.562
5 20 2.574 2.224 2.634 2.317 2.165 1.854 1.781 1.729 1.629 1.586
5 30 3.122 2.446 2.928 2.532 2.357 2.090 1.850 1.741 1.644 1.608
5 40 3.578 2.614 3.124 2.639 2.468 2.306 1.898 1.747 1.643 1.621
5 50 3.983 2.728 3.253 2.732 2.582 2.490 1.926 1.757 1.674 1.624



S
.-H

.L
in

,Ja
ck

C
.L

e
e

/Jo
u
rn

a
lo

fS
ta

tistica
lP

la
n
n
in

g
a
n
d

In
fe

re
n
ce

1
3
4

(2
0
0
5
)
5
6
8

–
5
8
2
579

Table 6
Comparison of 95% coverage probabilities among the five methods

�21 �22 n1 = 10, n2 = 10 n1 = 15, n2 = 15

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

5 5 0.951 0.948 0.964 0.959 0.946 0.950 0.947 0.958 0.956 0.949
5 10 0.951 0.949 0.961 0.959 0.949 0.946 0.949 0.962 0.949 0.946
5 15 0.947 0.951 0.965 0.951 0.946 0.945 0.947 0.963 0.955 0.949
5 20 0.942 0.952 0.963 0.951 0.947 0.945 0.950 0.959 0.955 0.949
5 30 0.939 0.953 0.966 0.955 0.949 0.945 0.951 0.962 0.957 0.952
5 40 0.945 0.950 0.962 0.957 0.948 0.945 0.953 0.966 0.947 0.945
5 50 0.942 0.949 0.964 0.952 0.947 0.942 0.951 0.963 0.957 0.953

�21 �22 n1 = 10, n2 = 30 n1 = 30, n2 = 10

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

5 5 0.949 0.951 0.958 0.946 0.945 0.948 0.949 0.957 0.944 0.944
5 10 0.948 0.947 0.958 0.953 0.952 0.950 0.952 0.956 0.951 0.945
5 15 0.949 0.950 0.957 0.954 0.949 0.946 0.951 0.958 0.947 0.946
5 20 0.949 0.949 0.959 0.951 0.944 0.941 0.950 0.957 0.952 0.950
5 30 0.948 0.951 0.961 0.957 0.950 0.934 0.948 0.956 0.951 0.950
5 40 0.951 0.951 0.961 0.953 0.945 0.940 0.955 0.961 0.953 0.947
5 50 0.949 0.953 0.961 0.953 0.946 0.934 0.947 0.958 0.951 0.950
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Table 7
Powers of the tests for testing H0 : � = 0 versus H1 : � = 0 (I = 2 and� = 0.05)

�22/�
2
1 Tests n1 = 9, n2 = 9 n1 = 15, n2 = 10

� �

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

1 (1) 0.13 0.36 0.67 0.89 0.98 0.16 0.49 0.82 0.97 1.00
(2) 0.13 0.34 0.64 0.87 0.97 0.16 0.47 0.80 0.96 1.00
(3) 0.08 0.23 0.48 0.74 0.92 0.11 0.35 0.68 0.91 0.99
(4) 0.11 0.29 0.59 0.83 0.96 0.13 0.42 0.77 0.95 0.99
(5) 0.14 0.37 0.67 0.89 0.98 0.17 0.48 0.82 0.97 1.00

4 (1) 0.08 0.18 0.34 0.53 0.71 0.11 0.26 0.50 0.73 0.90
(2) 0.09 0.21 0.41 0.64 0.82 0.12 0.32 0.59 0.83 0.95
(3) 0.07 0.15 0.31 0.52 0.72 0.09 0.27 0.55 0.81 0.95
(4) 0.09 0.20 0.41 0.62 0.83 0.12 0.31 0.63 0.86 0.96
(5) 0.11 0.25 0.49 0.69 0.88 0.14 0.34 0.68 0.88 0.97

9 (1) 0.08 0.13 0.20 0.31 0.44 0.08 0.17 0.31 0.48 0.66
(2) 0.08 0.17 0.34 0.54 0.72 0.10 0.27 0.52 0.76 0.91
(3) 0.06 0.13 0.27 0.46 0.66 0.08 0.25 0.52 0.78 0.93
(4) 0.08 0.18 0.36 0.60 0.75 0.12 0.32 0.59 0.83 0.95
(5) 0.09 0.22 0.41 0.65 0.80 0.13 0.34 0.62 0.85 0.96

16 (1) 0.07 0.10 0.15 0.21 0.30 0.09 0.13 0.22 0.33 0.46
(2) 0.08 0.16 0.30 0.49 0.66 0.10 0.24 0.47 0.71 0.88
(3) 0.05 0.13 0.26 0.44 0.64 0.08 0.24 0.51 0.77 0.92
(4) 0.08 0.19 0.36 0.57 0.75 0.12 0.29 0.57 0.82 0.95
(5) 0.10 0.22 0.39 0.60 0.78 0.13 0.34 0.62 0.85 0.96
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quantity turns out to be the best in the sense of having the shortest observed width. Besides,
the four methods allowing heterogeneity are much better than the classical method, which
is calculated basing on the identical variance assumption. Thus the procedures based on an
identical variance assumption would be dangerous to use when the population variances
are seriously non-homogeneous.

5. Simulation studies

Some simulation studies to compare the expected lengths, 95% coverage probabilities
and powers of the tests of five procedures for the commonmean� have been carried out for
I = 2, (n1, n2) = (10, 10), (15, 15), (30, 10) and (10, 30), respectively, for comparing the
expected lengths and coverage probabilities and(n1, n2) = (9,9), (n1, n2) = (15,10) for
various values of the ratio of�2

2/�
2
1, with 10,000 replicates for each combination. The results

appear inTables 5, 6 and7 . The simulated studies presented in these tables correspond to
(1) Classical method.
(2) Fairweather (1972).
(3) Jordan and Krishnamoorthy (1996).
(4) Krishnamoorthy and Lu Yong (2003).
(5) The generalized interval in (3.5).
From these tables, we find that the classical method is quite robust when the population

variances are identical or with slight non-homogeneity, but, as expected, its performance
growsworse as the degree of heteroscedasticity increases. For overall comparisons, the four
methods allowing heteroscedasticity are much better than the method obtained by classical
approach. However, it is clear from these tables that our proposed method, derived through
the best linear unbiased estimator of�, the concept of generalizedp value and generalized
confidence interval, is better than any of the existing methods in the senses of having the
shortest expected lengths and highest powers.
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