
IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 10, OCTOBER 2005 865

NCTU SLT: A Socket-layer Translator for
IPv4-IPv6 Translation

Whai-En Chen, Member, IEEE, Chia-Yung Su, and Yi-Bing Lin, Fellow, IEEE

Abstract— Based on Bump-In-the-API (BIA) architecture, this
letter proposes a Socket-layer Translator called NCTU SLT that
translates IPv4 applications to IPv4/IPv6-capable applications on
dual-stack hosts. Like previously proposed approaches, NCTU
SLT can translate NAT-friendly applications (e.g., HTTP and
TELNET) without modifying the source codes of the IPv4
applications. Furthermore, NCTU SLT has the advantages over
the previous approaches for translating non-NAT friendly appli-
cations (i.e., SIP and FTP).

Index Terms— ALG, BIA, BIS, IPv6 transition, socket-layer
translator.

I. INTRODUCTION

IN THE NEXT generation network, IPv6 will be widely
deployed to offer large address space and support new

features such as security, mobility, QoS, and plug-and-play.
To maintain compatibility with IPv4 while deploying IPv6,
transition mechanisms such as dual-stack have been proposed.
A dual-stack host installed both IPv4 and IPv6 protocol stacks
can choose either IPv4 or IPv6 to communicate with an
IPv4 or an IPv6 host. In the early IPv6 deployment stage,
many backbone networks only support IPv4, and IPv6 hosts
are ”islands” in these IPv4 networks. In such environments,
translation techniques provide interoperability between IPv4-
only and IPv6-only applications. In this letter, we propose a
translation approach called Socket-layer Translator to translate
IPv4-only applications to IPv6 on a dual-stack device.

Microsoft Windows XP and 2003 are dual-stack operat-
ing systems. They also provide Windows Socket (Winsock)
Application Programmable Interfaces (APIs) for developing
network applications. However, some Winsock APIs and pa-
rameters of IPv4 are different from that of IPv6. As a result,
IPv4 applications can only use IPv4 stack even if the operating
system is upgraded to dual-stack. To support IPv6 for IPv4
applications, programmers must manually check and modify
the source codes. This translation task is tedious.

To support IPv4 and IPv6 interworking, IETF RFC specifies
Bump-In-the-Stack (BIS) [1] and Bump-In-the-API (BIA) [2]
where the dual-stack hosts allow IPv4 applications to access
IPv6 resources. Both mechanisms can successfully translate
NAT friendly protocols (e.g. HTTP and TELNET) [4]. Some
protocols such as File Transport Protocol (FTP) and Ses-
sion Initiation Protocol (SIP) contain IP address and port
information in the application-layer headers. Neither BIS nor

Manuscript received July 22, 2004. The associate editor coordinating the
review of this letter and approving it for publication was Prof. David Petr.

The authors are with the Dept. of Computer Science and Infomation
Engineering, National Chiao Tung Unviersity, Hsinchu, Taiwan (e-mail:
{wechen, cysu, liny}@csie.nctu.edu.tw).

Digital Object Identifier 10.1109/LCOMM.2005.10001.

Fig. 1. NCTU Socket-layer Translator and its Implementation Environment

BIA process the application-layer headers, and therefore they
cannot translate IPv4 FTP and SIP applications into IPv6.

In National Chiao Tung University (NCTU), we develop a
Socket-layer Translator called NCTU Socket-layer Translator
(SLT) to support IPv6 transition for FTP and SIP applications.
Based on a BIA-like architecture, NCTU SLT translates NAT
friendly protocols by redirecting IPv4 socket functions to IPv6.
For non-NAT friendly protocols, we implement Application
Layer Gateways (ALGs) and ALG Manager that allow the
dual-stack hosts to access IPv6 resources through IPv4 appli-
cations without any modification.

II. SYSTEM ARCHITECTURE OF

SOCKET-LAYER TRANSLATOR

Fig. 1 shows the NCTU SLT and its implementation en-
vironment. Among the network applications supported by
NCTU SLT (Fig. 1(a)), HTTP and TELNET are NAT friendly
protocols. On the other hand, FTP and SIP contain IP ad-
dress and port information in the application-layer headers
and therefore require modifications to their application-layer
headers for IPv6 translation.

Microsoft Winsock Component (Fig. 1(b)) provides APIs to
develop network applications. IPv6 and IPv4 protocol stacks
(Fig. 1(c) and (d)) are implemented as Transport Service
Providers (TSPs) in the Windows systems, and each of the
IPv4 and IPv6 transport protocols is implemented as a Layered
Serviced Provider (LSP). LSPs are linked as a protocol chain
in TSP. The NCTU SLT (Fig. 1(e)) is implemented as a LSP
embedded in TCP(UDP)/IPv4 TSP. Therefore the NCTU SLT
can intercept the functions invoked by IPv4 applications and
translated them into equivalent IPv6 functions.

The NCTU SLT consists of six components. The Name Re-
solver (Fig. 1(1)) intercepts the Domain Na me System (DNS)
functions (e.g., gethostbyname() and gethostbyaddr()) from
IPv4 applications and redirects them to IPv6/IPv4 DNS func-
tions (e.g., getaddrinfo() and getnameinfo()).

1089-7798/05$20.00 c© 2005 IEEE

866 IEEE COMMUNICATIONS LETTERS, VOL. 9, NO. 10, OCTOBER 2005

The trick that allows an IPv4 application to access IPv6
resources is played in the Address Mapper (Fig. 1(2)).
The Address Mapper contains an IPv4-IPv6 mapping table
and a pool of exclusive private IPv4 (EPI) addresses (e.g.,
10.0.0.1∼10.0.0.255). We use FTP/SIP examples to illustrate
how NCTU SLT works.

Example 1: When an IPv4 application with NCTU SLT
accesses an IPv6 FTP server through the server’s domain
name, the Name Resolver will obtain an IPv6 destination
address through the IPv6 DNS queries mentioned before.
This destination address cannot be recognized by the IPv4
application. Therefore the received IPv6 address is mapped to
an IPv4 address from the EPI address pool, and this mapping
is stored in the IPv4-IPv6 mapping table. The mapped EPI
address is then returned to the IPv4 application. When the
IPv4 application issues an IPv4 function (e.g., connect()) with
the EPI address, the Function Mapper (Fig. 1(3)) intercepts
the function and translate the IPv4 parameters into IPv6, and
instructs the Address Mapper to use the EPI address to retrieve
the corresponding IPv6 address in the IPv4-IPv6 mapping
table. The IPv6 address, which is a parameter of connect(),
indicates the FTP destination. (On the other hand, if the IPv4
application accesses a non-EPI IPv4 address, the Address
Mapper will not found the entry in the IPv4-IPv6 mapping
table, and the original IPv4 address is used to access the
IPv4 destination.) To send the packets to an IPv6 FTP server,
the IPv4 application invokes the send() function including the
data to be transmitted. The data may contain IP address/port
information that needs IPv4-to-IPv6 translation by FTP-ALG
to be elaborated in Example 3.

Example 2: To allow IPv6 clients to access an IPv4 FTP
server with NCTU SLT, the FTP server invokes IPv4 Winsock
function bind() to associate the server’s IPv4 address with an
IPv4 socket. On this socket, the recv() function is activated
to receive the incoming IPv4 packets. When the IPv4 bind()
is invoked, the Function Mapper intercepts the parameters
(e.g., AF INET and INADDR ANY) and translates them to
IPv6 (AF INET6 and in6addr any). Then the IPv6 bind() is
invoked to bind the server’s IPv6 address to an IPv6 socket.
The Function Mapper also intercepts the IPv4 recv() and then
invokes IPv6 recv() to obtain data on IPv6 socket. At this
point, the FTP server can also receive the incoming IPv6
packets. FTP-ALG translation for data receiving is similar to
that for data sending in Example 1.

The major contributions of this letter are the design and im-
plementation of ALG-related mechanisms in NCTU SLT. Spe-
cially, the ALG Manager (Fig. 1(4)) checks the application-
layer messages intercepted by the Function Mapper, and
dispatches these messages to a proper ALG according to the
transport port number. For example, the port number for FTP-
ALG is 21 and the port number for SIP-ALG is 5060.

Example 3. The FTP-ALG (Fig. 1(6)) translates both
IP/port information in the FTP messages and the FTP com-
mends. The IPv4 command PORT is translated to IPv6 EPRT,
IPv4 PASV is translated to IPv6 EPSV, and the response
227 is translated to 229. The IPv4 address (A1,A2,A3,A4) in
PORT command is translated to “net-addr” (an IPv6 address)
in the EPRT command. Also, the port numbers (p1,p2) in the
PORT command and 227 response are translated to another

Fig. 2. Transmission Delay with and without NCTU SLT

format (“tcp-port”= p1*28+p2) in the IPv6 EPRT command
and 229 response.

Example 4. SIP-ALG (Fig. 1(5)) translates the IP address
information in the SIP and Session Description Protocol (SDP)
header fields. A SIP User Agent (UA) utilizes SIP to transmit
signaling information and Real-time Transport Protocol (RTP)
to transmit voice packets. An IPv4 SIP UA with NCTU SLT
can communicate with an IPv6 UA through SIP-ALG trans-
lation. When the IPv4 SIP UA sends out a SIP message, the
SIP-ALG intercepts this message, and translates IP addresses
in SIP Request URI, From, To, Via, Contact, Record-Route,
and Route header fields. Also, in the SIP message body, SDP c
field contains IP address information of the RTP connections.
All IPv4 addresses contained in the header fields mentioned
above are EPI addresses. (The IPv6-EPI address mappings for
these addresses are established through a procedure similar
to that in Example 1.) The SIP-ALG invokes the Address
Mapper to map the EPI addresses to the corresponding IPv6
addresses. These IPv6 addresses are appropriately included in
the SIP and the SDP header fields before the SIP message is
sent out.

III. PERFORMANCE EVALUATION

This section compares four IPv4-IPv6 translation mecha-
nisms. In manual modification, a programmer upgrades IPv4
applications to IPv6 by directly modifying the source codes.
The programmer can utilize Microsoft checkv4.exe to search
the IPv4-related functions, data structures and parameters.
However, user-defined functions, structures, and variables can-
not be detected by this program. Therefore, the programmer
should trace whole source codes in most cases.

BIS, BIA and NCTU SLT are designed to translate IPv4
applications without modifying the source codes. Inserted
between the TCP/IP protocol stack and network card drivers,
BIS intercepts IPv4 packets and then translates these packets
into IPv6 format according to the SIIT algorithm [3]. Note
that BIS cannot support peer-to-peer security. BIA and NCTU
SLT are inserted between the socket component and the
TCP/IP protocol stack. Therefore they can translate IPv4
socket functions to IPv6 without modifying the packet format,
and IPsec for peer-to-peer security can be supported.

For NAT-friendly applications, the performance of NCTU
SLT is the same as that of BIS and BIA. For non-NAT-
friendly applications, we conduct experiments to measure the

CHEN et al.: NCTU SLT: A SOCKET-LAYER TRANSLATOR FOR IPV4-IPV6 TRANSLATION 867

NCTU SLT performance on FTP applications transfer. In our
experiments, the FTP server is vsftpd running Linux Fedora
Core 1. The FTP client is SmartFTP running on Windows
XP SP1. We consider three scenarios. Scenario 1 downloads
pure IPv4 packets from the server to the client. Scenario 2
downloads pure IPv6 packets from the server to the client.
Scenario 3 downloads packets from the IPv6 server to the
IPv4 client through NCTU SLT. Files with sizes ranging from
10KB to 2GB are downloaded from the FTP server via the
100Mbps Ethernet. Fig. 2 plots the transmission delays of the
three scenarios against various file sizes. The figure indicates
that performance degradation due to NCTU SLT translation is
insignificant. For example, in downloading 2GB file, Scenario
1 takes 205 seconds, while Scenario 3 only requires 4 more
seconds over Scenario 2 and 15 seconds over Scenario 1.
In other words, the NCTU SLT degradation is less than 2%
over pure IPv6 transmission and less than 8% over IPv4
transmission. SIP performance is out of the scope of this letter,

and will be addressed in a separate paper.

ACKNOWLEDGEMENT

This work was sponsored in part by Taiwan NICI IPv6
Steering Committee, R&D Division under contract number R-
0400, NSC Excellence project NSC93-2752-E-0090005-PAE,
ITRI/NCTU JRC Project and NTP VoIP Project under grant
number NSC 92-2219-E-009-032.

REFERENCES

[1] K. Tsuchiya, H. Higuchi, and Y. Atarashi, “Dual stack hosts using the
bump-in-the-stack technique (BIS),” IETF RFC2767, Feb. 2000.

[2] S. Lee, M-K. Shin, Y-J. Kim, E. Nordmark, and A. Durand, “Dual stack
hosts using bump-in-the-API (BIA),” IETF RFC3338, Oct. 2002.

[3] E. Nordmark, “Stateless IP/ICMP translation algorithm (SIIT),” IETF
RFC2765, Feb. 2000.

[4] D. Senie, “Network address translator (NAT)-friendly application design
guidelines,” IETF RFC3235, Jan. 2002.

