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Abst rac t - -We present in this paper a computational effective nonlinear iterative method for 
calculating the electron energy spectra in single and vertically stacked InAs/GaAs semiconductor 
quantum dots. The physical model problem is fornmlated with the effective one electronic band 
Hamiltonian, the energy- and position-dependent electron effective ma~ss approximation, and the Ben 
Daniel-Duke boundary conditions. The multishift QR algorithm is implemented in the nonlinear 
iterative method for solving the corresponding nonlinear eigenvalue problem. This method converges 
monotonically when solving the nonlinear Schr6dinger equation for all quantum dot sinmlations. 
Numerical results show that  the electron energy spectra are significantly dependent on the number 
of coupled layers. For the excited states, the layer dependence effect has been found to be weaker 
than that  for the ground state. @ 2005 Elsevier Ltd. All rights reserved. 
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Modelling and simulation, Nonlinear eigenvalue problem, Multishift QR method, Energy spectra, 
Electronic structure, Wave function, Coupling effect. 

1. I N T R O D U C T I O N  

Experimental fabrications and theoretical study of nanoscale semiconductor quantmn dots (QDs) 
have been of great interest in recent years [1-14]. With the advanced nanofabrication technology, 
it is possible to consider another degree of freedom along the growth direction (z direction) for a 
set of vertically coupled QDs. One of evident features in this system is the effects of dot-to-dot 
interactions on the electronic structure, the electronic entanglement, and charge transfer [5,6]. 
In the theoretical modeling and numerical simulation of semiconductor QDs, most of reported 
works have only considered a two-dimensional (2-D) lateral geometry and confinement potential 
models. These works focused on a system of vertically coupled two-layers quantum dots [5-8]. 
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To thoroughly clarify the electronic structure and tunneling ability for diverse applications to 
memory devices, photonie devices, and optoelectronics, it will become more interest if a system 
of vertically stacked n-layers (n >_ 1) QDs can be investigated with a full 3-D approach. 

In this paper, we calculate the electron energy states for a system of vertically stacked n-layers 
QDs by considering a unified 3-D model. The model is formulated with the effective one electronic 
band Hamiltonian, the energy- and position-dependent electron effective mass approximation, the 
hard-wall confinement potential, and the Ben Daniel-Duke boundary conditions. The model de- 
fined in the single and n-layers QDs results in a nonlinear SchrSdinger equation (effective mass is 
a nonlinear function of energy) to be solved. Therefore, the analytical solution of this equation 
becomes complicated. Based on a nonlinear iterative method, the nonlinear SchrSdinger equation 
is solved iteratively to simulate an electron confined by InAs QDs embedded in GaAs semicon- 
ductor matrix. In the numerical solution of this nonlinear Schr6dinger equation, we discretize 
it with finite box method (the so-called finite-volume method),  first. The discretized nonlin- 
ear Schr5dinger equation leads to a nonlinear eigenvalue problem (the matrix of the problem is 
eigenvalue-dependent). Starting from an arbitrary eigenvalue, the multishift QR algorithm [15] 
is implemented in the nonlinear iterative method for solving the corresponding nonlinear eigen- 
value problem. It is terminated when the specified eigenvalue is converged. Otherwise, the newer 
energy will be updated and iterations will be performed. This method allows us to solve the 
energy states of QDs with very cost effective computation. Due to the monotone property of 
the electron effective mass, this nonlinear iterative method converges for the single and vertically 
stacked n-layers QDs. Numerical results show that  the QDs' transition energy is dominated by 
the number of stacked layers. For the excited states, the layer dependence effect has been found 
to be weak than that  for the ground state. The distance d among the layers of QDs also plays 
a crucial role in the tunable states of the dots. For d = 0.5 nm, there is about  30% variation in 
ground state energy. This numerical investigation is constructive in studying the magneto-optical 
phenomena and quantum optical structures for the vertically stacked n-layers QDs. 

This paper is organized as follows. Section 2 states the 3-D QDs model. Section 3 discusses 
the computational method. Section 4 shows the computed results and presents the corresponding 
discussions. Section 5 draws conclusions and suggestions some future works. 

Q °3 
QD~ 

Figure 1. The ]eft figure is A single InAs QD embedded in the GaAs semiconduc- 
tor matrix. The right one shows the system of the vertically stacked three-layers 
InAs/GaAs QDs. 
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2. M A T H E M A T I C A L  M O D E L  

A N D  C O M P U T A T I O N A L  M E T H O D  

As shown in Figure 1, we consider electrons confined in a system of single or vertically stacked 
n-layers QDs and apply the one-band effective Hamiltonian H [9-12], we have 

H = - 5 - v ,  v,. + v (,-) (1) ,-) 

where re(E, r) is the energy- and position-dependent electron effective mass, 

1 p 2 [  2 1 ] 
m ( E , r ) -  h 2 E + E ~ ( r ) - E ~ ( r )  + E + E g ( r ) + A ( r ) - E ~ ( r )  ' (2) 

and V(r) = Ec(r) is the QDs' confinement potential. The Ec(r), Eg(r), A(r) ,  and P are the 
position-dependent electron band edge, band gap, spin-orbit splitting in the valance band, and 
momentum matrix element, respectively [9 12]. Because the QDs have ellipsoid shape with 
radius Ro and of height zo, we can treat the problem in the cylindrical coordinate (_R, ~, z). The 
property of QDs system is cylindrical symmetry, so the wave function can be expressed as 

• ( r )  - • (R, z) exp (3) 

where l - 0, 4-1, + 2 , . . . ,  is the electron orbital quantum number. Therefore, the model is 

h 2 ( 0 2  0 02 12 ) 
2mi (E)  ~ + ~  + Oz ~ ~ Oi(R,z)+V~(R,z)Oi(R,z)=EO{(R,z), (4) 

where E _ I ( R , z )  = 0 inside the dots and E=2(R,z )  = 170 outside the dots. The interface 
conditions (the so-called Ben Daniel-Duke boundary conditions) between two different materials 
are O1 = 02 and 

1 (001 d f s 0 0 1 ) -  1 (002 dfs002) 
Tnl (E) k OR -[- dR Oz Tt't2 (/~) k OR -[- d--R 0-~ ' (5) 

where z = fs(R, z) (s represents the ellipsoid shape QDs) is a contour generator of the QDs 
structure in (R, z) plane. Figure 1 simply shows the single and three-layers QDs. The electron 
wave function vanishes at infinite physically. 

As shown in Figure 2, the nonlinear SchrSdinger equation is solved iteratively starting with 
a given initial energy E0 to compute the final convergent energy spectra. For a given orbital 
quantum number, and a specified stopping criterion on energy E, the nonlinear iterative method 
consists of the following steps: 

(1) set an initial energy E0 in the interval [0, V0]; 
(2) identify the geometry of nanostructures; 
(3) compute the effective mass rn with equation (2); 
(4) solve the nonlinear SchrSdinger equation as well as boundary conditions with equations 

(4),(5); 
(5) perform the convergence test on the computed newer energy E; 
(6) if E converges, then exit the iteration loops; and 
(7) update the newer E and back to Step 3. 

This computational procedure has been proposed for single semiconductor quantum dot and 
quantum ring simulation in our recent works [9 12]. It is known that in the calculation of eigen- 
values, the shifted- and balanced-QR is robust and converges with arbitrary initial guesses. The 
solution accuracy of implicitly restarted Arnoldi method relies on the initial guess of eigenvalue 
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Figure 2. Simulation flowchart of the proposed computational method. 

[16-18]. Any accurate calculations of electronic structure for semiconductor quantum dots de- 
pend on the discretization of SchrSdinger equation over meshes. The discretization of Schr6dinger 
equation on a fine mesh results in a large-scaled algebraic eigenvalue problem and increases the 
computational difficulty of the solution process. The calculation of energy states for InAs/GaAs 
quantum dot requires huge amount of CPU time on solving eigenvalues in Step 5. Therefore, 
the nonlinear iterative method is further improved in this paper by using a novel scheme, mul- 
tishiff QR method [15], in the solution of nonlinear algebraic eigenvalue problem of Step 5. In 
the numerical solution of Schr6dinger equation, first, the equation is discretized with a finite- 
box method (the so-called finite volume method) [19]. Due to the energy-dependent of electron 
effective mass, the discretized nonlinear SchrSdinger equation together with the corresponding 
Ben Daniel-Duke boundary conditions leads to a nonlinear algebraic eigenvalue problem. It is 
solved by the nonlinear iterative method together with the multishift QR algorithm in Step 5. 
The key idea of the nmltishift QR method is to introduce carefully chosen perturbations to reveal 
deflations that are not yet evident on the subdiagonal. In our experience, the proposed nonlinear 
iterative method converges monotonically. The cost of simulation time can be reduced about 1.5 
orders of magnitude. 

This solution methodology enables us to solve a large-scaled eigenvalue problem that derived 
from the discretization of SchrSdinger equation efficiently. Once a final convergent eigenvalue 
is computed, the corresponding eigenveetor is calculated with the inverse iteration method [20], 
and the post-processing is followed up. The improved nonlinear iterative method in solving the 
nonlinear SchrSdinger equation of the system of the vertically stacked n-layers quantum dots 
demonstrates very good convergent property. 

3. R E S U L T S  A N D  D I S C U S S I O N  

The physical parameters of InAs/GaAs nanostructures used in our numerical calculation are 
summarized as follows. For InAs, the energy gap Eg is 0.42 eV, A1 is 0.38 eV, mz(0) = 0.024m0. 
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Figure  3. T h e  energy  versus  t he  n u m b e r  of  s tacked  QDs.  

Table 1. T h e  effects of  d on t he  var ia t ion  of g round  and  first exci ted  s t a t e  energies  
for the  s y s t e m  of the  vert ical ly s tacked ten- layers  QDs,  

Layer ' s  d i s tance  d (nm) 0.5 

Var ia t ion  of the  g round  s t a t e  energy (1 = 0) 36% 

Variation of the first excited state energy (I/I = 1) 17% 
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Figure  4. T h e  convergent  behavior  for a five-layers sys t em.  

For GaAs,  we set Eg - 1.52 eV, A2 - 0.34 eV, and m2(V0) = 0.067m0. The  band  offset parameter  

is taken as V0 - 0.55 eV. Different V0 will result in a small shift in the calculated energy spectra,  
bu t  we believe tha t  the main  t endency  should not  be changed when the different Vo is chosen. As 

shown in the Figure 3, we first demons t ra te  the main  result of the s imulated sys tem of the single 

and (n = 1) vert ically stacked n-layers I n A s / G a A s  QDs. We simulate the sys tem of the ten-layers 

vertically stacked QDs. Each  ellipsoidal-shaped QD is separa ted  by distance d among  layers. For 
small dots with z0 = 2 n m  and R0 = 1 0 n m  [13,14], and separa ted  by a fixed d we have found 
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Figure 5. Contour plot of the wave function spreading for the single QD with tile 
state of l = 0. 
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Figure 6. The wave function of the system of the vertically stacked three-layers QDs. 

t h a t  the  t r a n s i t i o n  energy  is essent ia l ly  d o m i n a t e d  by  the  nun lber  of  s tacked  n- layers  QDs. W h e n  

the  s tacked  n u m b e r  of n- layers  increases  the  e lec t ron  t r a n s i t i on  energy  decreases  mono ton ica l ly  

and  g r a d u a l l y  becomes  slow when n > 6. For  d - 0.5 n m  the  va r i a t i on  of g round  s t a t e  energy 

can up to  30%. The  t r an s i t i on  of the  first exc i ted  s t a t e  energy  (Iq = 1) is less d e p e n d e n t  on the  

s tacked  n u m b e r  of n- layers  (5% energy  var ia t ion) .  I t  is also found t h a t  d p lays  a crucial  role in 

the  t unab l e  s t a t e s  of  the  dots .  For  some typ ica l  layer ' s  d is tances ,  Table  1 summa r i z e s  the  effects 

of d on the  va r i a t ion  of g round  and  first  exc i ted  s t a t e  energies  for the  sys t em of the  ve r t i ca l ly  

s tacked ten- layers  QDs. 

F igu re  4 is the  convergence p r o p e r t y  of the  nonl inear  i t e r a t ive  m e t h o d  for the  sy s t em wi th  the  

ve r t i ca l ly  s tacked  five-layers QDs; i t  t akes  a b o u t  e ight  i t e r a t i on  loops  to  reach a s t opp ing  cr i te r ion  

where  the  m a x i m u m  error  in energy is less t h a n  10 -12. The  g lobal  convergence  mechan i sm is due 

to  the  effective mass  is a mono tone  funct ion  in energy. I t  t akes  a b o u t  350 seconds  to  computes  

all b o u n d e d  s t a tes  in a L inux-based  P C  sys tem,  where  C P U  is P e n t i u m  IV 2.5 GHz and R A M  

is wi th  the  256 MBytes .  For  o ther  cases, we have s imi lar  convergence  behavior .  In  F igures  5 
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and 6, contour plots of the normalized wave function for the single and three-layers QDs are 
reported. Figure 5 is the contour plot of the ground state wave function which confirms the 
ellipsoidal-shaped QDs. Figure 6 significantly demonstrates the coupling effects and spreading 
for the system of the vertically coupled three-layers QDs. The computed wave functuion confirms 
that the coupling effects is significantly dominated by the distance d among the layers of QDs as 
well as the number of stacked QD layers n. 

4. C O N C L U S I O N S  

A computational effective technique for the single and vertically stacked n-layers QDs system 
simulation has been proposed. With the developed 3-D QDs simulator, we have found that 
the electron energy spectra are significantly dependent on the number of coupled layers. For 
d = 0.5nm, there is about 30% variation in ground state energy. For the excited states, the 
layer dependence effect has been found to be weak than that for the ground state. This result 
is constructive in studying the magneto-optical phenomena and quantum optical structures for 
the vertically stacked n-layers QDs, in particular for optical device applications. The modeling, 
numerical method, and study presented here not only provide a novel way to simulate the QDs 
but also are useful to clarify principal dependencies of stacked QDs energy states on material band 
parameter and the number of stacked QDs. We are currently implementing a parallel eigenvalue 
solver for the simulation of more complicated system of semiconductor quantum dots. 
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