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Spin Hall Effect on Edge Magnetization and Electric Conductance of a 2D Semiconductor Strip
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The intrinsic spin Hall effect on spin accumulation and electric conductance in a diffusive regime of a
2D electron gas has been studied for a 2D strip of a finite width. It is shown that the spin polarization near
the flanks of the strip, as well as the electric current in the longitudinal direction, exhibit damped
oscillations as a function of the width and strength of the Dresselhaus spin-orbit interaction. Cubic terms
of this interaction are crucial for spin accumulation near the edges. As expected, no effect on the spin
accumulation and electric conductance have been found in case of Rashba spin-orbit interaction.
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Spintronics is a fast developing area to use electron spin
degrees of freedom in electronic devices [1]. One of its
most challenging goals is to find a method for manipulating
electron spins by electric fields. The spin-orbit interaction
(SOI), which couples the electron momentum and spin, can
be a mediator between the charge and spin degrees of
freedom. Such a coupling gives rise to the so-called spin
Hall effect (SHE) which attracted much interest recently.
Because of SOI the spin flow can be induced perpendicular
to the dc electric field, as has been predicted for systems
containing spin-orbit impurity scatterers [2]. Later, similar
phenomenon was predicted for noncentrosymmetric semi-
conductors with spin split electron and hole energy bands
[3]. It was called the intrinsic spin Hall effect, in contrast to
the extrinsic impurity induced effect, because in the former
case it originates from the electronic band structure of a
semiconductor sample. Since the spin current carries the
spin polarization, one would expect a buildup of the spin
density near the sample boundaries. In fact, this accumu-
lated polarization is a first signature of SHE which has
been detected experimentally, confirming thus the extrinsic
SHE [4] in semiconductor films and intrinsic SHE in a 2D
hole gas [5]. On the other hand, there was still no experi-
mental evidence of intrinsic SHE in 2D electron gases. The
possibility of such an effect in macroscopic samples with a
finite elastic mean free path of electrons caused recently
much debates. It has been shown analytically [6–11] and
numerically [12] that in such systems SHE vanishes at
arbitrary weak disorder in dc limit for isotropic as well
as anisotropic [10] impurity scattering when SOI is repre-
sented by the so-called Rashba interaction [13]. As one can
expect in this case, there is no spin accumulation at the
sample boundaries, except for the pockets near the electric
contacts [7]. At the same time, the Dresselhaus SOI [14],
which dominates in symmetric quantum wells, gives a
finite spin Hall conductivity [11]. The latter can be of the
order of its universal value e=8�@. The same has been
shown for the cubic Rashba interaction in hole systems
[12,15]. In this connection an important question is what
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sort of the spin accumulation could Dresselhaus SOI in-
duce near sample boundaries. Another problem which, as
far as we know, was not discussed in literature, is how the
electric current along the applied electric field will change
under SHE. In the present work we will use the diffusion
approximation for the electron transport to derive the drift-
diffusion equations with corresponding boundary condi-
tions for the spin and charge densities coupled to each
other via SOI of general form. Then the spin density near
the flanks of an infinite 2D strip and the correction to its
longitudinal electric resistance will be calculated for
Dresselhaus and Rashba SOI.

Let us consider two-dimensional electron gas (2DEG)
confined in an infinite 2D strip. The boundaries of the strip
are at y � �d=2. The electric field E drives the dc current
in the x direction and induces the spin Hall current in the y
direction. This current leads to spin polarization buildup
near boundaries. Since d� k�1

F , where kF is the Fermi
wave vector, this problem can be treated within the semi-
classical approximation. Moreover, we will assume that d
is much larger than the electron elastic mean free path l, so
that the drift-diffusion equation can be applied for descrip-
tion of the spin and charge transport. Our goal is to derive
this equation for SOI of general form

Hso � hk � �; (1)

where � � ��x; �y; �z� is the Pauli matrix vector, and the
effective magnetic field hk � �h�k is a function of the
two-dimensional wave vector k.

We start from determining linear responses to the mag-
netic B�r; t� and electric V�r; t� potentials. The magnetic
potentials are introduced in order to derive the diffusion
equation and play an auxiliary role. The corresponding
one-particle interaction with the spin density is defined as
Hsp � B�r; t� � �. These potentials induce the spin and
charge densities, S�r; t� and n�r; t�, respectively. Because
of SOI the charge and spin degrees of freedom are coupled,
so that the electric potential can induce the spin density
[16] and vice versa. Therefore, it is convenient to introduce
1-1 © 2005 The American Physical Society
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the four vector of densities Di�r; t�, such that D0�r� �
n�r; t� and Dx;y;z�r; t� � Sx;y;z�r; t�. The corresponding
four vector of potentials will be denoted as �i�r; t�.
Accordingly, the linear response equations can be written
in the form

Di�r; t� �
Z
d2r0dt0

X
j

�ij�r; r
0; t� t0��j�r

0; t0�

	D0
i �r; t�: (2)

The response functions �ij�r; r
0; t� t0� can be expressed

in a standard way [17] through the retarded and advanced
Green functions Gr�r; r0; t� and Ga�r; r0; t�. In the Fourier
representation we get

�ij�r; r
0; !� � i!

Z d!0

2�
@nF�!0�
@!0

hTr 
Ga�r0; r; !0�

��iG
r�r; r0; !0 	!��j�i; (3)

where �0 � 1, �i � �i at i � x; y; z, and nF�!� is the
Fermi distribution function. The time Fourier components
of densities D0

i �r; t� at ! EF are defined as

D0
i �r; !� � i

Z
d2r0

X
j

�j�r
0; !�

Z d!0

2�
nF�!

0�

� hTr 
Gr�r; r0; !0��iG
r�r0; r; !0��j

�Ga�r; r0; !0��iGa�r0; k; !0��j�i: (4)

The trace in Eqs. (3) and (4) runs through the spin varia-
bles, and the angular brackets denote the average over the
random distribution of impurities. Within the semiclassical
approximation the average of the product of Green func-
tions can be calculated perturbatively. Ignoring the weak
localization effects, the perturbation expansion consists of
the so-called ladder series [17,18]. At small ! and large
jr� r0j they describe the particle and spin diffusion pro-
cesses. The building blocks for the perturbation expansion
are the average Green functions Gr and Ga, together with
the pair correlator of the impurity scattering potential
Usc�r�. A simple model of the short-range isotropic poten-
tial gives hUsc�r�Usc�r

0�i � ���r� r0�=�N0, where N0 is
the electron density of states at the Fermi energy and � �
1=2�. Within the semiclassical approach the explicit be-
havior of the electron wave functions near the boundaries
of the strip is not important. Therefore, the bulk expres-
sions can be used for the average Green functions. Hence,
in the plane wave representation

G r�k; !� � 
Ga�k; !��y � �!� Ek � hk � � 	 i��
�1;

(5)

where Ek � k2=�2m�� � EF. Since the integral in (4) rap-
idly converges at jr� r0j & k�1

F , D0
i �r; !� are given by the

local values of potentials. From (4) and (5) one easily
obtains the local equilibrium densities
14660
D0
i �r; !� � �2N0�i�r; !�: (6)

In their turn, the nonequlibrium spin and charge densities
are represented by the first term in Eq. (2). Within the
diffusion approximation this term is given by the gradient
expansion of (3) [18]. Such an expansion is valid as far as
spatial variations ofDi�r; !� are relatively small within the
length of the order of the mean free path l. The length scale
for spin density variations near the boundaries of the strip
is given by vF=hkF . Hence, the diffusion approximation
can be employed only in the dirty limit hkF  1=�. The
diffusion equation is obtained after the ladder summation
in the first term of Eq. (3) and multiplying this equation by
the operator inverse to �ij�r; r

0; !�, as it has been previ-
ously done in [19,20]. After some algebraic manipulations
one gets X

j

Dij�Dj �D
0
j � � �i!Di; (7)

where the diffusion operator Dij can be written as

D ij � �ijDr2 � �ij 	 Rijmrm 	Mij: (8)

The first term represents the usual diffusion of the spin and
charge densities, while the second one describes the
D’akonov-Perel’ [21] spin relaxation

�ij � 4�h2
k
�

ij � nikn
j
k�; (9)

where i; j � 0, the overline denotes the average over the
Fermi surface, and nk � hk=hk. The third term gives rise
to precession of the inhomogeneous spin polarization in
the effective field of SOI [19]

Rijm � 4�
X
l

"ijlhlkv
m
F : (10)

The nondiagonal elements of the form Di0 appear due to
spin-orbit mixing of spin and charge degrees of freedom.
They are collected in Mij. For Rashba SOI Mi0 have been
calculated in [7,8]. In general case

Mi0 �
h3
k

�2

@nik
@k
� r: (11)

When a time independent homogeneous electric field is
applied to the system one has �0 � eEx and D0

0 �
�2N0eEx. At the same time, �i � 0 and, hence, D0

i � 0
at i � x; y; z. Because of charge neutrality the induced
charge density eD0 � 0. It should be noted that in the
system under consideration the charge neutrality cannot
be fulfilled precisely. The spin polarization accumulated at
the strip boundaries gives rise to charge accumulation via
the M0i terms in (7) and (8). The screening effect will,
however, strongly reduce this additional charge, because
the screening length of 2DEG is much less than the typical
length scale of spin density variations. We will ignore such
a small correction and set D0 � 0 in (7). In this way one
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FIG. 1 (color online). Spin densities �Si��d=2� � �Si� for
i � x; z on the boundaries of the strip, as functions of its width d,
for �=k � 0:9, 1.0, and 1.3, respectively. The inset shows the
dependence of �Sz�y� on the transverse coordinate y. Lengths
are measured in units of lso � v2

F@=2�vFyhky�.
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arrives to the closed diffusion equation for three compo-
nents of the spin density. This equation coincides with the
usual equation describing diffusive propagation of the spin
density [19], for exception of the additional term
�Mi0D0

0 � 2N0eEh
3
kr

x
kn

i
k=�2 due to the external electric

field. Its origin becomes more clear in an infinite system
where the spin density is constant in space and only �ij and
Mij are retained in (7) and (8). Hence, the corresponding
solution of (8) at ! � 0 is Si � Sb

i , with

Sb
i � D0

i =2 �
N0eE

�2

X
j

���1�ijh3
k

@njk
@kx

; (12)

where ���1�ij is the matrix inverse to (9). Such a phenome-
non of spin orientation by the electric field was predicted in
Ref. [16] and recently observed in [22]. In the special case
of Rashba SOI hk � ��k��k� z� it is easily to get from
(12) the result of Ref. [16] Sb

y � �N0eE��.
In addition to the diffusion equation one needs the

boundary conditions. These conditions are that the three
components of the spin flux Iyx; I

y
y; I

y
z flowing in the y

direction turn to 0 at y � �d=2. The linear response
theory, similar to (2), gives

Ili�r; t� �
Z
d2r0dt0

X
j

�l
ij�r; r

0; t� t0��j�r
0; t0�; (13)

where the response function � is given by

�l
ij�r; r

0; !� � i!
Z d!0

2�
@nF�!

0�

@!0
hTr 
Ga�r0; r; !0�

� JliG
r�r; r0; !0 	!��j�i; (14)

with the one-particle spin-current operator defined by Jli �
��ivl 	 vl�

i�=4 and the particle velocity

v l �
kl
m�
	

@
@kl
�hk � ��: (15)

Taking into account (7) and (6), we obtain from (13) and
(14)

Iyi �r� � �D
@Si
@y
�

1

2
Rijy�Sj � Sb

j � 	 �izIsH: (16)

The first two terms represent the diffusion spin current and
the current associated with the spin precession. The third
term is the uniform spin Hall current polarized along the z
axis. It is given by

IsH � �
1

2
RzjySb

j 	 eE
N0

�2 v
y
F

�
@hk
@kx
� hk

�
z
: (17)

From (10) and (12) it is easy to see that for Rashba SOI
both terms in (17) cancel each other making IsH � 0, in
accordance with [6–12]. Therefore, in case of the strip the
solution of the diffusion equation satisfying the boundary
condition is Sj � �jyS

b
y. Hence, the spin density is uniform

and does not accumulate near boundaries. It should be
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noted that such accumulation can, however, take place in
the ballistic regime of electron scattering [23]. At the same
time, as shown in Ref. [11], even in the diffusive regime
IsH � 0 for the Dresselhaus SOI. This inevitably leads to
the spin accumulation. Taking Dresselhaus SOI in the form

hxk � �kx�k2
y � �2�; hyk � ��ky�k

2
x � �2�; (18)

one can see that the bulk spin polarization (12) has a
nonzero Sb

x component, Rzxy � 0, while Rzyy � 0. Hence,
the solution of the diffusion Eq. (7) with the boundary
condition Iyx��d=2� � Iyz ��d=2� � 0 is Sx, Sz � 0 Sy �
0. Let us define �Si�y� � Si�y� � Sb

i . The dependence of
�Si��d=2� from the strip width, as well as an example of
�Sz coordinate dependence, are shown in Fig. 1. The
damped oscillation in the d-dependence of the spin accu-
mulation on the flanks of the strip can be seen for the Sz
polarization. Similar oscillations take place also in the
coordinate dependence. The length scale of these oscilla-
tions is determined by the spin precession in the effective
spin-orbit field.

The arbitrary units have been used in Fig. 1. For a
numerical evaluation let us take E � 104 V=m,�������
h2
kF

q
�=@ � 0:1, and �=kF � 0:8 for a GaAs quantum
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well of the width w � 100 �A doped with 1:5� 1015 m�2

electrons. We thus obtain j�Sz��d=2�j ’ 5� 1011 m�2.
The corresponding volume density �Sz=w ’ 5�
1019 m�3, which is within the sensitivity range of the
Faraday rotation method [4].

It should be noted that in the considered here ‘‘dirty’’

limit
�������
h2
kF

q
�=@ 1 the spin Hall current is suppressed by

the impurity scattering. As shown in [11,12] for
Dresselhaus and cubic Rashba SOI, this current decreases
as h2

kF
�2=@2 down from its highest universal value. At the

same time, an analysis of the diffusion equation shows that
the accumulated at the flanks of the strip spin density

decreases slower, as
�������
h2
kF

q
�=@. This explains why for the

considered above realistic numerical parameters, even in
the dirty case, the noticeable spin polarization can be
accumulated near the boundary.

Usually, the spin Hall effect is associated with the spin
polarization flow, or the spin density accumulation on the
sample edges, in response to the electric field. On the other
hand, this effect can show up in the electric conductance as
well. To see such an effect we take 0-projection of (13),
which by definition is the electric current. The current
flows along the x axis. The corresponding response func-
tion �x

0j is given by (14) with Jx0 � vx. Using Eqs. (14),
(15), and (7), and expressing �i from (6) one gets the
electric current density

Ix � �E	 A
@Sz
@y

; (19)

where � is the Drude conductivity and

A � e
1

2�2

�
2vyF

�
@hk
@kx
� hk

�
z
	 vxF

�
@hk
@ky
� hk

�
z

�
: (20)

The total current is obtained by integrating (19) over y.
Therefore, the spin Hall correction to the strip conductance

�G �
A
E

Sz�d=2� � Sz��d=2�� �

2A
E
Sz�d=2�: (21)

Hence, the dependence of �G on the strip width coincides
with that of the spin density shown in Fig. 1(a).

In conclusion, we employed the diffusion approximation
to study the spin Hall effect in an infinite 2D strip. In case
of the Dresselhaus spin-orbit interaction this effect leads to
spin accumulation near the flanks of the strip, as well as to
a correction to the longitudinal electric conductance. Both
the spin accumulation and the conductance exhibit damped
oscillations as a function of the strip width.
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