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Knowing transcription factors (TFs) involved in the yeast cell cycle
is helpful for understanding the regulation of yeast cell cycle
genes. We therefore developed two methods for predicting (i)
individual cell cycle TFs and (ii) synergistic TF pairs. The essential
idea is that genes regulated by a cell cycle TF should have higher
(lower, if it is a repressor) expression levels than genes not
regulated by it during one or more phases of the cell cycle. This idea
can also be used to identify synergistic interactions of TFs. Apply-
ing our methods to chromatin immunoprecipitation data and
microarray data, we predict 50 cell cycle TFs and 80 synergistic TF
pairs, including most known cell cycle TFs and synergistic TF pairs.
Using these and published results, we describe the behaviors of 50
known or inferred cell cycle TFs in each cell cycle phase in terms of
activation/repression and potential positive/negative interactions
between TFs. In addition to the cell cycle, our methods are also
applicable to other functions.

cell cycle regulators | microarray data | synergistic interactions

To understand how cell cycle genes are regulated, it is useful to
identify transcription factors (TFs) that are cell cycle regulators.
In the yeast Saccharomyces cerevisiae, a number of such TFs have
already been identified through various approaches (1-4). A recent
powerful tool is the chromatin immunoprecipitation (ChIP)-chip
technique, which utilizes ChIP to isolate DNA bound by a TF and
applies microarrays to precipitated DNAs to identify genes bound
by the TF. Using this technique, Lee et al. (4) identified 11 cell cycle
TFs. Assuming that genes coordinately bound are coordinately
expressed, they also determined several TFs that might have
combinatorial or synergistic regulations.

Many bioinformatic methods have been proposed to identify
synergistic pairs of TFs (5-10). Some of these methods (9, 10)
assume that a pair of TFs is synergistic if genes regulated by both
TFs show stronger coexpression patterns than the expression
patterns of genes regulated by either TF alone. This type of method
requires data collected over multiple time points to calculate the
degree of coexpression, and some of these methods ignore the
additive effects of the two TFs (5, 8-10). Also, a pair of TFs may
interact only under certain conditions, whereas these methods
consider all time points, which may introduce noise.

In this study, we propose two methods to find, respectively,
individual TFs and synergistic pairs of TFs that are cell cycle
regulators in yeast. The essential idea is that if a TF is a cell cycle
regulator, then genes regulated and not regulated by it should, on
average, have significantly different expression levels during one or
more phases of the cell cycle (5). The target genes of TFs are
collected from four TF databases (11-14) and ChIP-chip data (15),
and the expression data of yeast genes are gathered from the
microarray data of Spellman et al. (16). In this study, the majority
of known cell cycle-related TFs and synergistic pairs are identified.
Combining our inferences with published results, we describe the
regulatory behaviors of 50 TFs in terms of activation/repression
and positive/negative interaction between TFs.

Materials and Methods

Data Processing. We use the data set of Spellman ef al. (16) that
contains expression profiles of 6,178 ORFs in the yeast genome
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during the cell cycle with a-factor arrest. Eighteen time points are
studied. We revert the log ratios of cDNA microarray data (16) to
the original values by taking the exponent of two. (We do not use
the log-transformed values, because we will take the average of the
expression levels of a gene at the time points studied in each cell
cycle phase.) To estimate the average expression level of genes in
a group at a specific phase, we first calculate the average expression
level of each gene over the time points in the phase and then take
the mean of the average expression levels of these genes in the same

group.

Method for Identifying Cell Cycle TFs. Our first method is for
detecting cell cycle TFs. The main steps are as follows:

Step 1. The known or putative target genes of each known TF are
collected from four TF databases (11-14) and ChIP-chip data (15).
Step 2. A gene is said to be potentially bound or regulated by TF «
if there is evidence from the four databases, or if its p value in the
TF o ChIP-chip experiment (p.) is smaller than a certain low
threshold (e.g., p. < 0.0001), whereas a gene is said not to be bound
or regulated by TF « if its p value in the TF a ChIP-chip experiment
is larger than a certain high threshold (e.g., p. > 0.8). For TF «, we
generate two gene groups, G* and G ~* a gene belongs to group G
if it is potentially regulated by TF « but to group G« if it is not
regulated by TF a.

Step 3. TF « is said to be a cell cycle regulator if (i) there exists at
least one phase of the cell cycle where the expression levels of genes
in G“ are significantly different from the expression levels in one or
more of the other phases, and (i) the expression levels of genes in
G“are on average significantly higher (or lower) than those of genes
in G~ *in at least one phase of the cell cycle. We consider five cell
cycle phases: Gy, S, S/G,, G2/M, and M/G;.

We use the Kolmogorov-Smirnov (KS) test to examine the two
statistical criteria in Step 3. The KS test is a nonparametric test to
determine whether two distributions differ significantly. The KS
test calculates the maximum vertical deviation (D) between the
empirical distribution functions of the two groups to determine
whether the two data sets are drawn from the same distribution. Let
x be the average expression level of a gene over all experimental
points in a cell cycle phase. Let fi(x) be the density function of x for
the genes in group i and Fj(x) be the corresponding (cumulative)
distribution function. For groups i and j, if the statistic D is
significantly large, we infer that the two groups of genes are from
two different distributions and are expressed differently.

For a given TF, we perform 10 KS tests for C3 = 10 possible pairs
of the five phases to examine the first criterion in Step 3. If at least
one test has a p value lower than 0.01, we proceed to the next test.
Otherwise, the TF will not be considered further.

A similar method is applied to examine whether the expression
levels of genes in G are on average significantly higher (or lower)
than those of genes in G~* in at least one phase of the cell cycle.
For each phase, we test Hy: Fgo = FG-« VS. Hi: Fg« # FG-o by using

Abbreviations: TF, transcription factor; ChIP, chromatin immunoprecipitation; KS, Kolmog-
orov-Smirnov; MW, Mann-Whitney.
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the two-sided KS test, where F denotes the distribution function of
the expression levels of genes in a specific group. If Hy is rejected,
we compare the statistics D = sup[Fg.(x) — Fg-«(x)] and D, =
supe[FG-«(x) — Fga(x)] of the two distributions to determine
whether Fgo <q¢ Fg-« (.., Do < Dy) or Fge >¢ Fg-o (6., D— >
D.). Fg« <s Fg-. means that the expression levels in group G are
stochastically greater than their corresponding expression levels in
G~ group. Fig. 2, which is published as supporting information on
the PNAS web site, gives an example to show how the KS test works.

Method for Identifying Synergistic TF Pairs. Our second method is to
test whether there is synergistic interaction between two TFs during
any phase of the cell cycle. The procedure is as follows:

Step 1. Before testing whether two TFs (say « and B) interact, we
study whether they are associated in the same gene more often than
random expectation. That is, let N; be the total number of genes in
G*%, N, be the total number of genes in G#, N1, be the number of
genes in G*%P, and N be the total number of genes in the yeast
genome and calculate whether Nio/N is greater than the random
expectation (N1/N) X (N2/N). This test, in spirit, is similar to the
X° test of independence. Suppose that the random variables of row
and column factors are independent. Then the joint probability of
Ni2/N should be equal to the product of the two marginal proba-
bilities, (N1/N) X (N2/N). If there exists a positive association, then
Ni2/N will be greater than (N;/N) X (Na/N). (This step can be
skipped if one wishes to find more potential synergic pairs.)

Step 2. For each pair with significant association, we test whether
there exists at least one phase of the cell cycle where the expression
levels of genes in G are significantly different from the expression
levels in one or more of the other phases.

Step 3. We generate four groups of genes, G%#, G*~F, G~*B, and
G~«~F, and collect their expression data under different cell cycle
phases. For most pairs, we set the threshold (p.) as >0.8 to define
a gene not regulated by a specific TF. However, some pairs require
a lower threshold (p.) to have a sufficient number of genes in group
G*~P or G~*F for performing the ANOVA test (at least five in
each group).

Step 4. We test the following model using ANOVA on the expres-
sion data of four groups:

Oj = o+ i + i + py + e

wherei = aor —a;j = B or —B; k represents gene k in group G%#,
G*7B, G™*P, or G*7P; Oy is the observed average expression
level of gene k in group G%F, G*™B, G~*B, or G™*7F; p is the
overall mean; y; is the mean in group G* or G™%; y; is the mean in
group GP or G™F; p; is the interaction effect to be estimated; and
g, is the random noise. If the estimate of the term pu.p is
significantly positive (negative), then there is positive (negative)
interaction between TFs a and . Note that when a TF (say 8) does
not have a DNA-binding domain, we assume that its single effect
does not exist and modify the model as

Ojr = p + i + i + &g

To test a third-order interaction among TFs «, B, and vy, we
may first check whether the three TFs are associated more often
than expected and then analyze the following ANOVA model to
test the significance of wafy:

Oijmk =M + i + M + Mem + Mij + Mirm + Mojm + Mijm + Eijmk-

Because this test requires more data than are presently
available, we will not pursue it in this study.

Results

We use the microarray data of Spellman et al. (16) for gene
expression during the cell cycle. Different p. values (the p value in
the ChIP-chip data) are used to define whether a gene is potentially
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bound or regulated and not bound or regulated by a specific TF. We
performed some different thresholds for binding (ranging from
0.0001 to 0.01) and not binding (ranging from 0.2 to 0.8) to select
the thresholds for a balance between the false positive and false
negative rates. As shown in Fig. 3, which is published as supporting
information on the PNAS web site, the proposed method is robust
to the selection of binding and not binding thresholds. Because five
tests for the five cell cycle phases are performed for every TF and
every TF pair, it is necessary to do the correction for multiple tests.
We use the false discovery rate (g value) instead of the Bonferroni
correction for a balance between the numbers of true and false
positives (17). From the p and g values of a test (all methods use the
same definition), three confidence levels are defined: confident
(p < 1072 and g < 107%), plausible (p < 0.001 and g <0.001), and
doubtful (p < 0.01 and g < 0.01). We also use permutation tests to
verify our methods. The results are shown in Fig. 4, which is
published as supporting information on the PNAS web site. We find
that the p value of the permutation test is close to the estimated p
value, indicating the reliability of our results.

Identifying Cell Cycle TFs. Our first method identifies 30 TFs to be
confident or plausible when we set p. < 0.0001 for the definition of
TF binding. Table 1 shows the functions and involved phases (with
literature evidence) of the 30 TFs. Among these TFs, 19 have
already been experimentally verified to be cell cycle TFs; here we
include MET31 and MET4, which were identified by Spellman et al.
(16, 18) and Tavazoie et al. (18). Tables 3-5, which are published as
supporting information on the PNAS web site, show the results of
the KS test with different binding thresholds. We also use the
Mann-Whitney (MW) test and find that the KS and MW tests give
congruent results (Tables 3-5 and Tables 6-8, which are published
as supporting information on the PNAS web site). The MW test is
equivalent to the Wilcoxon rank sum test, which is designed to test
the shift of locations among two distributions. However, this kind
of test cannot be used to detect the change of scales and shapes
between two distributions. The KS test serves as an omnibus test for
this purpose (19). We can compare the results generated from the
MW and KS tests to explore whether two distributions change
locations, scales, and shapes significantly. In our studies, the results
of the MW and KS tests are similar, indicating that the differences
between the two distributions are mainly the shift of locations.

Table 1 missed 11 of the 30 known cell cycle TFs. When the
binding threshold (p.) becomes less stringent (i.e., larger), more
known TFs can be predicted. For example, when we set p. < 0.01,
25 known cell cycle TFs are found, including six additional known
cell cycle TFs: RCS1, RME1, XBP1, ASH1, SUM1, and NDTS0.
Five known TFs (HIR3, SKN7, YHP1, UMES6, and IME1) cannot
be inferred by our method; although their pxs are small, their gks
are not low enough to pass our criteria. Note also that although
selecting a higher (less stringent) binding threshold can identify
more known cell cycle TFs, it may also include more irrelevant TFs.

Table 1 also shows the predicted regulatory behaviors of the 30
confident or plausible TFs. Most TFs are differentially expressed
during one or more phases of the cell cycle, suggesting that most of
these TFs have a high probability to be cell cycle related. Let us
consider two examples. First, FKH1 is involved in a G, wave of
transcription, and genes in GFXH! have indeed a significantly higher
expression level than genes in G~FXH1 in the G, phase. Second,
SWIS activates transcription of genes expressed in the G, phase,
and genes in GS"P are expressed significantly higher than genes in
G™"5 in the G phase. These inferences are consistent with
evidence from the literature.

Fig. 5, which is published as supporting information on the PNAS
web site, shows the average expression level of each gene group
regulated by one of the 30 TFs identified to be putative cell cycle
regulators during different phases. Most of the expression patterns
support our inferences. For example, genes in GFXH2 are expressed
at a lower level than genes in G~*¥#2 in M/G; and Gy but are
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Table 1. Thirty TFs identified as confident or plausible cell cycle TFs by the KS test with p. < 0.0001

Predicted behaviors

TF Refs. Phases Function M/Gy Gy S Gy M
ACE2 1, 20, 41 Gy Activates expression of early Gy-specific genes +
BAS1 14 Involved in the regulation of the purine and histidine biosynthesis pathways - +
DIG1 24 M/G, Involved in the regulation of mating-specific genes and the invasive growth +* -
pathway
FHL1 14, 31 Required for rRNA processing; a suppressor of RNA polymerase Ill mutations - —* +*
FKH1 1,13, 20 G, Involved in G, wave of transcription +
FKH2 1, 20, 40 M Activation of its M phase-specific target genes - —* +* +
GAL4 14 Involved in the expression of galactose-induced genes + -
GAT3 14 Protein containing GATA family zinc-finger motifs +* —* —*
HAA1 14 Transcriptional activator involved in the transcription of TPO2, HSP30, and +
other genes encoding membrane stress proteins
HAP4 14 HAP2/3/4 is essential for rapid transcriptional induction during transition +
from repressed to derepressed conditions
HIR1 42 S Nonessential transcriptional corepressor involved in the cell cycle-regulated +
transcription of histone H2A, H2B, H3, and H4 genes
HIR2 42 S Nonessential transcriptional corepressor involved in the cell cycle-regulated - + +
transcription of histone H2A, H2B, H3, and H4 genes
MBP1 1,20 Gy, S Transcription factor involved in the regulation of cell cycle progression from —* x4k —*
Gq to S phase
MCM1 1, 20, 40 Gy, M Activator of G, and M phase-specific transcripts — — +
MET31 16, 18 Zinc-finger DNA-binding protein, involved in regulating the expression of -
the methionine biosynthetic genes; similar to Met32p
MET4 16, 18 Lecine-zipper transcriptional activator, responsible for the regulation of the +*
sulfur amino acid pathway
MET18 14 DNA repair and TFIIH regulator, required for both nucleotide excision repair -
and RNA polymerase Il transcription
MIG1 14 Transcription factor involved in glucose repression -
MIG2 14 Involved in repression, along with Mig1p, of SUC2 (invertase) expression by +
high levels of glucose
MSN2 14 Activated in stress conditions +* - -
MSN4 14 Activated in stress conditions +* —* —*
NDD1 1, 20, 40 M Activation of its M phase-specific target genes —* +* +*
STB1 43, 44 Gy, S Protein with a role in the regulation of MBF-specific transcription at Start; —* +
unphosphorylated form binds Swi6p, and binding is required for Stb1p
function; expression is cell cycle-regulated
STE12 14, 24 M/G, Activates genes involved in mating or pseudohyphal/invasive growth +* - -
pathways; cooperates with Tec1p transcription factor to regulate genes
specific for invasive growth
SWi4 1,20 Gy, S Involved in cell cycle-dependent gene expression —* x4k 4 —*
SWI5 1, 14, 20, Gy Activates expression of early Gy-specific genes +* -
21
Swie 1,20 Gy, S Forms complexes with DNA-binding proteins Swi4p and Mbp1p to regulate —* 4k 4 —*
transcription at the G4/S transition; involved in meiotic gene expression
TEC1 24, 45 M/G, Transcription factor of the TEA/ATTS DNA-binding domain family; regulator +* - -
of Ty1 expression
YAP5 2,3 Gy bZIP transcription factor +* - —%* —*
YOX1 3, 20, 37 M/G1, S Repress ECB (early cell cycle box) activity + —

Nineteen TFs (in boldface) have literature support for being cell cycle TFs. The predicted regulatory behaviors of each TF during different phases are also shown.
In each entry, + (—) indicates that the expression level of genes in G2 is significant higher (lower) than that of G™2. If ps is larger than the threshold, we leave

the entry empty. All known activation phases of TFs are correctly predicted by our method. The confident activation phases of TFs are indicated by *.

expressed at a higher level than are genes in G~FXH2 in G,, and the
expression level of FKH2 itself is low in M/G; and Gy but high in
G,. These observations indicate that FKH?2 is a cell cycle activator
for genes in GFXH2 during the G, phase. It is known that the YOX1
transcription peaks in the late G phase, and this initiates repression
of the early cycle box activity until the late M phase (20). The
regulatory behavior of YOX1 and the expression levels of genes in
GYOX1 are consistent with the above description. ACE2 and SWI5
are thought to be activators in Gj, and we find that the average
expression levels of genes in GA“£2 and G5"P in the G; phase are
significantly higher than those in G™¢F2 and G55, respectively.

13534 | www.pnas.org/cgi/doi/10.1073/pnas.0505874102

The ACE2 and SWI5 genes are transcribed in G, (21), and the
localization of these two proteins to the nucleus occurs during Gy,
so that they are active in G, instead of G, (22, 23). Therefore,
combining Table 1, Fig. 5, and, sometimes, literature survey, one
can infer which TFs are activators and which are repressors.

Synergistic Pairs of Cell Cycle TFs. The second method is applied to
test synergistic interaction between two TFs (Table 9, which is
published as supporting information on the PNAS web site). A total
of 203 TFs are used, so that there are 20,503 possible pairs of TFs.
When a very stringent criterion (p. < 0.0001) is used to define TF

Tsai et al.
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Table 2. Putative cell cycle synergistic pairs of TFs identified by the ANOVA model with p. < 0.0001

Confident Plausible Doubtful

TFs M/G, G, S Gy M TFs M/G, G, S Gy M TFs M/G, G, S Gy M
BAS1-HIR1 - — BAS1-HIR1 + CBF1-MET32 +
BAS1-RCS1 - FKH1-NDD1 + DIG1-STE12 —
DIG1-TEC1 + FKH2-MBP1 + FKH2-MBP1 -
FKH1-MCM1 + FKH2-MCM1 + FKH2-SWi4 +
FKH1-NDD1 + FKH2-NDD1 - FKH2-SWI6 -
FKH2-MCM1 + FKH2-SWi4 + MBP1-SWI6 +
FKH2-NDD1 + + FKH2-SWI6 + MCM1-NDD1 — +
FKH2-SWi4 - GAT3-PDR1 + MSN4-PDR1 +
FKH2-SWI6 + HAP4-PDR1 + NRG1-SWI4 —
HIR1-HIR3 — + + HAP4-YAPS + PHD1-SWI14 —
MBP1-SWI6 - - MSN4-YAP5 + STB1-SWi4 -
MCM1-NDD1 + NDD1-SKN7 + + SWI5-SWIi6 —
NDD1-SKN7 - NDD1-STB1 + +
NDD1-STB1 - NDD1-SWi4 -
NDD1-SWI14 + + RLM1-SWI5 -
RLM1-SWI5 + SWI4-SWI6 +
SWIi4-SWI16 - - SWI6-TEC1 +
SWI6-TEC1 - +

Three confidence levels are defined: confident (panova < 107> and ganova < 1073), plausible (panova < 0.001 and ganova < 0.001), and doubtful (panova <
0.01 and ganova < 0.01). A paired TF is indicated in boldface if it is supported by literature evidence and italic if the two TFs have physical interactions or have

been predicted as a cell cycle synergistic pair in previous studies.

binding, we identify 18 confident pairs, which include eight known
(experimentally verified) synergistic pairs. A total of 30 pairs are
identified as confident, plausible, or doubtful, and this set includes
9 of the 12 known synergistic pairs. For the other three known pairs
(ACE2-SWI5, HIR1-HIR2, and HIR2-HIR3), the numbers of
genes in groups G% # and G~ %P are too small to perform the
ANOVA analysis. These three known pairs can be identified when
the TF-binding criterion is relaxed to be 0.001. Combining the
results using p. < 0.0001 and p. < 0.001, we identify 103 pairs, which
is much smaller than the 20,503 possible pairs from 203 TFs and
provides a reasonably small number of TF pairs to be tested
experimentally. Interestingly, this set includes all of the 12 known
synergistic pairs: ACE2-SWI5 (21), DIG1-STE12 (24), FKHI-
NDD1 (25), FKH1-MCM1 (26), FKH2-MCM1 (26), FKH2-NDD1
(26), HIR1-HIR2 (27), HIR2-HIR3 (11), HIR1-HIR3 (11),
MCMI1-NDD1 (25), SWI4-SWI6 (SBF) (28), and MBP1-SWI6
(MBF) (2). Furthermore, our predictions for the activation function
of all these pairs are consistent with literature evidence. For
example, ACE2-SWI5, MBP1-SWI6, and SWI4-SWI6 activate
genes at the G phase.

Table 2 shows the results of an ANOVA analysis with p. <
0.0001; for p. < 0.001, see Table 10, which is published as supporting
information on the PNAS web site. Our results provide some
interesting insights. Let us consider some examples. First, DIG1 and
TEC]1 are involved in the MAP kinase (MAPK) signaling pathway,
and both regulate TECI, FUS1, PCL2, MSB2, STE12, and PRM1
(TEC1 is self-regulated). All these genes have a higher expression
level at the M/G; phase than at other phases and are either
pheromone-related or involved in the MAPK pathway. Our results
suggest that DIG1 and TEC1 cooperatively activate these genes at
the M/G; phase. Second, RLM1 is responsible for cell wall
organization and biogenesis, whereas SWIS5 activates transcription
of genes in the G phase and the M/G; boundary. The target genes
of the pair RLM1-SWI5, including CRH1, HSP150, PIR3, PIR1, and
YLRI94C, are required for cell wall architecture and stability (11)
and are considered to be cell cycle genes at the M/G; phase (16).
Third, NDD1-YOXI1 regulates cell cycle genes (16) KIN3, DBF2,
SPOI12, UTHI, and MFA2, which function as part of a network in
exit from mitosis or mating pheromone a-factor.

In Tables 2 (p. < 0.0001) and 10 (p. < 0.001), 80 synergistic pairs

Tsai et al.

from 39 TFs are considered as confident or plausible in the analysis.
Fig. 6, which is published as supporting information on the PNAS
web site, shows the synergy relations for these TF pairs. Many TFs
form a group in which TFs are synergistic with each other and
coregulate genes at the same time. For example, HIR1, HIR2, and
HIR3 help control the cell cycle transcription of histone genes (29)
and in our results, these three genes form a synergistic group at the
S and G; phases. As another example, MCM1, NDD1, and FKH1/
FKH2 are the critical activators of a group of M phase-specific
transcripts (20), and we find that these three genes form a syner-
gistic group at the M phase. Similarly, MCM1-NDD1-REBI1 and
DAT1-HAP1-MSN4 function at M and Gy, respectively.

Discussion

Several published methods use similar data (e.g., ChIP-chip data,
motif information, and expression data) and/or similar analysis
approaches (e.g., group genes by presence/absence of binding in
ChIP-chip experiments; compare the correlation of expression
levels of genes with the same motifs and assess whether the
reduction in variance is significant) to identify synergistic TF pairs
(5, 6, 9, 10, 30). In particular, Banerjee and Zhang (9) used Lee
et al.’s (4) ChIP-chip data and Cho ef al.’s (31) expression data and
identified 31 TF pairs with a significant level of cooperativity. They
considered 10 of these TF pairs to be cell cycle related, including
eight literature-supported TF pairs. Our method has identified all
of these synergistic pairs and identified four other synergistic pairs
with literature support (HIR1-HIR3, HIR2-HIR3, FKH1-MCMI,
and DIG1-STE12). Four pairs considered as uncharacterized func-
tional pairs by Banerjee and Zhang (9) (GAT3-PDR1, FHLI-
GAT3, GAT3-MSN4, and MSN4-YAP5) are also identified by our
method. In addition, our results are consistent with those of Kato
et al. (30), who integrated sequence, expression, and localization
data to identify combinatorial regulation of TFs and binding motifs.

Das et al. (5) applied the method of multivariate adaptive
regression splines (MARS) to study the correlation of the occur-
rences of TFs and the expression levels of genes bound by TFs. This
is a nonparametric adaptive regression method. With spline basis
functions in the MARS model, it is more flexible to model the
correlation of TFs and expression levels of genes from observations.
However, a large number of observations are required to estimate
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the coefficients and knots for the spline basis functions in MARS.
In existing studies of yeast cell cycle TFs, only a few observations
(microarray data) are available for a phase. Therefore, we propose
the ANOVA-type approach in this study.

In comparison with current methods, our method has the fol-
lowing advantages: (7) it can detect more synergistic pairs, (i) it can
infer the activation (repression) phase, and (i) it does not require
multiple time points.

In the analysis of individual TFs (Tables 3 and 4) and of
synergistic pairs (Tables 2 and 9), 50 TFs are considered confident
or plausible as individual cell cycle TFs or as synergistic TF pairs.
Twenty-four of these 50 regulators are indeed known cell cycle
regulators. In addition, for some TFs such as GAT3, HAALI,
MET]18, and RLMI, half of their target genes are cell cycle genes
according to Spellman et al. (16). Some other TFs have been
identified to be regulators in other pathways, such as BASI in
biosynthesis pathway, FHL1 in rRNA processing, GAL4 in galac-
tose-induction, MIG1 and MIG2 in glucose repression, and MSN2
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and MSN4 in stress conditions. Whether these TFs are really cell
cycle TFs needs to be investigated in the future.

Combining the present and published results, we propose a
model to describe the regulatory behaviors of the 50 known or
putative cell cycle regulators (Fig. 1); there are 37, 23, 34, 25, and
22 TFs involved in phases M/Gy, Gy, S, G,, and M, respectively. In
the G; phase, SKN7 (4, 32) and STB1 (4, 33) contribute directly to
G;-specific transcription. ASH1 serves to repress the late G-
specific transcription of HO and prevents mating-type switching
(34, 35). RMEI1 acts as an activator of at least one late G;-specific
transcript, CLN2 (20, 36). ACE2 and SWI5 are thought to be
cooperative activators at the G; phase (22, 23). SWI4, SWI6, and
MBP1 are involved at the G; phase, and SWI4-SWI6 (SBF) (28)
and MBP1-SWI6 (MBF) (2) activate late G, and early S genes. All
these verified cell cycle TFs are predicted to function at the G
phase by our methods (ASH1 can be identified when we relax the
binding threshold to 0.01; see Table 5).

In the S phase, YOX1 transcription peaks in the late G; (31) and
represses the early cell cycle box (bound by MCM1) activity until
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the M phase (37). For HIR1-HIR2 (or HIR1-HIR3 or HIR2-
HIR3), they function as transcriptional corepressors to regulate
histone gene transcription in the yeast cell cycle, but they must be
transiently inactivated at the G;/S phase boundary for the tran-
scription of histone genes to be derepressed (27). Therefore, HIR1,
HIR2, and HIR3 are indeed corepressors, but genes regulated by
them are derepressed in the S and G, phases (16, 30, 38). Further,
some studies suggest that FKH1 and FKH?2 are also involved in the
S phase (1, 4, 30, 39). All these verified cell cycle TFs and synergistic
pairs are predicted to function in the S phase by our methods.

Transcriptional control in the G, and M phases is less well
characterized. The present understanding is that NDD1 is the
critical activator of a group of M phase-specific transcripts (13, 20,
25, 40). This M phase-specific transcription requires FKH1/FKH2
as well as MCM1 and NDD1. Our methods indicate that FKH2,
NDD1, MCM1, FKH1-MCM1, FKH2-MCM1, and MCM1-NDD1
function in the M phase. Other studies (1, 4) suggested that MCM1,
together with FKH1 or FKH2, recruits the NDDI1 protein in late
G, and that FKH1, NDD1, and FKH2-MCM1 function in the G,
phase.

In the M/G; phase, the known TFs include YOX1, DIG1, TEC1,
and STE12 (24, 37). DIG1-STE12 is involved in the regulation of
mating-specific genes (24). Kato et al. (30) suggested that SWI4,
YOX1, SWIS, DIGI, and STE12 function during this phase. Our
methods indicate that SWI4, SWI5, YOX1, TECI1, DIGI, and
STE12 (the synergistic pair DIG1-STE12) function at this phase.

Some TFs are present at many phases in the cell cycle. For
example, let us consider FKH2. Genes in GFX#2 have a higher
expression level than those in GFXH2 in the S, G,, and M phases
but have a lower expression level than those in G2 in the M/G;
and Gy phases. Genes in GFXH2 are expressed in the Gy phase in two
patterns: genes in GFXH2NDPD1 haye a lower expression level than
genes in G~FKHZ=NDDL \whereas genes in GFKH2SWI6 have a higher
expression level than genes in G~FKH2=SWI6| A TF can act as both
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a repressor and an activator of gene expression by cooperating with
different TFs, making it difficult to confirm in individual analysis.
Such phenomenon is common in Fig. 1; for example, TECI in the
M/G; phase; PDR1, MET18, and HAP1 in the G; phase; SWI6
and MBP1 in the S phase; and HIR3 and YOXI1 in the G, phase.

Conclusion

Our approach has the following features: (i) It can find both
individual TFs and synergistic pairs of TFs that act under a specific
condition; (i) it can describe the regulatory behaviors of identified
TFs and synergistic TF pairs; (i) it can be applied to expression
data with few arrays or even for a single time point; (iv) for
synergistic pair analysis, our model takes the additive effects into
account via the ANOVA model; and (v) a TF can be an activator
or a repressor in different phases. These features make it simple to
apply our methods to detect TFs in other functions or processes,
such as stress response, metabolism, drug treatments, etc.

However, our approach has some limitations. First, the target
genes of TFs are not simple to obtain. We collect the information
from four TF databases and ChIP-chip data, which may not have
been generated specifically for the cell cycle. The p value threshold
of ChIP-chip experiments should be defined carefully to obtain
correct target genes, and the conditions of ChIP-chip experiments
have to be consistent with microarray data (such as the cell cycle
condition in this study). In addition, there may exist some combi-
natorial rules, such as the order and distance between two TF-
binding sites, of the binding-site motifs of two synergistic TFs. Lack
of such information can reduce the sensitivity and accuracy of our
inference. In the future, these limitations might be overcome when
more data become available.
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