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Rotationally induced fingering patterns in a two-dimensional heterogeneous porous medium
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Rotating fluid flows under two-dimensional homogeneous porous media conditions (or in a rotating Hele-Shaw
cell) reveal the development of complex interfacial fingering patterns. These pattern-forming structures are char-
acterized by the occurrence of finger competition events, finger pinch-off episodes, as well as by the production
of satellite droplets. In this work, we use intensive numerical simulations to investigate how these fully nonlinear
pattern growth phenomena are altered by the presence of permeability heterogeneities in the rotating porous
medium. This is done by employing a diffuse-interface Darcy-Cahn-Hilliard description of the problem and con-
sidering a permeability field presenting a log-Gaussian distribution, characterized by a variance s and a correlation
length l. We study how the heterogeneity measures s and l couple to the governing hydrodynamic dimensionless
parameters of the problem and introduce important changes on the pattern formation dynamics of the system.
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I. INTRODUCTION

Viscous fingering (or Saffman-Taylor) instability [1,2]
is driven by the viscosity difference between fluids. This
hydrodynamic instability occurs when a less-viscous fluid
pushes a more-viscous one in the effectively two-dimensional
(2D) geometry of a Hele-Shaw cell, which is equivalent to a 2D
homogeneous porous medium. This popular pattern-forming
problem involves the development of long smooth fingers in
rectangular channels or ramified fronts if the injection-driven
flow takes place in an open radial geometry [3].

An alternative form of fingering instability in confined
geometry arises when there exists a difference in density
between the fluids. Specifically, this type of instability occurs
when a fluid, surrounded by another of lower density, is located
in a Hele-Shaw cell that rotates about an axis perpendicular
to the cell plates [4,5]. Centrifugal forces act on the density
difference between the fluids, and a morphological instability
results.

Meticulous laboratory experiments and sophisticated nu-
merical simulations reveal the outcome of a great variety
of patterned shapes in this 2D homogeneous rotating envi-
ronment [5–9]. These rotation-induced fingering structures
are very distinct from the ones detected in viscosity-driven
radial Hele-Shaw flows generated by injection. For example,
instead of presenting branched, tip-split fingers as in the
injection-driven radial flows, the rotating fingering patterns
usually exhibit nonsplitting fingers of different lengths that
compete among themselves. It has also been found that such
finger competition events depend on the viscosity difference
(or, on the viscosity contrast) between the fluids. Depending on
the viscosity contrast, the rotationally driven fingering patterns
may change from teardroplike structures to thin filamented
arms presenting swelled ends or to a backbone architecture
with nearly constant finger widths. Additionally, complex
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pinch-off phenomena are also detected, characterizing the
formation of satellite droplets which are detached from the
main body of the rotating inner fluid droplet.

Despite the importance of all the pattern-forming infor-
mation extracted from the valuable studies performed in
Refs. [4–9], they only explored the confined rotationally
driven problem under spatially homogeneous conditions. One
valid, and still open, question is to ask how the important
pattern-forming behaviors observed in the system will be
affected by the existence of heterogeneities in such a confined,
rotating flow situation. In this work, we address this issue
and analyze the development of centrifugally driven interfacial
structures in a 2D rotating heterogeneous porous medium.

We tackle the problem by employing advanced numerical
simulations and investigating how the interplay of centrifugal,
viscous, surface tension, and heterogeneity effects influence
the dynamics and morphology of the emerging fingering
patterns. In particular, we are interested in examining how the
heterogeneity of the confined medium affects and modifies
the most relevant pattern formation mechanisms that are
usually found during rotating flows in the corresponding purely
homogeneous situations.

The remainder of this paper is organized as follows.
The basic setup of the physical problem, the governing
equations, and the numerical methods are introduced in Sec. II.
Section III presents our numerical results that unveil a number
of appealing rotationally induced fingered structures as the
heterogeneity properties of the 2D rotating porous medium
are changed. Specifically, we discuss how finger competition
events, finger pinch-off episodes, and the phenomenon of
satellite droplet formation are impacted by the system’s
permeability heterogeneity. Finally, Sec. IV summarizes our
main findings and conclusions.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

We study the development of interfacial instabilities that
arise at the interface separating two immiscible fluids in a ro-
tating 2D heterogeneous porous medium whose permeability
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FIG. 1. Representative sketch of a rotating heterogeneous porous
medium, showing a typical permeability distribution k(x,y), where
a clearer (darker) area corresponds to a region of higher (lower)
permeability. The whole system rotates with constant angular velocity
�. The inner fluid is more dense (ρ2 > ρ1), so the initially circular
boundary of radius R0 separating the fluids is centrifugally unstable,
and deforms, to eventually produce complex interfacial patterns.

is represented by k(x,y). A circular drop of the inner fluid 2,
whose initial radius is denoted by R0, is placed in the porous
medium surrounded by the outer fluid 1, as illustrated in Fig. 1.
A 2D Cartesian coordinate system, whose origin is located at
the center of the inner fluid drop, is defined. The densities and
viscosities of the fluids are denoted by ρj and ηj , respectively
(j = 1,2). The entire system rotates with constant angular
velocity �. We focus our attention on the centrifugally induced
motion where ρ2 > ρ1.

The governing equations for this immiscible binary fluid
system can be described by a diffuse-interface approach based
on the Darcy-Cahn-Hilliard (equivalent to the Hele-Shaw-
Cahn-Hilliard) model and are written as [9–14]

∇ · u = 0, (1)

∇p = −η

k
u + ρr�2er − ε∇ · [ρ(∇c)(∇c)T ], (2)

ρ

(
∂c

∂t
+ u · ∇c

)
= α∇2μ, (3)

μ = ∂f0

∂c
− ε

ρ
∇ · (ρ∇c), (4)

f0 = f ∗c2(1 − c)2. (5)

Here, u denotes the velocity vector, p the pressure, η the
viscosity, and ρ the density of the binary system. In addition,
r is the radial distance from the origin, and er represents the
unit vector in the radial direction. The phase-field variable is
represented by c, so c = 1 in the bulk of fluid 1, and c = 0 in the
bulk of fluid 2. The constants ε and α represent the coefficient
of capillarity and mobility, respectively. The chemical potential
is denoted by μ, and f0 is a free energy (or the Helmholtz free
energy) with a characteristic specific energy f ∗.

Equation (1) expresses the incompressibility condition,
and Eq. (2) is the Darcy-Cahn-Hilliard equation. Notice
that the second and third terms on the right-hand side of
Eq. (2) represent the centrifugal force and the interfacial
force connected to surface tension, respectively. We consider
a vanishing Reynolds number situation, and the Coriolis
force can be safely neglected [4,9,15,16]. Finally, Eq. (3) is
a diffusion equation for the phase-field variable. From this
Darcy-Cahn-Hilliard formulation [Eqs. (1)–(5)], an expression
for the surface free energy existing on the interface can be
calculated as [12]

E = ρ

∫ [
f0 + ε

2
(∇c)2

]
dV, (6)

where V is the volume of the fluid domain.
We follow Refs. [10,11,17,18] and apply a Boussinesq

approximation such that the density is represented by a
constant bulk average density of the two fluids ρb, except in
the centrifugal force term. Furthermore, to avoid discontinuity
of the profiles of viscosity η and density ρ within the thin
diffusive boundary region, the smooth variations that depend
on the phase-field variable are assumed as

η(c) = η1 exp [R(1 − c)], R = ln

(
η2

η1

)
, (7)

ρ(c) = ρ1c + ρ2(1 − c). (8)

To generate the desired statistical distribution of the per-
meability field, we employ an algorithm originally proposed
by Shinozuka and Jan [19]. In this context, the heterogeneous
permeability field k(x,y) is expressed in terms of a characteris-
tic value K , and the exponential of a random function g(x,y),
whose Gaussian distribution is characterized by the variance
s, and the spatial correlation length l as follows [10,11,14,18]:

k(x,y) = K exp [g(x,y)], (9)

g(x,y) = s2 exp

{
−π

[(x

l

)2
+

(y

l

)2
]}

, (10)

with mean ḡ = 0, and a logarithmic mean permeabil-
ity log[k(x,y)] = log[K]. The readers are referred to
Refs. [18,19] for more details about the statistical generation
of the permeability patterns. Within this description, changes
in the magnitude of the permeability are determined by the
variance s, while the typical size of more permeable regions is
prescribed by the correlation length l. For example, l = 0.2
(or l is 1/5 of a rescaled initial inner fluid drop radius
R0 = 1) in the representative permeability field illustrated
in Fig. 1. Note that by considering the limit of vanishing
variance in Eqs. (9) and (10), i.e., by setting s = 0, one
reproduces the homogeneous medium situation. Notice that
our present study mainly aims to identify the effects of
variance and correlation length of heterogeneity in such a
way that all the permeability fields associated with different
correlation lengths considered in the simulations are generated
by utilizing a single set of random numbers. This is particularly
important for allowing more direct comparisons of situations
involving different values of the correlation length. Otherwise,
for totally independent realizations of the permeability field,
the intrinsic random nature of their distributions would make
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such a comparison very difficult. It should be noted that this
approach has been successfully used by previous simulational
works that examined heterogeneous injection-driven flows
in rectangular and radial geometries [10,14,18]. It is also
worth mentioning that good examples of real injection-driven
Hele-Shaw cell experimental realizations of effectively 2D
heterogeneous media include Hele-Shaw cells with random
gaps [20] and with roughened glass plates [21].

At this point, it is convenient to rewrite the governing
equations (1)–(5) in a dimensionless form,

∇ · u = 0, (11)

∇p = −η

k
u −

(
c + ρ2

	ρ

)
rer − C

Ga
∇ · [(∇c)(∇c)T ], (12)

∂c

∂t
+ u · ∇c = 1

Pe
∇2μ, (13)

μ = ∂f0

∂c
− C∇2c, (14)

f0 = c2(1 − c)2. (15)

We nondimensionalized these Boussinesq Darcy-Cahn-
Hilliard equations as follows. The initial radius of the inner
fluid drop R0 and density difference 	ρ = ρ2 − ρ1 have
been taken as characteristic scales. Viscosities and time are
scaled by η1, and η1/(	ρ�2K), respectively. In addition, a
characteristic velocity (	ρ�2R0K)/η1, the pressure 	ρ�2R2

0,
and a specific free energy f0

∗ have also been used in
the nondimesionalization process. Dimensionless parameters,
such as the viscosity contrast A, the rotationally modified
Galileo number Ga, the Péclet number Pe, and the Cahn
number C fully characterize our physical system and are
defined as

A = eR − 1

eR + 1
, Ga = 	ρ�2R2

0

ρbf ∗ ,

Pe = ρb	ρ�2KR2
0

αη1f ∗ , C = ε

f ∗R2
0

.

From this point on, we describe our system by using the
dimensionless version of all equations.

To solve the governing equations numerically, we recast
them into the well-known stream function-vorticity formula-
tion (φ,ω) [22], yielding

u = ∂φ

∂y
, v = −∂φ

∂x
, (16)

∇2φ = −ω, (17)

where

ω = −R

(
u

∂c

∂y
− v

∂c

∂x

)
− k

η

(
y

∂c

∂x
− x

∂c

∂y

)

− 1

k

(
u

∂k

∂y
− v

∂k

∂x

)
+ kC

ηGa

[
∂c

∂x

(
∂3c

∂x2∂y
+ ∂3c

∂y3

)

− ∂c

∂y

(
∂3c

∂x∂y2
+ ∂3c

∂x3

)]
.

To simulate the interfacial phenomena, a 4 × 4 computa-
tional domain, whose size is twice larger than of the initial
drop diameter D0 = 2R0 = 2, is applied. For such a domain,
the boundary conditions of the problem are prescribed as

x = ±2 : φ = 0,
∂c

∂x
= 0,

∂2c

∂x2
= 0, (18)

y = ±2 : φ = 0,
∂c

∂y
= 0,

∂2c

∂y2
= 0. (19)

To reproduce the extremely fine structures of the fingers,
we apply a highly accurate pseudospectral method. As a result,
the actual boundary conditions applied in the numerical code
are ∂φ/∂y = 0 at y = ±2. To ensure the appropriateness of
such a condition, the simulations are terminated before the
outermost fingertips reach the used computational boundaries.
Consequently, no concentration gradient is generated on the
boundaries, and the above conditions automatically lead to
φ = 0. Both c and φ are expanded in a cosine series in the
streamwise direction. In the normal direction, discretization
is accomplished by a sixth-order compact finite differences.
To obtain the time evolution of the interface, equations for
the phase variable c, vorticity ω, and stream function φ are
solved in sequence in a mesh of 513 × 513 grid points. Time
integration for the phase variable equation is fully explicit,
and utilizes a third-order Runge-Kutta procedure. The spatial
derivatives in the phase equation are discretized by sixth- and
fourth-order compact finite difference schemes for diffusion
and convection terms, respectively. A dynamical time step
determined by the local maximum Courant-Friedrichs-Lewy
(CFL) number, i.e., CFL = (u,v)max

	t
	x

, is applied to advance
in time. A small CFL = 0.1 is taken in the simulations.
At every time step, the local maximum speed (u,v)max is
checked in the entire domain and then 	t = 0.1	x/(u,v)max

is obtained to advance the simulation in time. For more
details about the numerical scheme, we refer the readers to
Refs. [11,17,23].

Validations of the present diffuse-interface method are
generally supported by the excellent qualitative and quan-
titative agreements with existing experimental observations,
and theoretical predictions on pattern formation, as well as the
number of fingers achieved in previous works on similar radial
Hele-Shaw flows, e.g., rotational flows [7–9], and suction
flows [13] under homogeneous conditions. In particular,
the cases of low viscosity contrast when A = 0.4–0.5 in a
rotating Hele-Shaw configuration simulated in Ref. [9] agree
well, both qualitatively and quantitatively, with the existing
experiments reported by Alvarez-Lacalle et al. [6,8]. These
facts substantiate the validity and accuracy of the numerical
scheme employed in the our current study.

III. RESULTS AND DISCUSSION

In this section, we present our numerical results and discuss,
both qualitatively and quantitatively, how the heterogeneous
nature of the rotating porous medium affects the fully nonlinear
dynamics of the system and how it influences the advanced-
time morphological properties of the emerging interfacial
patterns. Since the two key parameters of the permeability
field are given by the variance of the heterogeneity field s,
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FIG. 2. Fingering patterns for A = 0.76 and l = 0.2, taken at time
t = 7. We consider three values of the Galileo number Ga: 0.5 (top
row), 1 (middle row), and 2 (bottom row). Moreover, three values of
the variance s are taken: 0 (left column), 0.3 (central column), and 0.6
(right column). Recall that s = 0 corresponds to the homogeneous
situation. The scale bar represents R0.

and the spatial correlation length l, for the sake of clarity and
simplicity we divide our analysis into two separate parts: (i) in
Sec. III A, we focus on the effects due to changes in s, while (ii)
in Sec. III B we concentrate on the impact produced by changes
in l. Without loss of generality, and based on the existing
numerical results for flows in the homogeneous environment
of a rotating Hele-Shaw cell [9,13], we take Pe = 9 × 103

and C = 10−5 in all the simulations shown in the rest of this
investigation.

A. Influence of the variance of the heterogeneity field

We begin our discussion by analyzing Fig. 2, which focuses
on a representative positive viscosity contrast case where
η2 > η1, namely A = 0.76. The fingering patterns plotted in
Fig. 2 are shown at time t = 7. Throughout this section, we
consider a fixed value of the spatial correlation length l = 0.2,
while the governing parameters A,Ga, and s may vary. For
the particular value of the viscosity contrast used in Fig. 2
(A = 0.76), we have that the inner fluid is about 7.4 times more
viscous than the outer fluid. Here, the major driving force is
centrifugal in nature and competes with surface-tension, vis-
cous, and heterogeneity effects. In order to search for various
different morphological behaviors, in Fig. 2 we consider three
values of the Galileo number Ga: 0.5 (top row), 1 (middle row),
and 2 (bottom row). In addition, we consider three increasingly
larger variances s: 0 (homogeneous condition, left column), 0.3
(central column), and 0.6 (right column). It should be noted
that the variation of permeability for s = 0.3 and 0.6 range

between 0.74 � k � 1.39 and 0.30 � k � 3.68, respectively,
with a logarithmic mean permeability log[k(x,y)] = 0.

For the homogeneous cases (s = 0) depicted in the left
column of Fig. 2, the characteristic shapes of the patterns
are consistent with similar structures previously obtained in
Refs. [7–9]. By inspecting these homogeneous situations, one
realizes that under higher Ga (stronger centrifugal effects
or smaller surface tension), a larger number of fingers is
produced, and more intense droplet emissions at the fingertips
are triggered. Besides, one also verifies that finger competition
(measured by finger length variability) among the outward-
moving fingers of the inner (dark) fluid is not very intense.
This can be seen by the fact that the fingertips of the outward-
moving fingers all present similar radial distances from the
center of the rotating droplet, defining a nearly circular outer
boundary. On the other hand, the inward-moving fingers of
the penetrating outer (clear) fluid that move toward the origin
compete quite strongly among themselves, acquiring different
lengths. These two distinct finger competition behaviors
revealed by outward- and inward-moving fingers are also
in line with existing laboratory experiments [6] and other
numerical simulations [7–9].

If the environment is now heterogeneous, as in the cases
depicted in the central (s = 0.3) and right (s = 0.6) columns
of Fig. 2, then different morphological features can be
identified in the fingering patterns. First, one notices that
the presence of permeability heterogeneity tends to reduce the
number of produced fingers. While in the homogeneous case
centrifugal forces induce the fingers to evolve preferentially
in the radial direction, the randomly distributed permeability
field weakens such radial preference for finger growth. This
favors finger merging at very early time, so the number of
fully developed fingers can be reduced. This enhanced finger
merging phenomenon at early times of the dynamics also
explains the fact that the roots of the fully developed fingers
under heterogeneous conditions appear thicker than the ones
of their homogeneous counterparts.

A second relevant aspect that can be extracted from the
central (s = 0.3) and right (s = 0.6) columns of Fig. 2 refers
to the influence of permeability heterogeneity on the finger
competition mechanism. One observes that, in such cases,
finger competition of inward-moving fingers tends to increase,
with the stronger penetration of a few dominant fingers of the
outer fluid. Most interestingly, one can see that, under hetero-
geneous conditions, finger competition also arises among the
outward-moving fingers of the inner fluid. This can be verified
by the more evident variations in the radial positions of the
outermost fingertips. This enhancement of finger competition
is somewhat expected, since now fingers tend to move toward
regions associated with higher permeability. As a result, the
development of individual fingers is affected by the local
distribution of permeability, leading to an increased finger
length variability.

Still regarding the central (s = 0.3) and right (s = 0.6)
columns of Fig. 2, it is also worth pointing out the impact of
permeability heterogeneity on the process of finger pinch-off,
as well as on the occurrence of droplet emissions near the
fingertips of outward-moving fingers. The process of droplet
emission under a homogeneous condition (s = 0) is mainly an
aftermath effect of the competition between surface tension
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and rotationally induced finger stretching. If, on one hand,
stronger surface tension tends to prevent the occurrence of
droplet emission, then, on the other hand, stronger centrifugal
effects favor the increased stretching of the fingered filaments.
If the local net centrifugal force within a finger exceeds the
constraint of surface tension, then there is fluid accumulation
at the fingertips, and satellite droplets may develop. The
presence of a high permeability region accelerates the outward
movement of nearby fingers, and the difference among their
lengths tend to increase. These longer fingers are subjected
to stronger variations of centrifugal forces, resulting in more
intense droplet emissions.

Another contributing factor to cause droplet emission in
a heterogeneous condition can be attributed to the action
of the local tangential velocity. Even though the dominant
fingering effects are driven by the radial centrifugal force,
significant tangential flows could be induced by the randomly
distributed permeability field. These tangential flows can break
the thin fingers apart and form separate segments. A similar
effect that is responsible for enhanced droplet emissions at
fingertips has been observed in a rotating drop subjected to
significant Coriolis force, in which case tangential flows are
also relevant [9]. Nevertheless, it should be pointed out that the
present tangential flow induced by permeability heterogeneity
differs from the situation involving Coriolis force, mainly
with respect to the locations of the pinch-off events along the
fingers. While the finger pinch-off caused by the effects of the
Coriolis force mostly occurs at the fingertips, the current finger
pinch-off events induced by the permeability heterogeneity
are not limited to these locations. This way, the presence of
tiny droplets or small finger segments can also be observed
at locations closer to the origin, which usually leads to the
formation of an array of multiple droplets or small finger
segments, instead of a single finger, as shown in Fig. 2 in
the case where Ga = 2 and s = 0.6.

One additional remark about Fig. 2 is the fact that an
increase in the permeability heterogeneity leads to enhanced
destabilization and faster finger growth. As a matter of
fact, the increment of length of the outermost finger is
potentially important to the so-called breakthrough time or
contaminated area in many relevant practical applications of
this problem [23–25]. Finally, notice that the droplet emission
and the finger pinch-off phenomena revealed in Fig. 2 are
accompanied by a severe inward motion of the outer fluid
fingers, something that provokes an increased fragmentation
of the rotating droplet for larger values of s and Ga.

Now we turn our attention to another important physical
situation, namely the zero viscosity contrast case A = 0, in
which the rotating fluids have the same viscosity (η1 = η2).
Here our main task is to understand how permeability
heterogeneity influences interfacial pattern formation under
such a viscosity-matched situation. This is done in Fig. 3, in
which, with the exception of A, we use the same physical
parameters and initial conditions as those used in Fig. 2. It
is well known that the viscosity contrast plays an important
role in the pattern formation process that arises in a rotating
homogeneous porous medium (or Hele-Shaw cell) [7–9].
The homogeneous situation (s = 0) corresponding to the
viscosity-matched case is depicted in the left column of Fig. 3.
Compared with the corresponding cases for positive viscosity

FIG. 3. Fingering patterns for A = 0 and l = 0.2, taken at time
t = 1.7. We consider three values of the Galileo number Ga: 0.5 (top
row), 1 (middle row), and 2 (bottom row). Moreover, three values of
the variance s are taken: 0 (left column), 0.3 (central column), and
0.6 (right column). Note that s = 0 corresponds to the homogeneous
situation. The scale bar represents R0.

contrast A = 0.76 shown in the left column of Fig. 2 taken at
time t = 7, we notice that fingers develop much faster when
A = 0. In addition, for A = 0, one observes weaker finger
competition among outward as well as among inward-moving
fingers. This happens because in the case A = 0 there is no
preferential flow direction regarding the viscosities of the inner
or outer fluids. These observations for the homogeneous case
in Fig. 3 agree well with similar findings already reported in
the literature [7–9].

However, if the effects of permeability heterogeneity are
taken into account, different pattern-forming scenarios arise.
These still unexplored behaviors are illustrated in the central
(s = 0.3) and right (s = 0.6) columns of Fig. 3. One evident
difference revealed by these heterogeneous cases is the fact
that finger competition (of both outward- and inward-moving
fingers) is enhanced. In addition, one can also see that the
thicknesses of individual fingers are not uniform, and multiple
slim fingers go through a pinch-off process, where droplet
emissions are also detected for higher values of s and Ga. These
qualitative influences of heterogeneity for A = 0 in Fig. 3 are
consonant with the ones discussed in the positive viscosity
contrast cases shown in Fig. 2, although the overall appearance
of the patterns for A = 0 is still considerably distinct from
those illustrated in Fig. 2 for A = 0.76.

Also notice that, in comparison with the A = 0.76 case,
some of the effects due to permeability heterogeneity become
milder in the A = 0 situation. For example, the penetration of
the inward-moving fingers of the outer fluid is less vigorous, so
the central (bulk) region of the inner droplet is relatively well
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FIG. 4. Time evolution of the interfacial length L for different
values of Ga and s and for l = 0.2. This is considered for (a) A = 0
(cases depicted in Fig. 3) and (b) A = 0.76 (situations shown in
Fig. 2).

preserved and less fragmented. Moreover, the outward-moving
fingers remain slim, similar to the cases under a homogeneous
condition. At this point, it should be stressed that, even though
they are not presented in this paper, we have verified that
the general trends related to the heterogeneous nature of the
medium discussed in Fig. 2 and Fig. 3 also hold for the cases
of negative viscosity contrast (i.e., when η1 > η2).

In order to have a more quantitative assessment of the
impact of permeability heterogeneity on the dynamics and
morphology of the interfacial fingering patterns illustrated in
Figs. 2 and 3, we investigate the time evolution of two useful
quantities: (i) the interfacial length and (ii) and the maximum
finger penetration. While the interfacial length considers the
evolution of all the fingers induced by rotation, expressing
the total perimeter of all structures formed, the maximum
finger penetration gives information about the radial mass
distribution. The time evolution of the interfacial length L,
for the various cases considered in Figs. 2 and 3, is displayed
in Fig. 4.

For the case of a homogeneous rotating porous medium (or
rotating Hele-Shaw cell) where s = 0, it is well established
that more intense fingering occurs for larger values of Ga,
a situation that is associated with earlier finger growth and
with the development of longer interfacial lengths. In general,
this basic trend also holds for heterogeneous situations.
Nonetheless, by inspecting Fig. 4(a) and Fig. 4(b), one
observes something interesting, namely the crossing of some
of the curves when one increases the value of s, while Ga and l

are held fixed. This fact can be clearly observed for the cases in
which Ga = 2 for both A = 0 and A = 0.76. Such crossings
do no occur in the usual homogeneous situation.

An explanation for the peculiar curve crossings shown in
Fig. 4 when permeability heterogeneity is taken into account
can be given as follows. First, let us define the latency time [6]

as the largest time for which the interface shape remains
circular, with length L = 2π . After this time, the instability
sets in, and the deformed pattern develops. So, usually we
see that L remains constant until the latency time and then
increases abruptly as the instability grows. By examining
Fig. 4, we deduce that the shortest latency time occurs for the
most heterogeneous condition s = 0.6. This is not surprising
since heterogeneity generates stronger interfacial perturbation,
causing early onset of the fingering instability. However,
despite the earliest growth of the interfacial length, its average
growth rate is not the largest, so after a period of time, the
interfacial length for s = 0.6 becomes smaller than the ones
associated with lower heterogeneities.

The behavior for the time evolution of L described above for
s �= 0 differs from the conventional findings encountered under
homogeneous conditions for which s = 0. In the homogeneous
case, a more unstable situation would form initial fingers
more rapidly, leading to more prominent growth driven by
centrifugal forces. As a result, an earlier growth of the
interfacial length can always be associated with a larger
growth rate, so either criterion can be used to describe a
more unstable fingering situation. These considerations are
no longer appropriate for our current heterogeneous cases. As
mentioned earlier in this work, even though early fingering
formation in the most heterogeneous condition is expected,
the strong local permeability heterogeneity also causes severe
tangential motion of the initial fingers, resulting in significant
finger merging. This merging phenomenon may reduce the
number of fingers significantly. Consequently, only a few
fingers are able to grow further, and the total interfacial
length ends up being smaller. Therefore, the earlier growth,
accompanied with a lower growth rate, observed for the cases
with stronger heterogeneity, explains the unconventional curve
crossings detected in Fig. 4.

Another measure of interest that also quantifies the effects
of permeability heterogeneities is the distance of maximum
penetration of fingers rf , involving both the inward- and
outward-moving fingers. A region beyond such typical dis-
tances characterizes a contamination free area. In other words,
beyond this region, a fluid (that can be either fluid 1 or
fluid 2 in our two-fluid system) is not contaminated with the
other fluid. Notice that the measurement of rf includes both
continuous fingers and separated droplets. The time evolution
of the positions of the outermost and innermost fingertips, rf , is
depicted in Fig. 5 for the cases A = 0 and A = 0.76. The data
presented in Fig. 5 agree qualitatively with similar findings
reported for homogeneous rotating Hele-Shaw flows [7–9],
in which faster and longer finger penetrations are observed
for the cases with lower A and larger Ga. It can also be
verified that if the permeability is heterogeneous, then the
finger penetration events are significantly strengthened. This
is in accordance with the observations made for the patterns
shown in Figs. 2 and 3. More intense finger competition that
takes place under heterogeneous conditions, triggers rapid
growth of both inward- and outward-moving fingers, so the
positions of the innermost and outermost fingertips are further
away from the original interface (identified in Fig. 5 by rf = 1
at t = 0). Incidentally, one can also observe that enhanced
finger penetration occurs preferentially for lower values of the
viscosity contrast, e.g., for A = 0.
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FIG. 5. Radial positions of the outermost and innermost fingertips
rf for different values of Ga and s and for l = 0.2. This is done for (a)
A = 0 (cases depicted in Fig. 3) and (b) A = 0.76 (situations shown
in Fig. 2).

Still examining Fig. 5, one can see that, while the incre-
ments of the inward and outward penetration distances under
the presence of heterogeneity, e.g., for s = 0.6, appear nearly
the same for the case in which A = 0.76 [Fig. 5(b)], for the
A = 0 case [Fig. 5(a)] the outward increment is significantly
larger than its inward counterpart. This more expressive
outward penetration for lower values of the viscosity contrast
is a result of the coupling between the effects of fluid mobility
and medium permeability. Since the outward fingers are driven
by the centrifugal force, they are always more active than
their inward-moving analogs. These outward fingers are more
mobile in the cases of lower viscosity contrast, so they are
directed much more vigorously toward the area with higher
permeability. Consequently, few salient fingers are formed,
such as the long slim outward ones at the lower left corner for
the situation in which Ga = 2 and s = 0.6 shown in Fig. 3. This
exemplifies the relevance of the coupling between permeability
and different viscosity contrast conditions in determining basic
pattern-forming behaviors in our system.

B. Impact of the spatial correlation length

In this section, we aim attention at the spatial correlation
length l and examine its role in determining the behavior of
the rotating patterns. To begin understanding the influence of
l, in Fig. 6 we display fingering patterns (left column), and
streamlines superimposed on the permeability distributions
(right column), for two representative cases in which l = 0.08
(top row) and l = 0.4 (bottom row). As mentioned earlier
in this work, the value of l is related to the typical sizes
of the individual clearer and darker areas that appear in the
representation of the permeability distributions, i.e., low (high)
values of l correspond to small (large) areas. By the way, in
the permeability distributions illustrated in the right column
of Fig. 6, the clearer areas are regions of higher permeability,
while the darker spots characterize areas of lower permeability.
Other relevant physical parameters utilized in Fig. 6 are

FIG. 6. Fingering patterns (left column) and streamlines super-
imposed on permeability distributions (right column) at t = 6.5 for
A = 0.76, Ga = 1, and s = 0.6. Top row: l = 0.08; bottom row:
l = 0.4. The scale bar represents R0.

A = 0.76, Ga = 1, and s = 0.6. Additionally, these images
are plotted at time t = 6.5. It is also worth mentioning that
the streamlines shown in Fig. 6 are instantaneous (taken at
t = 6.5), continuous across the interface, and relate to both
fluids. These facts can be justified as follows. Under the
conditions of our rotationally induced flow problem, fluid
motion takes place mainly on the interface, where fingers
are driven by local vortices. In addition, in the context of
our diffuse-interface method, such an interface is smooth,
and presents a finite thickness, so the streamlines are indeed
continuous across the fluid-fluid boundary. In this sense, the
streamlines depicted in Fig. 6 represent the motion of the whole
two-fluid system.

By observing the patterns illustrated in Fig. 6, one notices
that an important effect of the correlation length is the way it
affects the typical size of the resulting fingering structures. This
can be observed by comparing the patterns exhibited in Fig. 6
for l = 0.08 and l = 0.4 with those depicted in the middle
row in Fig. 2, which have been obtained by using similar
parameters but for an intermediate value of the correlation
length l = 0.2. Larger values of l induce the thinning of the
branching fingers and produce the thickening of the finger
basis (i.e., finger roots). In addition, one can see that there is
a preferred direction for finger growth toward the bulk region
having higher permeability. This can be verified by inspecting
the lower-right orientation in the case of l = 0.4, something
that can be also realized by examining the streamlines. As a
consequence, fewer fully developed fingers with more rapid
growth evolve for larger correlation lengths. The latter is
compatible with the so-called channeling effect reported in
injection-driven viscous fingering flows under heterogeneous
conditions [10,11,14].
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FIG. 7. Fingering patterns for Ga = 2 and s = 0.6. Top row: A =
0.76 at t = 7; bottom row: A = 0 at t = 1.2. We consider three values
of the spatial correlation length l: 0.08 (left column), 0.4 (central
column), and 0.8 (right column). The scale bar represents R0.

To further elucidate the influence of the correlation length
l on the patterns’ shapes, in Fig. 7 we plot fingering structures
obtained for three increasingly larger values of l: 0.08 (left
column), 0.4 (central column), and 0.8 (right column). To
facilitate visualization of the induced effects, and to produce
more intense fingering instabilities, we consider that Ga = 2
and s = 0.6. This is done for following values of the viscosity
contrast A and simulation times t : A = 0.76 at t = 7 (top row)
and A = 0 at t = 1.2 (bottom row). Of course, these patterns
can also be compared to the intermediate correlation length
cases (l = 0.2) shown in Figs. 2 and 3.

We first analyze the series of patterns in the top row of Fig. 7,
obtained for A = 0.76. It is evident that larger correlation
lengths tend to induce the formation of longer fingers. While
the sizes of the outward pointing fingers on the left front of
the patterns remain comparable for all correlation lengths,
the lengths of the penetrating inward-moving fingers tend
to increase for larger values of l. For instance, in the cases
with l = 0.4 and 0.8, two predominant inward channels can
be observed toward the lower-right region, where the local
permeability is high, similar to what has been shown in Fig. 6.
Sandwiched by these two dominant inward-moving channels,
there exists a thicker and faster-growing outward-moving
finger.

Another facet of the patterns that arise under large cor-
relation length circumstances for A = 0.76 is the uneven
development of fingers. For the cases in which the correlation
length is much smaller than the characteristic length scale
of the flow field (i.e., the unit radius of the initially circular
rotating droplet, R0 = 1), the permeability heterogeneity is
more evenly distributed within the domain (see, for instance,
the case for l = 0.08 in Fig. 6). In this situation, all fingers (both
inward- and outward-moving ones) evolve radially, without
preferred orientation. In contrast, if the correlation length is
comparable to the droplet dimension, as in the cases of l = 0.4
and l = 0.8, then the droplet interface would present regions
with great permeability variations. In these cases, the portions
of the droplet interface facing higher permeability would soon
develop quite vigorous growing fingers. On the other hand,

parts of the interface located at low permeability regions would
show fingers evolving at a much slower pace. This asymmetric
behavior results in the generation of patterns presenting two
very distinct fingering fronts, as the one represented in the top
row of Fig. 7 for l = 0.8.

The changes in the correlation length also affect the
development of fingering patterns in the zero viscosity contrast
case (A = 0), illustrated in the bottom row of Fig. 7. As in
the A = 0.76 situation, in the A = 0 case one can see the
formation of increasingly asymmetric patterns as the value
of l is augmented. For instance, for the largest l (l = 0.8)
one observes numerous thin fingers that evolve more evenly
on the left front of the pattern that faces a region of lower
permeability. On the right front, where permeability is higher,
faster and longer fingers arise, in a quite explosive, visually
striking fashion.

Despite the similar types of overall dynamical responses
for the cases of A = 0.76 and A = 0 pictured in Fig. 7, a
noticeable difference between the ultimate patterns formed is
the typical lengths of the fingering structures. The finger size
distribution tends to be more uniform when A = 0, where
fluid viscosities match. This uniformity in finger size is also
due to the restrained finger merging phenomenon that occurs
at early times when A = 0. However, when A = 0.76 the
inward-moving fingers of the less viscous fluid penetrate
the more viscous inner fluid, a situation that is unstable
with respect to the Saffman-Taylor instability. This viscosity-
unstable inward motion, associated with local permeability
heterogeneity, induces significant finger merging, resulting in
more irregular interfaces.

We close this section by discussing a relevant issue. As
pointed out earlier in this work, in our current numerical
simulations all the data obtained for particular values of s

and l use the same permeability pattern. However, ideally,
for each particular value of s and l, multiple permeability
distributions with different random number realizations should
be performed in order to more rigorously describe the
possible statistical behaviors. Unfortunately, the numerical
implementation of the use of multiple permeability patterns,
accompanied by repeated measurements, would require enor-
mous effort regarding modifications in our numerical scheme.
This is beyond the scope of our present work.

Even though the results presented in this work are based
on a single realization, some useful, conclusive observations
can still be extracted. From previous studies of fingering
formation in a quarter five-spot [10] and radial injection-
driven [14] configurations in heterogeneous porous media, it
has been found that the sizes of the fingers are predominantly
determined by the correlation lengths. On the other hand, the
variance does not significantly alter the sizes of fingers but just
provoke penetration toward a preferred region. Because of the
random character of the permeability distributions, identical
fingering patterns are not obtained, even for realizations
associated with the same statistical parameters. Moreover,
similar global features such as the overall fingering pattern,
and the interfacial length, might be observed in different
realizations associated with the same statistical parameters.
By the reasons stated above, the typical size of fingers, as well
as the overall morphology of the fingering patterns will not be
significantly changed in permeability distributions generated
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by different random realizations. These observations are
supported by the repeated global measurements for interfacial
lengths performed in Ref. [26], using different initial random
inputs. It has been demonstrated [26] that the interfacial lengths
remain nearly unaltered for the same control parameters,
regardless their initial random inputs. Nevertheless, it has also
been verified that, local quantitative measures, such as the
positions of the outmost and innermost fingertips, rf , might
become inconclusive for different random distributions. In this
case, a dominant finger usually evolves more rapidly, and even
can form a channel, for a certain distribution in which the
region of high permeability aligns along such a finger [10,14].
In any case, all these facts indicate that, despite its limitations,
our current numerical approach is useful to capture important
general features of the pattern formation process in rotating
2D heterogeneous porous media.

IV. SUMMARY AND CONCLUSION

There are plentiful examples of studies addressing the
formation of fingering patterns for effectively 2D flows in
a rotating Hele-Shaw cell, a device equivalent to a 2D rotating
homogeneous porous medium. In this work, we revisited
this suggestive pattern-forming problem but considered fluid
displacement in a rotating heterogeneous porous medium. We
utilized advanced numerical simulations, and investigated the
development of rotationally induced fingering instabilities that
arise in a 2D heterogeneous environment, by considering a
log-Gaussian distribution characterized by a variance s and a
correlation length l. Both s and l are coupled with different
dimensionless parameters of the problem, including the vis-
cosity contrast A and surface tension-related Galileo number
Ga. In this framework, changes in permeability magnitude
are determined by the variance, while the correlation length
prescribes the typical size of more permeable regions.

Our numerical results indicate that, in general, the presence
of permeability heterogeneity has a significant impact on
the pattern-forming dynamics. First, it has become clear that
permeability heterogeneity introduces additional perturbations
into the system, so the onset of fingering formation occurs
much earlier than it would happen under usual homogeneous
situations. In addition, we have observed that the dominant
radial flow induced by centrifugal forces is actually inhib-
ited by the randomly distributed permeability field. So, the

occurrence of finger merging phenomena is favored. This
heterogeneous effect causes a reduction in the ultimate number
of fully developed fingers.

By the same token, under the presence of heterogeneity,
the typical finger shapes appear more irregular, presenting
thicker roots, and slim bodies near the finger tips. Such
slim fingers frequently go through a permeability-induced
pinch-off process, giving rise to isolated satellite droplets and
small finger segments and resulting in patterns that look quite
fragmented. Additionally, we have found that permeability
variation favors the development of long and fast-moving fin-
gers, and, consequently, finger competition among the growing
structures is enhanced under heterogeneous conditions.

Most of these qualitative observational conclusions have
been checked and substantiated by more quantitative mea-
surements extracted from the time evolution of two useful
auxiliary quantities: the interfacial length L and the maximum
penetration fingertip position rf .

During the analysis of the general morphological features
summarized in the previous paragraphs, we had the opportu-
nity to identify the most emblematic effects induced by the
governing heterogeneity parameters s and l. First, we have
deduced that the variance of the heterogeneity field s plays a
more important role regarding the local fingering phenomena.
In other words, larger values of s tend to increase finger
competition and favor finger merging and finger pinch-off.
The major consequence of these effects is the fact that the
fingering patterns tend to be more and more fragmented as
s is augmented. On the other hand, we have found that the
correlation length l has a more global effect, strongly affecting
the overall shape of the fingering patterns. More precisely,
our results show that larger values of l induce the formation
of eye-catching, increasingly asymmetric, structures that are
quite distinct from the conventional, nearly radially symmetric,
patterns generated under homogeneous conditions.
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