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The ground state of the large Hubbard U limit of a honeycomb lattice near half filling is known to be a singlet
d + id-wave superconductor. It is also known that this d + id superconductor exhibits a chiral p + ip pairing
locally at the Dirac cone, characterized by a 2Z topological invariant. By constructing a dual transformation, we
demonstrate that this 2Z topological superconductor is equivalent to a collection of two topological ferromagnetic
insulators. As a result of the duality, the topology of the electronic structures for a d + id superconductor is
controllable via the change of the chemical potential by tuning the gate voltage. In particular, instead of always
being a chiral superconductor, we find that the d + id superconductor undergoes a topological phase transition
from a chiral superconductor to a quasihelical superconductor as the gap amplitude or the chemical potential
decreases. The quasihelical superconducting phase is found to be characterized by a topological invariant in
the pseudospin charge sector with vanishing both the Chern number and the spin Chern number. We further
elucidate the topological phase transition by analyzing the relationship between the topological invariant and the
rotation symmetry. Due to the angular momentum carried by the gap function and spin-orbit interactions, we
show that by placing d + id superconductors in proximity to ferromagnets, varieties of chiral superconducting
phases characterized by higher Chern numbers can be accessed, providing a platform for hosting large numbers
of Majorana modes at edges.
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I. INTRODUCTION

A Z topological insulator in two dimensions, also called
a Chern insulator, characterized by the Chern number, is an
electronic system with broken time-reversal symmetry (TRS),
showing a quantized Hall conductivity [1] and protected gap-
less edge modes [2,3]. An example is the quantum anomalous
Hall (QAH) effect, which is achieved by a magnetic exchange
field [4,5]. After the discovery of the Z2 quantum spin Hall
(QSH) insulator [6–11], it was realized that symmetries play
important roles in classifying a topological state. According to
the AZ-classification scheme by TRS, particle-hole symmetry
(PHS), and chiral symmetry [12,13], topological insulators
and superconductors in different nonspatial symmetry classes
belong to different categories and are not connected in
topology [14–16]. From a symmetry point of view on the
energy spectrum, however, superconductors have energy gaps
and can be considered as an insulator with conduction
and valence bands related by the particle-hole symmetry. It
is therefore interesting to explore possible connections of
superconductors and insulators in the topology of electronic
structures. Such connection can be useful to help search for
possible realizations of Majorana modes in superconductors.

In the past, the investigation on topological superconductors
had been mostly focused on the triplet pairing superconductors
with TRS breaking. These topological superconductors host
chiral Majorana fermions at edges, but there are very few
confirmed observations [17–20], until recently. Now, thanks
to the seminal work by Fu and Kane [21,22], it has been
realized that the proximity of a topological insulator to a
singlet s-wave superconductor provides an alternative way to

topological superconductors. The combined effect of s-wave
and spin-orbit coupling (SOC) plays an important role in
hosting Majorana fermions. In this case, the most general
topological superconductors are time-reversal invariant helical
superconductors (HSCs), characterized by a Z2 topological
invariant [23–25]. More recently, possible solutions of spin-
singlet topological superconductors via spontaneous TRS
breaking have been proposed [26–29]. In particular, the ground
state for electrons on the honeycomb lattice in the large
Hubbard U limit are shown to be of chiral d-wave pairing
symmetry, dx2−y2 + idxy (d + id) [30], which indicates that
the honeycomb lattice might be a good platform to host chiral
Majorana modes.

In this paper, we explore the topology of electronic
structures for d + id -wave superconductivity in a honeycomb
lattice. We first demonstrate that the electronic structures of
a d + id superconductor and a ferromagnetic insulator on a
honeycomb lattice are interchanged under a dual transforma-
tion. As a result of the duality, the topology of the electronic
structures for a d + id superconductor is equivalent to that of a
ferromagnetic insulator. The idea of a dual transformation from
an s-wave superconductor with the Rashba SOC to a p-wave
superconductor was proposed before [31], but the dual system
was obscure in physical meaning. The duality in our models is
between two realistic ones and indicates equivalent underlying
topological structures. In the ferromagnetic insulator, QAH
and spin Chern insulating (SCI)/QSH phases can be found.
QAH and SCI/QSH phases are characterized by a nonvanish-
ing Chern number and a spin Chern number, respectively. The
spin Chern number is an alternative way to characterize the
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Z2 QSH insulator [32], which originates from the intuition
that when the fiber bundles of filled states are projected
into spin-up and spin-down sectors, the nontrivial topological
structure can be found in each spin section [33]. The spin Chern
number is confirmed to be a robust topological invariant against
disorder or spin-nonconserving interactions (such as Rashba
SOC). Unlike the Z2 invariant, the spin Chern number can be
generalized to the case when TRS is broken as long as the band
gap remains open to preserve a finite spin polarization [32–35].
With the aid of the duality, a phase analogous to SCI/QSH,
termed as quasi-HSC, is found in d + id superconductors.
Here, “quasi” indicates that there is no exact time-reversal
partner between counterpropagating edge modes. The quasi-
HSC phase has no spin Chern number and is characterized by
a pseudospin Chern number in the charge sector, not in the
spin sector. As the topological phase undergoes a transition
to a chiral superconductor (CSC) for larger gap amplitudes
or the chemical potentials, its topology is described by the
Chern number and it is realized as a combination of two QAH
systems with a charge conjugate relation. Furthermore, we
elucidate the topological phase by analyzing the relationship
between the topological invariant and the rotation symmetry
associated with the angular momentum carried by the gap
function and SOC. When the d + id superconductor is in
proximity to a ferromagnet, the superconducting state coexists
with ferromagnetism. We find that varieties of chiral supercon-
ducting phases characterized by higher Chern numbers can be
accessed, which provides a platform for hosting large numbers
of Majorana modes at edges.

II. THEORETICAL MODELS

In this section, we start by considering the topological
ferromagnetic insulator in Sec. II A. The phase diagram
will be constructed. The spin-singlet d + id-wave topological
superconductor will be investigate in Sec. II B. The duality
relation with the topological ferromagnetic insulator will be
clarified. Finally, in Sec. II C, we combine both models by
considering the situation when the d + id superconductor
is in proximity to a ferromagnet. The topological phase
diagram for the case when the superconductivity coexists with
ferromagnetism is constructed. The effect of duality on the
phase diagram and the relation to the rotation symmetry will
be given.

A. Class-A insulator

We start by considering the Kane-Mele model in the
presence of the exchange field −M ,

ĤFM = −t
∑
〈i,j〉

c
†
i cj + i

λSO

3
√

3

∑
〈〈i,j〉〉

νij c
†
i σzcj

+ i
2λR

3

∑
〈i,j〉

c
†
i ẑ · (σ × d̂ij )cj − M

∑
i

c
†
i σzci . (1)

Here, the first term describes the hopping, the second term is
the intrinsic SOC, the third one is the Rashba SOC, and the
last term is the exchange field. c

†
i = (c†i↑,c

†
i↓) is the electron

creation operator on site i, σ is the Pauli matrix, and 〈i,j 〉 and

FIG. 1. (a) Three nearest-neighbor vectors d1,2,3 and coordinates
in a honeycomb lattice. (b) Brillouin zone and reciprocal lattice
vectors, G1 and G2.

〈〈i,j 〉〉 denote i and j being nearest-neighbor (NN) and next-
nearest-neighbor (NNN) sites, respectively. d̂ij = dij /|dij | are
unit vectors connecting sites j and i. Three NN vectors dl

(l = 1,2,3) along with the coordinates are shown in Fig. 1.
νij = sgn(ẑ · dkj × dik) = ±1, for ij connected by dkj and dik .

After the Fourier transformation, the Bloch Hamiltonian
becomes

HFM(k)=

⎛
⎜⎝

�k − M Tk 0 Rk
T ∗

k −�k − M −R−k 0
0 −R∗

−k −�k + M Tk
R∗

k 0 T ∗
k �k + M

⎞
⎟⎠

(2)

in the basis cFM(k) = (cAk↑ cBk↑ cAk↓ cBk↓)T , with

Tk = −t
∑

l

e−ik·dl , (3)

�k = 2λSO

3
√

3

∑
l (d4=d1)

sin k·(dl − dl+1), (4)

Rk = −2λR

3

∑
l

e−iθl e−ik·dl , (5)

where θl is the polar angle of the vector dl . We will set the
lattice constant and Planck constant as unity, � = a = 1.

The topological phases of the Kane-Mele model have been
understood and are summarized in Fig. 2(a). When M = 0
and λSO > |λR| (assume λSO > 0), the low-energy physics is
described by a massive Dirac fermion (and its time-reversal
partner with an opposite mass) at K and K ′ points where
Berry phases π (−π ) are underlying. This is a QSH phase
characterized by a Z2 topological invariant. When M 	= 0
and TRS is broken, the QSH phase is replaced by the SCI
phase when λSO > 0. In this case, even though one still gets
counterpropagating edge states, these edges states are not
robust and can be gapped under perturbations [35]. However,
the spin Chern number is still well defined [33] and is intact
[34]. The robustness of the value for the spin Chern number
is due to the spin gap, associated with the band gap, that
two occupied states remain carrying definite opposite spin
projections as TRS preserves [35]. The topological phase
transition happens at the closing of the band gap, given by

|M| = (
λ2

SO − λ2
R

)
/λSO. (6)
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FIG. 2. (a) Phase diagram for the ferromagnetic system in Eq. (1).
QAH and SCI/QSH denote phases of the quantum anomalous Hall
insulator and spin Chern insulator/quantum spin Hall insulator,
which are dubbed by nonzero Chern number C and spin Chern
number Cs = (C↑ − C↓)/2, respectively. (b) The phase diagram
for the superconducting state in Eq. (14). Similar to (a), with
substitutions M → μ, λR → �, doubled Chern numbers C = ±2 →
C = ±4 and Cs = 1 → Cq = 2 (see text), and CSC/quasi-HSC
(chiral/quasihelical superconductor) in place of QAH/SCI. Note that
for the QAH and CSC phases, one requires λR 	= 0 and � 	= 0,
respectively.

Over the boundary in Eq. (6) with λR and M both finite, the sys-
tem enters the QAH phase with Chern number C = ±2 [36].

To elucidate the topological phase transition more clearly,
the band structures near K for different cases of λR and M are
shown in Fig. 3, with λR/λSO = 0, 0.5, 1.2 from left to right
columns, and with M/λSO = 0, 0.5, 1.5 from top to bottom
rows. At λR = M = 0 [Fig. 3(a)], bands are spin degenerate
and are separated by a gap of 2λSO. Nonvanishing λR and/or
M lifts the spin degeneracy and causes the conduction and the
valence bands to approach each other. The resulting phase is an
SCI phase. As a result, the band gap prevents the band inversion
from occurring immediately and thus protects the resulting SCI
phase. Once the λR and M terms overcome the gap by λSO, due
to the fact that the λR and M terms anticommute, two bands
must anticross and exchange the Chern number, resulting in a
QAH phase.

We now illustrate the change of the Chern number from
the point of view of exchanging rotation eigenvalues. In an
insulator with point-group symmetries, the eigenvalues of
symmetry operators at high-symmetry points of the ground
state determine the Chern number up to a multiple of n in the
presence of an n-fold axis. By Ref. [37], a threefold-symmetric
insulator as our system gives

e−i2πC/3 =
∏
i∈occ

ηi(
)ηi(K)ηi(K
′), (7)

where ηi(k) is the eigenvalues of the threefold rotation. Since
the band inversion happens at K and K ′, we can study
the change of the Chern number by the change of rotation
eigenvalues at K and K ′. The eigenenergies of the Bloch
Hamiltonian at K and K ′, given by Eq. (2), are

E1 = −λSO − M,

E2 = −λSO + M,

E3 = λSO −
√

M2 + 4λ2
R,

E4 = λSO +
√

M2 + 4λ2
R.

(8)
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FIG. 3. Energy dispersion around the K point (vertical line) for
the topological insulator with ferromagnetism described by Eq. (1).
Different combinations of M and λR are given. M increases from
top to bottom: (a)–(c) M/λSO = 0, (d)–(f) 0.5, and (g)–(i) 1.5,
respectively. On the other hand, λR increases from left to right:
(a),(d),(g) λR/λSO = 0, (b),(e),(h) 0.5, and (c),(f),(i) 1.2, respectively.
The horizontal dashed line denotes zero energy as the unbiased
chemical potential. If one can shift the chemical potential within the
gap between the middle two bands, topological phases are achieved:
(a) and (b) are in the QSH phase, (d) and (e) are in the SCI phase, (c)
and (g) are in the critical semimetal phase, preparing for entering the
QAH phase, and (f), (h), and (i) are in the QAH phase.

Here the rotation eigenvalues of these four states at K are given
by

ηK
1 = eiπ/3,

ηK
2 = e−i3π/3,

ηK
3 = e−iπ/3,

ηK
4 = e−iπ/3,

(9)

respectively, while for the K ′ point, the rotation eigenvalues
of these four eigenenergies are

ηK ′
1 = ei3π/3,

ηK ′
2 = e−iπ/3,

ηK ′
3 = eiπ/3,

ηK ′
4 = eiπ/3,

(10)

respectively. A detailed derivation of the rotation eigenvalues
can be found in Appendix A. Consider the case of M > 0.
The band inversion happens between the band-2 (eigenenergy
E2) and the band-3 (E3) at the critical point specified by
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Eq. (6). Hence the rotation eigenvalue changes by ei2π/3 at
the K point. Meanwhile, the rotation eigenvalue also changes
by ei2π/3 at K ′. The total change of the rotation eigenvalue by
ei4π/3 indicates that the change of the Chern number is −2 (+1
is ruled out because the band inversion occurs at two points:
both at K and K ′ points). On the other hand, for the case of
M < 0, the band inversion happens between the band-1 and
the band-3, reflected in the change of the Chern number by 2.
A consistent explanation has been given in Fig. 2(a).

B. d + i d superconductor

In this section, we examine the topology of the electronic
structures for the singlet d + id superconducting state. We
start by first analyzing a generic feature of energy spectrum
for quasiparticles in the singlet superconductors with spin
Sz conservation. The general Bogoliubov–de Gennes (BdG)
Hamiltonian for quasiparticles for singlet superconductivity
can be written as

Ĥ = 1

2

∑
k

φ
†
kHkφk, (11)

where φk = (ck↑ ck↓ c
†
−k↑ c

†
−k↓)T with ckσ (c†kσ ) pos-

sibly being a multicomponent vector by including orbital
degrees of freedom. For singlet superconductivity with Sz

being conserved, the Bloch Hamiltonian is generally given by

Hk =

⎛
⎜⎜⎜⎝

ξk↑ 0 0 �k
0 ξk↓ −�k 0

0 −�
†
k −ξT

−k↑ 0

�
†
k 0 0 −ξT

−k↓

⎞
⎟⎟⎟⎠, (12)

where ξkσ and �k can be numbers or matrices and �−k = �k.
It is clear that the Hamiltonian is block diagonal and can
be decomposed into two sub-Hamiltonians with σz = ±1
characterizing quasiparticles in each block,

Ĥ = 1

2

∑
k

{
φ
†
↑k

(
ξk↑ �k

�
†
k −ξT

−k↓

)
φ↑k

+φ
†
↓k

(
ξk↓ −�k

−�
†
k −ξT

−k↑

)
φ↓k

}
, (13)

where φ↑k = (ck↑ c
†
−k↓) and φ↓k = (ck↓ c

†
−k↑) are quasi-

particle operators for spin up and down, respectively. Except
for a minus sign in the pairing amplitude or the pairing matrix
�k, Hamiltonians for quasiparticles of both spins are the same.
Hence the eigenenergies Ek of quasiparticles are degenerate
in spin space (the minus sign can be made to be positive by
a rotation in the space of the sub-Hamiltonian with respect to
the z axis), reflecting the U(1) spin rotation symmetry. Under
the particle-hole transformation, φ↑k → φ

†
↑−k, it switches

two sub-Hamiltonians. The global superconducting state in
Eq. (12) thus has PHS. If �

†
k 	= �k, there is no TRS. However,

since Sz is conserved, the classification of the topology is based
on each sub-Hamiltonian [14]. The resulting superconducting
state is a combination of two subsystems in class A with TRS,
PHS, and chiral being absent in each sub-Hamiltonian. Note
that each sub-Hamiltonian is characterized by pseudospin τ

in the charge sector and, in general, ξkσ 	= ξk−σ , there is no

PHS symmetry within each sub-Hamiltonian. Since two
sub-Hamiltonians are related by the particle-hole
transformation, the topological invariants for both spin
components are the same. Hence the topological invariant of
the whole system is twice that of the topological invariant of
any subsystem, indicating a 2Z superconductor. The nontrivial
topological state will provide Majorana edge modes.

In the following, we will illustrate that there is a QAH state
in the superconducting state. Mathematically, we find that in
each spin space, there exists a dual transformation that maps
the superconducting state into a ferromagnetic insulating state.
We consider the d + id superconductivity in the tight-binding
model of graphene,

ĤSC = −t
∑
〈i,j〉

c
†
i cj + i

λSO

3
√

3

∑
〈〈i,j〉〉

νij c
†
i σzcj

+ 1

2

∑
〈i,j〉

[�ijc
†
i (iσy)(c†j )T + H.c.] − μ

∑
i

c
†
i ci . (14)

Here, for the d + id pairing, we have �i+dl ,i =
− 2

3�e−iθl (l = 1,2,3; θl increases counterclockwise). Af-
ter the Fourier transformation, in the basis cSC,↑(k) =
(cAk↑ cBk↑ −c

†
A−k↓ c

†
B−k↓)T , we find that the Bloch

Hamiltonian for the spin-up component is given by

HSC,↑(k) =

⎛
⎜⎜⎜⎝

�k − μ Tk 0 �k

T ∗
k −�k − μ −�−k 0

0 −�∗
−k −�k + μ Tk

�∗
k 0 T ∗

k �k + μ

⎞
⎟⎟⎟⎠.

(15)

Here, Tk and �k are defined as before. �k has the same
form as Rk except that λR is replaced by �. Comparing
Eqs. (15) and (2), we see that the d + id superconductor and
the ferromagnetic insulator have an equivalent mathematical
structure with the following dual transformation:

d + id superconductor ferromagnetic insulator
� ↔ λR

μ ↔ M.

Clearly, � and μ in d + id superconductors are dual to λR

and M in ferromagnetic insulators. However, the mechanism
for breaking TRS and PHS is different: TRS is broken by the
complex pairing potential in Eq. (15), but it is broken by the
exchange potential in Eq. (2), and � and M are not dual to
each other. In addition, PHS is broken by λSO in Eq. (15), but
it is broken by λR in Eq. (2). Note that PHS is broken in each
sub-Hamiltonian but it is restored in the superconducting state
by including the spin-down component.

The existence of the dual transformation implies that the
topological invariants for Eqs. (15) and (2) are the same. There-
fore, the topological phases with nonvanishing Chern numbers
are the same as in Fig. 2(a) by replacing M by μ and λR by
� and doubling the Chern numbers, as shown in Fig. 2(b).
It further implies that these phases with nonvanishing Chern
numbers become chiral superconducting phases. Specifically,
according to the bulk-edge correspondence for Eq. (2), if the
Chern number is C, one gets C edge states at one edge and the
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other C edge states at the opposite edge in a ribbon. In super-
conductors, particles (with momentum k) and holes (−k) are
mixed, and consequently, a particlelike (positive-energy) edge
mode will show accompanied by a holelike (negative-energy)
mode. Here, for class-D superconductors, these edge modes
are Majorana fermions and thus these particlelike and holelike
modes are not independent but self-charge conjugate as a
Majorana fermion. Hence the Hamiltonian for corresponding
edge states can be generally written as

Ĥedge =
∑

p

C∑
i=1

(Epγ
†
p,iγp,i + Ēpγ̄

†
−p,i γ̄−p,i)

=
∑

p

C∑
i=1

(Epγ−p,iγp,i − Ēpγ̄−p,i γ̄p,i), (16)

where γp,i and γ̄p,i are the Majorana fermion operators at one
and the other edges with corresponding energies being Ep

and Ēp, respectively. In the above, we only consider positive
modes, Ep,Ēp � 0. Majorana fermions satisfy γ

†
p,i = γ−p,i

and {γ−p,i ,γp′,j } = δij δpp′ . C is the Chern number and p is the
momentum along the edge. These edge modes are chiral so that
E−p = −Ep. When there exists (or roughly exists) in-plane
inversion symmetry in the ribbon, we obtain Ēp = Ep and
edge modes at two edges propagating in opposite directions.

For the Hamiltonian HSC,↑(k), the Chern number of the
quasi-HSC phase that corresponds to the SCI/QSH phase
also vanishes. For d + id superconductors, this only implies
C↑ = 0. Since HSC,↓(k) has the same topology, we find
that C↓ = 0. Therefore, the spin Chern number Cs , which
is (C↑ − C↓)/2, vanishes. However, the quasi-HSC phase
does still carry a topological invariant. Analogous to the spin
Chern number in a QSH phase, the topological invariant is the
pseudospin Chern number in the charge space of HSC,↑(k). If
one defines the pseudospin quantum number τ such that cAk↑
and cBk↑ have the quantum number τ = 1, while pseudospin
quantum numbers for −c

†
A−k↓ and c

†
B−k↓ are τ = −1, the

pseudospin Chern number

Cq = Cτ=1 − Cτ=−1

2
, (17)

where Cτ is the Chern number in the τ sector. Cq is one for
both HSC,↑(k) and HSC,↓(k), and so the quasi-HSC phase
in the d + id superconductor is characterized by Cq = 2.
Since the Chern number vanishes in this phase, we obtain
quasihelical edge states with a similar Hamiltonian being
given by Eq. (16) with C = 1, and both γp,i and γ̄p,i describe
particlelike quasiparticles at the same edge.

The phase diagram of topology for the d + id superconduc-
tor can also be understood from the local pairing symmetry in
the momentum space. When the chemical potential μ lies
within the gap, λSO, of normal states, since λSO > �, the
system is more like a band insulator than a superconductor and
therefore it behaves like a QSH insulator. Note that in reality,
superconductivity in an insulator can be induced through the
proximity effect. As μ is tuned to go beyond the gap and cut
the band, the gap of the system is determined by the pairing
potential. By expressing the pairing term in the energy basis

of electrons in the normal states, we find

cAk↑cB−k↓ ∼ T ∗
k

2λSO
(c+,k↑c+,−k↓ − c−,k↑c−,k↓), (18)

where c± stands for the upper (lower) energy band near
the chemical potential and T ∗

K/K ′+q ∼ t(qx ± iqy) for q � π .
Clearly, if the pairing amplitude is �k, the effective pairing
symmetry becomes

�eff(k) ∼ �kT
∗

k . (19)

It is therefore clear that when the pairing function is isotropic
s wave, the effective pairing symmetry is p ± ip-wave
superconductivity locally at Dirac points. However, due to
opposite Berry curvatures at K and K ′, the Chern number
vanishes in total for the s wave. For d + id pairing, however,
TRS is broken so that local gap functions at K and K ′
are not equivalent, which results in nontrivial topology. By
performing local expansion near Dirac points, we find that
�K+q ∼ �(qx + iqy), while �K ′+q ∼ �. Therefore, local
Berry curvatures at K and K ′ do not get canceled and both c±
bands get nonvanishing finite Chern numbers.

Finally, we note in passing that while in the above dual
transformation only NN pairing and the Rashba SOC are
considered, the duality is valid when NNN couplings are
included. Specifically, for the NNN pairing on the same
sublattice, there is also a corresponding dual SOC term
in the ferromagnetic insulating system. For d + id-wave
superconductors, we find that the dual term to the NNN pairing
order parameter is the NNN Rashba spin-orbit interaction
that is shown to exist in silicene due to the buckled structure
[38,39].

C. Class-D superconductor with ferromagnetism

We now combine both ferromagnetic and superconducting
models in Eqs. (1) and (14). This would be the model to de-
scribe the situation that occurs when a d + id superconductor
is placed in proximity to a ferromagnet so that the exchange
field is induced in the d + id superconducting state. In this
case, both the Rashba spin-orbit interaction and the pairing
potential are present, and hence Sz is no longer conserved.
The system belongs to the class-D superconductor [14].

If we adopt the basis for the electron, ψ = ( cFM(k)
c
†
FM(−k)

) where

cFM(k) is the same basis used in Eq. (2), the Bloch Hamiltonian
is given by

HSC/FM(k) =
(
HFM(k) − μI D(k)

D†(k) −HT
FM(−k) + μI

)
, (20)

where HFM(k) is given by Eq. (2) and D(k) is the pairing
matrix given by

D(k) =

⎛
⎜⎝

0 0 0 −�k
0 0 −�−k 0
0 �k 0 0

�−k 0 0 0

⎞
⎟⎠. (21)

Note that the Hamiltonian cannot be decomposed into two
sub-Hamiltonians due to nonconserving Sz. In addition,
although the Rashba SOC breaks inversion symmetry, in the
proximity effect, neglecting the triplet pairing is an acceptable
approximation.
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FIG. 4. Typical topological phase diagrams for a d + id super-
conductor in proximity to a ferromagnet. Numbers shown in colored
areas are the corresponding Chern numbers. (a) � vs the Rashba
spin-orbit coupling λR at μ/λSO = 1.2 and M = 0. (b) � vs μ

for λR/λSO = 0.4 and M/λSO = 0.8. (c) Phase diagram of weak
superconductivity (�/λSO = 0.1) for μ vs M . Here, t/λSO = 10 and
λR/λSO = 0.4. (d) Eigenenergies at the K point for four normal-state
bands (� = 0) as functions of M . Here, λR/λSO = 0.4. Tagged boxes
display gap functions near K for corresponding bands (see text).

The Hamiltonian HSC/FM(k) is self-dual. This can be seen
by constructing a unitary transformation U that brings ψ into

the form ( cSC(k)
c
†
SC(−k)

). Let ( cSC(k)
c
†
SC(−k)

) = Uψ ; we find that U is given by

U =

⎛
⎜⎝

1 0 0 0
0 0 0 −σz

0 1 0 0
0 0 −σz 0

⎞
⎟⎠, (22)

where 1 and σz are 2 × 2 matrices. As a consequence of
duality, one finds

UHSC/FM(M,μ,λR,�)U † = HSC/FM(μ,M,�,λR). (23)

Therefore, the topology of electronic structures for d + id

superconductors in proximity to ferromagnets is symmetric
between (M , μ) and (λR, �). This implies that investigating
weak superconductivity (� < λR) and weak ferromagnetism
(M < μ) allows one to access topological phases of strong
superconductivity and strong ferromagnetism. In reality, since
it is not easy to change � and M , the duality allows one to tune
λR and μ to access different topological phases of the system.

Typical topological phase diagrams for HSC/FM are shown
in Fig. 4. Here, Fig. 4(a) shows different chiral supercon-
ducting phases for a pure d + id superconductor with M =
0. It is seen that for small gap amplitude (weak-coupling
limit), d + id-wave superconductors are always in chiral
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FIG. 5. Bulk-edge correspondence for zigzag ribbons in different
topological superconducting phases. (a) C = 0, Cq = 2, (b) C = −2
(c) C = −4, and (d) C = +6, respectively. Here, red and blue
lines denote edge states at opposite edges. The common parameters
are (t/λSO, λR/λSO, �/λSO) = (10, 0.4, 0.1). The number of lattice
points for the width of the ribbons is 800.

superconducting phases with the Chern number being ±2.
Figure 4(b) shows chiral superconducting phases for a d + id

superconductor mixed with moderate ferromagnetism. The
largest Chern number can go up to 4. In Fig. 4(c), we show
the topological phase diagram for weak superconductivity
in μ − M space at (t/λSO , λR/λSO, �/λSO) = (10, 0.4, 0.1).
The Chern number can be 0, −2, ±4, and 6, with 6 being
the largest possible Chern number in this system. The zero
Chern number at the center of the phase diagram is the
quantum pseudospin Hall phase in the charge sector with
Cq = 2. As indicated before, the phase boundaries are the
band-touching loci and the change of Chern number across the
boundaries is the change of total angular momenta of the filled
bands. Because the exchange of angular momentum happens
simultaneously at K and K ′, the Chern number must be even.

Figure 5 illustrates the bulk-edge correspondence for the
phase diagram shown in Fig. 4(c). Here the spectra of a zigzag
ribbon in different topological phases are computed to check
the consistency of equality of the bulk Chern number and the
number of chiral edge modes. Here in the presence of in-plane
inversion symmetry for each chiral edge mode at one edge
with energy and momentum (E,p), there is another mode at
the other side with (E,−p), and they are Majorana fermions,
in agreement with Eq. (16).

We now illustrate the physical mechanism for the behavior
of the phase diagram in Fig. 4(c) in the weak-coupling limit.
In this limit, the pairing is weak and hence considering pairing
between intraband electrons is sufficient. A superconducting
state can be generally described by

H(q) =
(

ξq �q

�∗
q −ξ−q

)
. (24)
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Here, q is the momentum relative to the K or K ′ point, ξq is
the kinetic energy relative to the chemical potential, and �q

is the pairing gap function. For a nontrivial superconducting
state, the chemical potential is within an energy band so that ξq

must change sign in the Brillouin zone. Furthermore, the gap
function is generally a representation of a rotational group and
can be generally expressed as �q = �qn

± with q± = qx ± iqy

and n ∈ N. As an example, the case of n = 1 is the well-known
p ± ip CSC. Under a rotation by φ, the gap function is an
eigenfunction to the rotation, qn

± → e∓inφqn
±. Hence the gap

function is generally a representation of the rotational group.
In other words, the gap function carries angular momentum.
Now from Eqs. (9) and (10), for threefold rotation φ = 2π/3,
the rotation eigenvalues of a Cooper pair for energy bands 1, 2,
3, and 4 are ei4π/3, e−i4π/3, 1, and 1, respectively. On the other
hand, the d + id pairing carries an extra angular momentum
l = −1 (η = ei2π/3) such that the gap functions of the bands
have rotation eigenvalues ei6π/3, e−i2π/3, ei2π/3, and ei2π/3,
respectively. As a result, the gap functions behave as �1 ∼ q3

−,
�2 ∼ q+, �3 ∼ q−, and �4 ∼ q−. For detailed derivations
for the rotation symmetry in superconducting states, refer to
Appendix B.

In Fig. 4(d), we show eigenenergies of four bands E1,2,3,4

and their corresponding gap functions �1,2,3,4. Comparing
Figs. 4(c) and 4(d), the close similarity between the phase
boundaries and eigenenergies is found with a small discrep-
ancy that might result from finite �/λSO = 0.1. Since the
eigenenergies at K (or K ′) are the top or the bottom of the
associated energy bands, when the chemical potential passes
across these energies, it can be either falling within an energy
band or outside an energy band, depending on the direction
that the chemical potential moves. Clearly, this indicates a
topological phase transition and hence a change in the Chern
number. The value of the changed Chern number is determined
by the gap functions and the direction of the chemical potential
as it enters/leaves a band. By including both contributions
from K and K ′, the topological phase transitions in Fig. 4(c)
are reproduced by using Fig. 4(d). We refer the reader to
Appendix C for more detailed explanations.

III. DISCUSSION AND SUMMARY

In summary, we have demonstrated a dual transformation
between a d + id superconductor and a ferromagnetic insula-
tor in a honeycomb lattice, with the former being a CSC and the
latter being a QAH insulator. The d + id superconductor can
be viewed as a combination of two QAH insulators, which map
into one another under particle-hole transformation, and thus
carries a 2Z topological invariant. When the superconducting
pairing amplitude is weak and the chemical potential falls
within the SOC gap, the superconductor is quasihelical and its
dual phase is the SCI state with a small Rashba SOC and weak
ferromagnetism. Moreover, when both superconductivity and
ferromagnetism are included, the system in class D possesses
self-duality: μ ↔ M and � ↔ λR. This implies that topolog-
ical effects of strong superconductivity or ferromagnetism can
be observed in topological states with weak superconductivity
or ferromagnetism.

We have also explored the topological superconductor from
the effective low-energy Hamiltonian, given by Eq. (24),

in which the topology is encoded in the gap function �q

when the normal-state Fermi surface is present. The nontrivial
topology is present when the gap function �q = �q

n+
+ q

n−
−

with n+ − n− 	= 0, which can be determined by the rotational
eigenvalues: �Rq = ηKηK ′

eiφ�q, where ηK/K ′
is the phase

gained under rotation from the band electron at K/K ′ and eiφ

from the d + id-wave nature. Equivalently, the criterion for
a nontrivial topology is to require ηKηK ′

eiφ 	= 1. From this
inequality, it is clear that the time-reversal invariant would
demand ηK = (ηK ′

)∗ and eiφ = 1; hence, for a nontrivial
two-dimensional superconductor with nonvanishing Chern
number, breaking TRS is essential. The inequality also
explains why an s-wave (eiφ = 1) superconductor can be
topologically nontrivial if TRS is broken to in normal states
such that ηK 	= (ηK ′

)∗.
Finally, we discuss experimental features that can be

observed for topological superconductors. According to the
bulk-edge correspondence, the Chern number for topological
superconductors is the number of Majorana edge modes. Since
these midgap modes are localized at edges, they will play
important roles at low voltage of the tunneling conductance
[25,40]. For the Hall conductivity measurements, it is known
that the Hall conductivity will be quantized in an insulator
as σH = Ce2/h, with C the Chern number [1], and deviate
from the quantized value when doped into a metal. In
superconductors, because charges are not conserved, the Hall
conductivity is no longer quantized even if the Chern number
is nonvanishing. In the weak pairing limit, the change in the
Hall conductivity comes from the change in the occupation
number and the change of Berry curvature [41], and thus
the Hall conductivity decreases against the superconducting
gap. Although the Hall conductivity does not show a clear
signature to differentiate a topological superconductor from a
trivial one, its derivatives deliver the signature of topological
phase transitions [42].

On the other hand, due to the energy conservation, the
topological invariant, i.e., Chern numbers, can still be revealed
in the thermal Hall conductivity. It is known that the thermal
Hall conductivity of the topological superconductors in the
low-temperature limit is given by κxy = C

2
πT
6 with the coef-

ficient to the temperature T being quantized [43–45]. Here
the appearance of half the Chern number is a reflection of the
half-fermion nature for Majorana modes. Different topological
phases shown in Fig. 4(c) can be thus identified by measuring
the thermal Hall conductivity.
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APPENDIX A: ROTATION SYMMETRY
FOR NONSUPERCONDUCTING STATES

In this Appendix, we examine the rotation symmetry in the
nonsuperconducting states and find the rotation eigenvalues
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of four bands at K and K ′ valleys for nonsuperconducting
states. In the honeycomb lattice, there exists threefold rotation
symmetry, satisfying [R̂,Ĥ ] = 0, where R̂ stands for a
clockwise threefold rotation. For the Bloch Hamiltonian, it
reads

RH(k)R† = H(Rk), (A1)

where Rk is the transformed wave vector k under ro-
tation and R is the rotation matrix for a given rep-
resentation, resulting from R̂ψ

†
kR̂

−1 = ψ
†
RkR. Since K

and K ′ are rotation-invariant momenta, which satisfy
RK = K − G2 and RK ′ = K ′ + G2 with reciprocal lat-
tice G2 = 2π (1,1/

√
3), the energy eigenstates are thus

also the rotation eigenstates. After rotation, the ba-
sis will transform as c

†
AKσ → c

†
A(K−G2)σ eiσπ/3 = c

†
AKσ eiσπ/3

and c
†
BKσ → c

†
B(K−G2)σ eiσπ/3 = c

†
BKσ eiσπ/3e−i2π/3, where

e−i2π/3 = ei(−G2)·(−d1) comes from the nonprimitive sublattice
vector in the unit cell. By expanding the Hamiltonian around
K and K ′ with q being the deviation of momentum, we find

RVGHK (q)V†
GR† = HK (Rq), (A2)

RV†
GHK ′

(q)VGR† = HK ′
(Rq), (A3)

where R = exp (iσzπ/3) and VG = exp [i(τz − 1)π/3] for σz

on spin and τz on sublattice space. The rotation eigenvalues of
the states at K and K ′ are the eigenvalues of RVG and RV†

G,
respectively.

To find the eigenstates, we need the expansion of functions
for the momentum around K , K ′ with small deviation q,
TK/K ′+q ≈ ±

√
3

2 tq∓, �K/K ′+q ≈ ∓λSO, RK+q ≈ − i√
3
λRq+,

and RK ′+q ≈ −i2λR with q± = qx ± iqy . The Bloch Hamil-
tonian at K , given by Eq. (2), is

HK
FM =

⎛
⎜⎝

−λSO − M 0 0 0
0 λSO − M i2λR 0
0 −i2λR λSO + M 0
0 0 0 −λSO + M

⎞
⎟⎠,

(A4)

whose eigenstates are given by

|γ1〉K = (1, 0, 0, 0)T ,

|γ2〉K = (0, 0, 0, 1)T ,

|γ3〉K = (
0, −i sin θ

2 , cos θ
2 , 0

)T
,

|γ4〉K = (
0, cos θ

2 , −i sin θ
2 , 0

)T
,

(A5)

with the corresponding eigenenergies being

E1 = −λSO − M,

E2 = −λSO + M,

E3 = λSO −
√

M2 + 4λ2
R,

E4 = λSO +
√

M2 + 4λ2
R,

(A6)

respectively. Here, θ = − arctan 2λR
M

. The rotation eigenvalues
of these four states are obtained by applying RVG. We obtain

ηK
1 = eiπ/3,

ηK
2 = e−i3π/3,

ηK
3 = e−iπ/3,

ηK
4 = e−iπ/3.

(A7)

For the case of M > 0, the band inversion happens between
the second |γ2〉 and the third band |γ3〉 and hence the rotation
eigenvalue changes by ei2π/3.

On the other hand, for the K ′ point, the Hamiltonian is

HK ′
FM =

⎛
⎜⎝

λSO − M 0 0 −i2λR

0 −λSO − M 0 0
0 0 −λSO + M 0

i2λR 0 0 λSO + M

⎞
⎟⎠,

(A8)

and the eigenstates are given by

|γ1〉K ′ = (0, 1, 0, 0)T ,

|γ2〉K ′ = (0, 0, 1, 0)T ,

|γ3〉K ′ = (
cos θ

2 , 0, 0, i sin θ
2

)T
,

|γ4〉K ′ = (
i sin θ

2 , 0, 0, cos θ
2

)T
.

(A9)

Here the eigenenergies are the same as those given by
Eqs. (A6). From the eigenstates, their rotation eigenvalues
of RV†

G are

ηK ′
1 = ei3π/3,

ηK ′
2 = e−iπ/3,

ηK ′
3 = eiπ/3,

ηK ′
4 = eiπ/3.

(A10)

For M > 0, the band inversion between |γ2〉 and |γ3〉 at K ′ also
coincides with the change of rotation eigenvalue by ei2π/3.

APPENDIX B: ROTATION SYMMETRY IN THE
SUPERCONDUCTING STATES

In this Appendix, we elucidate the rotation symmetry in the
superconducting state. In Appendix A, we demonstrated that
there is a threefold rotation symmetry in the nonsuperconduct-
ing state with the consequence [R̂,Ĥ ] = 0. In unconventional
superconductors, the pairing term is not rotation invariant, but
it forms a representation of the rotational group by obeying
�̂ → eiφ�̂ under a threefold rotation. Here, for the d + id

wave in our case, φ = 2π/3. The extra phase φ results from
the internal angular momentum of the Cooper pair and can be
combined with the U(1) phase associated with the spontaneous
U(1) gauge symmetry breaking in the superconducting state.
As a result, the rotation symmetry is not really broken and can
be restored by a gauge transformation.

In order to include phases associated with angular momenta
of Cooper pairs, the condition for the rotational symmetry,
given by Eq. (A1), needs to be modified. If we adopt the
same rotation matrix R for both particle and hole, a BdG

054518-8



DUALITY IN TOPOLOGICAL SUPERCONDUCTORS AND . . . PHYSICAL REVIEW B 93, 054518 (2016)

Hamiltonian, HSC(k), is rotation invariant if it satisfies

R̄V̄HSC(k)V̄†R̄† = HSC(Rk), (B1)

where R̄ = diag(R, R∗) and V̄ = diag(1, e−iφ) with the
first elements (R and 1) and the second elements (R∗ and
e−iφ) acting on particle and hole space, respectively. The
matrix V̄ reproduces the phase φ for superconductors under
the operation of rotation.

We now derive the effective pairing symmetries for bands
around K and K ′. We shall start from the low-energy
Hamiltonian for a given band around K or K ′ by

HK/K ′
SC (q) =

(
ξq �q

�∗
q −ξ−q

)
. (B2)

Here, in the weak-coupling limit, only intraband pairing is
considered and �q is nonvanishing only in a small energy
range around the chemical potential. Similar to Eqs. (A2) and
(A3), the rotation symmetry requires

R̄V̄HK/K ′
SC (q)V̄†R̄† = HK/K ′

SC (Rq). (B3)

For each band, R is replaced by the corresponding rotation
eigenvalues ηK/K ′

that are obtained for the nonsuperconduct-
ing state in Eqs. (A7) and (A10), and we obtain

�Rq = ηKηK ′
eiφ�q. (B4)

The phase in Eq. (B4) results from the rotation of a Cooper
pair and consists of phases from their composite electrons
at K and K ′ and the nontrivial phase from the symmetry of
the gap function. For the d + id wave with eiφ = ei2π/3, the
gap function can be considered to carry angular momentum
l = −1. In general, the pairing potential near K and K ′ can
be expressed as �q = �q

n+
+ q

n−
− with q± = qx ± iqy and n± ∈

N. By using Eq. (B4) and the identity Rq± = e∓i2π/3q±, we
find that the total phase associated with �q is ηKηK ′

ei 2π
3 =

ei 2π
3 (n−−n+), with n± being determined by ηK and ηK ′

of the
corresponding band. Using ηK and ηK ′

in Eqs. (A7) and (A10),
we conclude that the effective gap functions for four bands
behave as

�1 ∼ q3
−,

�2 ∼ q+,

�3 ∼ q−,

�4 ∼ q−.

(B5)

APPENDIX C: CHERN NUMBER IN THE
WEAK-COUPLING LIMIT

In this Appendix, we present a simple way to understand the
topological number of a superconductor in the weak-coupling
limit. Here, in the weak-coupling limit, one assumes that the
pairing is weak and only pairing between intraband electrons
is considered. In the weak coupling, the superconducting gap
function on the Fermi surface of a given band is sufficient to
determine the Chern number of superconductivity.

First of all, we choose the convention for the Berry
connection as

An(k) = i〈un(k)|∇k|un(k)〉, (C1)

where un is the Bloch wave function of band n. In this
convention, the Chern number is the integral of Berry curvature
∇k × An(k) from the filled bands over the Brillouin zone and
can be formulated as

C = −
∫

BZ

d2k

2π

∑
α,β

(C2)

× 2Im

{ 〈uα(k)|vx(k)|uβ(k)〉〈uβ(k)|vy(k)|uα(k)〉
[Eα(k) − Eβ(k)]2

}
,

where α (β) denotes filled (unfilled) bands and vi(k) = ∂H (k)
∂ki

(i = x, y).
Let us start a Hamiltonian in the form

H(q) =
(

ξq �q
n+
+ q

n−
−

�∗qn+
− q

n−
+ −ξq

)
, (C3)

with q± = qx ± iqy and n± ∈ N. The Hamiltonian describes a
superconductor, in which ξq is the kinetic energy with respect
to the chemical potential and �q

n+
+ q

n−
− is the gap function. By

using the Pauli matrices σ , the Hamiltonian can be rewritten
as

H(q) = E(q)hq · σ, (C4)

with E(q) =
√
ξ 2
q + |�|q2(n++n−). Here, hq =

(sin �q cos �q, sin �q sin �q, cos �q) is the unit vector,
with �q and �q characterizing its direction. The Chern
number can then be expressed as

C = 1

4π

∫
d2qhq · ∂hq

∂qx

∂hq

∂qy

(C5)

= 1

4π

∫
d2qεij ∂qi

cos �q∂qj
�q.

hole-like band

electron-like band

Δ = −

Δ = −

FIG. 6. Change of the Chern number �C of a superconducting
state with a (local) gap function �q

n+
+ q

n−
− [refer to Eq. (C3)].

Here, n± ∈ N. A nontrivial superconducting state emerges when the
chemical potential μ cuts through the band of the normal state. Upper
panel: Change of the Chern number when the normal state goes from
a holelike band to be a completely filled band. Lower panel: Change
of the Chern number when the normal state goes from an electronlike
band to be an unfilled band. Note that the Chern number is not affected
by the sign of the pairing amplitude �.
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Equation (C4) indicates that the Hamiltonian can be viewed
as a mapping from R2 in q space to S2 in (�,�), and
εij ∂qi

cos �q∂qj
�q is the Jacobian between them such that

the Chern number stands for the covering times of the fields
(�,�) over a sphere. Therefore, if ξ can change sign with
q, namely ξq=0ξq∼π < 0, the chemical potential is within the
energy band and the Chern number is found to be (when the
weak-coupling condition �q∼π = 0 is applied implicitly)

C = sgn(ξq=0)(n− − n+). (C6)

On the other hand, if ξ does not change sign with q, the
Chern number is found to be zero. In other words, the
Hamiltonian in Eq. (C3) describes a nontrivial superconduc-
tor if the chemical potential passes through the band (ξq

will change sign); otherwise, it is a trivial superconductor.
For a nontrivial superconductor, the normal-state Fermi
surface is holelike if ξq=0 > 0 and electronlike if ξq=0 <

0. In Fig. 6, we illustrates how the Chern number
changes when the chemical potential moves out of the
band.
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