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Abstract

Using process capability indices to quantify manufacturing process precision (consistency) and performance, is an

essential part of implementing any quality improvement program. Most research works for testing the capability indices

have focused on using the traditional distribution frequency approaches. Cheng and Spiring [IIE Trans. 21 (1) 97]

proposed a Bayesian procedure for assessing process capability index Cp based on one single sample. In practice,

manufacturing information regarding product quality characteristic is often derived from multiple samples, particu-

larly, when a routine-based quality control plan is implemented for monitoring process stability. In this paper, we

consider estimating and testing Cp with multiple samples using Bayesian approach, and propose accordingly a Bayesian

procedure for capability testing. The posterior probability, p, for which the process under investigation is capable, is

derived. The credible interval, a Bayesian analogue of the classical lower confidence interval, is obtained. The results

obtained in this paper, are generalizations of those obtained in Cheng and Spiring [IIE Trans. 21 (1), 97]. Practitioners

can use the proposed procedure to Cheng and Spiring determine whether their manufacturing processes are capable of

reproducing products satisfying the preset precision requirement.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding process and quantifying process performance are essential for any successful quality
improvement initiative. Process capability analysis has become an important and integrated part in

applying statistical process control to continuously improve process quality and productivity. The rela-

tionship between the actual process performance and the specification limits may be quantified using

appropriate process capability indices. Process capability indices (PCIs), the purpose of which is to provide
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numerical measures of whether or not the ability of a manufacturing process meets a predetermined level of

production tolerance, have received considerable research attention and increased usage in process

assessments and purchasing decisions in the automotive industry during last decade. The first process

capability index appearing in the literature was the precision index Cp, and defined as (Kane, 1986):
Cp ¼
USL� LSL

6r
;

where USL is the upper specification limit, LSL is the lower specification limit, and r is the process

standard deviation. The numerator of Cp gives the range over which the process measurements are

acceptable. The denominator gives the width of the range over which the process is actually varying. The

index Cp was designed to measure the magnitude of the overall process variation relative to the manu-
facturing tolerance, which is to be used for processes with data that are normally distributed, independent,

and in statistical control. Clearly, the index Cp measures the precision/consistency of a process, or the

potential to reproduce acceptable products, which provides actual performance measure for centered

processes. The index Cp is particularly useful when reducing process variation is the guiding principle for

process improvement.

The use of the capability indices was first explored within the automotive industry. Ford Motor

Company (1984) has used Cp to track process performance and to reduce process variation. Recently,

manufacturing industries have been making an extensive effort to implement statistical process control
(SPC) in their plants and supply bases. Process capability measures derived from analyzing SPC data have

received increasing usage not only in process performance assessments, but also in the evaluation of

purchasing decisions. Capability indices have become the standard tools for quality reporting, particularly,

at the management level around the world. Proper understanding and accurate estimation of the capability

indices is essential for the company to maintain a capable supplier. The usual practice of judging process

capability by evaluating the point estimates of process capability indices, have a flaw since there is no

assessment of the error of these estimates. Therefore, a simple point estimate of the index is highly unre-

liable in making decision in assessing process capability since the estimate does not represent the true index
value. When the estimate is greater than a pre-specified value w, say 1.00, or 1.33, it does not guarantee that

the index is greater than w and vice versa. It is therefore preferable to obtain an interval estimate for which

we can assert, with a reasonable degree of certainty, that it contains the true index value. Existing methods

for testing the capability indices have focused on traditional distribution frequency approaches. Examples

include Chou and Owen (1989), Chou et al. (1990), Li et al. (1990), Kirmani et al. (1991), Kocherlakota

(1992), Pearn et al. (1998), Kotz and Lovelace (1998) and Pearn and Yang (2003). Kotz and Johnson (2002)

presented a thorough review for the development of process capability indices in the past 10 years and

Spiring et al. (2003) consolidated the research findings of process capability analysis for the period 1990–
2002.

Bayesian statistical techniques are an alternative to the frequency approach. These techniques specify a

prior distribution for the parameter of interest, in order to obtain the posterior distribution of the parameter.

We then could infer about the parameter by only using its posterior distribution given the sample data. It is

not difficult to obtain the posterior distribution when a prior distribution is given. Even in the case where the

form of the posterior distribution is complicated one can always use numerical methods or Monte Carlo

methods (Kalos and Whitlock, 1986) to obtain an approximate point estimate or interval estimate. This is

the advantage of the Bayesian approach over the traditional distribution frequency approach.
Cheng and Spiring (1989) proposed a Bayesian procedure for assessing process capability index Cp based

on one single sample. In practice, manufacturing information regarding product quality characteristic is

often derived from multiple samples rather than one single sample, particularly, when a routine-based

quality control plan is implemented for monitoring process stability. In this paper, we consider estimating

and testing Cp with multiple samples using Bayesian approach, and propose accordingly Bayesian proce-
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dure for capability testing. The posterior probability, p, for which the process under investigation is

capable, is derived. The credible interval, a Bayesian analogue of the classical lower confidence interval, is

obtained. The results obtained in this paper, generalize those obtained in Cheng and Spiring (1989).

Practitioners can use the proposed procedure to determine whether manufacturing processes are capable of

reproducing products satisfying the preset precision requirement.
2. Estimating Cp based on multiple samples

If one single sample is given as fx1; x2; . . . ; xng, we may consider the natural estimator Ĉp of Cp defined as
Ĉp ¼
USL� LSL

6s
;

where s ¼ ½
Pn

i¼1 ðxi � �xÞ2=ðn� 1Þ�1=2 is the estimator of the process standard deviation r, which can be

obtained from a stable process. Under the assumption of normality, Chou and Owen (1989) obtained the

probability density function (PDF) of the natural estimator Ĉp, which can be expressed as the following, for

y > 0:
f ðyÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ=2

p
Cp

� �n�1

C½ðn� 1Þ=2� y�n exp½�ðn� 1ÞðCpÞ2ð2y2Þ�1�:
Pearn et al. (1998) obtained an unbiased estimator eCp ¼ bn�1
bCp where the correction factor

bn�1 ¼ ½2=ðn� 1Þ�1=2fC½ðn� 1Þ=2�=C½ðn� 2Þ=2�g and CðkÞ ¼
R1
0

tk�1e�tdt is the gamma function. Pearn

et al. (1998) also showed that the estimator eCp is the uniformly minimum variance unbiased estima-

tor (UMVUE) of Cp, which is asymptotically efficient, consistent, and that n1=2ðeCp � CpÞ converges to

Nð0;C2
p=2Þ in distribution.

For cases where data are collected as multiple samples, Kirmani et al. (1991) considered m samples each

of size n and suggested the following estimator of Cp, where �xi is the ith sample mean, and si is the ith
sample standard deviation:
bC�
p ¼

ðUSL� LSLÞdp
6

;

where
dp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðn� 1Þ � 1

mðn� 1Þ

s
emðn�1Þ�1

sp
;

emðn�1Þ�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

mðn� 1Þ � 1

s
C

mðn� 1Þ
2

� �
C

mðn� 1Þ � 1

2

� �� ��1

;

s2p ¼
1

mðn� 1Þ
Xm
i¼1

ðn� 1Þs2i ¼
1

m

Xm
i¼1

s2i ;
noting that under normality assumption sp=r is distributed as vmðn�1Þ�1=½mðn� 1Þ � 1�1=2. Therefore, the
estimator bC�

p is distributed as
bC�
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðn� 1Þ � 1

p
emðn�1Þ�1ffiffiffiffiffiffiffiffiffiffiffiffiffi

v2mðn�1Þ

q Cp:
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The estimator bC�
p is unbiased, and its probability density function can be obtained as the following, for

y > 0, where k ¼ ½mðn� 1Þ � 1�e2mðn�1Þ�1C
2
p, which can be expressed as a function of Cp:
gðyÞ ¼ 2kmðn�1Þ=2

2mðn�1Þ=2C½mðn� 1Þ=2� y
�½mðn�1Þþ1� exp

�
� k
2

1

y2

� ��
:

Furthermore, Pearn and Yang (2003) investigated some statistical properties of bC�
p and showed that bC�

p

is the UMVUE of Cp, which is also asymptotically efficient and ðmnÞ1=2ðbC�
p � CpÞ converges to Nð0;C2

p=2Þ
in distribution. It is easy to verify that bC�

p is consistent. The variance of bC�
p can be calculated as the

following (Kirmani et al., 1991):
VarðbC�
pÞ ¼ E½ðbC�

pÞ
2� � ½EðbC�

pÞ�
2 ¼ ðUSL� LSLÞ2e2mðn�1Þ�1

½mðn� 1Þ � 1�
36mðn� 1Þ Eðs2pÞ

�1 � C2
p

¼ C2
p ðe2mðn�1Þ�2Þ

�1
n

� 1
o
:

For multiple samples with variable sample size, we can consider the generalized estimator of Cp defined

below. We show that the generalized estimator bC�
p obtained from m samples each of size ni, remains

unbiased. In fact, it can be shown that the unbiased estimator bC�
p is indeed the UMVUE of Cp in the case of

multiple samples:
bC�
p ¼ bPm

i¼1

ðni�1Þ
�USL� LSL

6sp
; s2p ¼

Pm
i¼1

ðni � 1Þs2iPm
i¼1 ðni � 1Þ ; and

bPm
i¼1

ðni�1Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pm

i¼1

ðni � 1Þ

vuuut C

Pm
i¼1

ðni � 1Þ

2

0BB@
1CCA C

Pm
i¼1

ðni � 1Þ � 1

2

0BB@
1CCA

2664
3775

�1

:

3. Bayesian approach for testing Cp

Cheng and Spiring (1989) proposed a Bayesian procedure for assessing process capability index Cp.

Shiau et al. (1999) applied a similar Bayesian approach to index Cpm. Shiau et al. (1999) also applied

Bayesian method for testing the index Cpk but under the restriction that the process mean l equals to the

midpoint of the two specification limits, M . In this case Cpk reduces to Cp. However, these research works

only focused on cases with one single sample. A common practice of process capability estimation in the
manufacturing industry is to first implement a daily-based or weekly-based sample data collection plan for

monitoring/controlling the process stability, then to analyze the past ’’in control’’ data. It is more practical

to develop a procedure for assessing process capability for cases with multiple samples. Therefore, in the

following we consider the problem of estimating and testing Cp with multiple samples based on Bayesian

approach, and propose accordingly a Bayesian procedure for testing process precision. The posterior

probability, p, for which the process under investigation is capable, is derived. A 100p% credible interval is

the Bayesian analogue of the classical 100p% confidence interval, where p is the confidence level for the

interval. The credible interval covers 100p% of the posterior distribution of the parameter (Berger, 1980).
Assuming that the m samples are randomly taken from independent and identically distributed (i.i.d.)

Nðl; r2Þ, a normal distribution with mean l and variance r2. Denote the measures of the ith sample as
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xi ¼ fxi1; xi2; . . . ; xinig with variable sample size ni, and X ¼ fxij; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; nig. Then, the
likelihood function for l and r can be expressed:
Lðl; r jXÞ ¼ ð2pr2Þ
�
Pm
i¼1

ni

2 � exp

8>>><>>>:�

Pm
i¼1

Pni
j¼1

ðxij � lÞ2

2r2

9>>>=>>>;:
The first step for the Bayesian approach is to find an appropriate prior. Usually, when there is little or no

prior information, or there is only one parameter, one of the most widely used non-informative priors is the

so-called reference prior, which is a non-informative prior that maximizes the difference between infor-

mation (entropy) on the parameter provided by the prior and by the posterior. In other words, the reference

prior allows the prior to provide information as little as possible about the parameter (see Bernardo and

Smith, 1993 for more details). Several priors have been considered in the literature. In practical situation,
however, the choice of prior information is hard to justify. Therefore, in this paper we adopt the following

non-informative reference prior chosen by Cheng and Spiring (1989):
hðl; rÞ ¼ 1=r; �1 < l < 1; 0 < r < 1:
We note that the parameter space of the prior is infinite, hence the reference prior is improper, which

means that it does not integrate to one. However, it is not always a serious problem, since the prior

incorporated with ordinary likelihood will lead to proper posterior. Furthermore, the credible interval
obtained from a non-informative prior has a more precise coverage probability than that obtained from

any other priors. The posterior probability density function (PDF), f ðl; r jXÞ of ðl;rÞ may be expressed as

the following:
f ðl; r jXÞ / Lðl; r jXÞ � hðl; rÞ / r
�

Pm
i¼1

niþ1

� �
� exp

8>><>>:�

Pm
i¼1

Pni
j¼1

ðxij � lÞ2

2r2

9>>=>>;:
Also
Z 1

0

Z 1

�1
r
�

Pm
i¼1

niþ1

� �
� exp

8>><>>:�

Pm
i¼1

Pni
j¼1

ðxij � lÞ2

2r2

9>>=>>;dldr

¼
Z 1

0

r
�

Pm
i¼1

niþ1

� �
exp

�
� 1

br2

�
�

Z 1

�1
exp

0BB@
2664 �

Pm
i¼1

niðl� ��xÞ2

2r2

1CCAdl

3775dr ¼
ffiffiffiffiffiffiffiffiffiffiffi
p

2
Pm
i¼1

ni

vuut CðaÞba:
In order to satisfy the integration property that the probability over PDF is 1, a coefficient of f ðl; r jXÞ can
be obtained through some algebraic manipulations. Consequently, the posterior PDF of ðl; rÞ can be

expressed as
f ðl; r jXÞ ¼
2

ffiffiffiffiffiffiffiffiffiPm
i¼1

ni

s
ffiffiffiffiffiffi
2p

p
CðaÞba

r
�

Pm
i¼1

niþ1

� �
� exp

0BB@�

Pm
i¼1

Pni
j¼1

ðxij � lÞ2

2r2

1CCA;
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where a ¼ ð
Pm

i¼1 ni � 1Þ=2, b ¼ ½
Pm

i¼1

Pni
j¼1 ðxij � ��xÞ2=2��1

, ��x ¼
Pm

i¼1

Pni
j¼1 xij=

Pni
j¼1 xij. As mentioned ear-

lier, it is natural to consider the quantity Prfprocess is capable jXg in the Bayesian approach. We need the

posterior probability p ¼ PrfCp > w jXg for some fixed positive number w. Therefore, given a pre-specified

precision level w > 0 and denote a ¼ ðUSL� LSLÞ=ð6wÞ, the posterior probability for index Cp based on

multiple samples that a process is capable is given as
p ¼ PrfCp > w jXg ¼ Pr
USL� LSL

6r

�
> w

				X
 ¼ Pr r

�
<

USL� LSL

6w
jX



¼ Pr rf < a jXg

¼
Z a

0

f ðr jXÞdr ¼
Z a

0

2r
�
Pm
i¼1

ni

CðaÞba � exp

�
� 1

br2

�
dr:
By changing the variable, let y ¼ ðbr2Þ�1
, then dy ¼ �2ðbr3Þ�1

dr, the above posterior probability p
expression may be rewritten as
p ¼
Z 1

1=t

r
�

Pm
i¼1

ni�3

� �
CðaÞba�1

� expð�yÞdy ¼
Z 1

1=t

ya�1

CðaÞ � expð�yÞdy ¼ Cða; 1=tÞ
CðaÞ ð1Þ
or, equivalently,
p ¼ 1� Gð1=t; a; 1Þ; ð2Þ
where Cða; 1=tÞ is the value of the incomplete gamma function of 1=t with parameter a, Gð1=t; a; 1Þ is the
cumulative probability at 1=t for the gamma distribution with parameters a and 1, and
t ¼ 2cPm
i¼1

ðni � 1Þ

bC�
p

wbPm
i¼1

ðni�1Þ

0BB@
1CCA

2

;

c ¼

Pm
i¼1

Pni
j¼1

ðxij � �xiÞ2Pm
i¼1

Pni
j¼1

ðxij � ��xÞ2
¼

Pm
i¼1

ðni � 1Þs2pPm
i¼1

ðni � 1Þs2p þ
Pm
i¼1

nið�xi � ��xÞ2
;

bPm
i¼1

ðni�1Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pm

i¼1

ðni � 1Þ

vuuut C

Pm
i¼1

ðni � 1Þ

2

0BB@
1CCA C

Pm
i¼1

ðni � 1Þ � 1

2

0BB@
1CCA

2664
3775

�1

:

Note that the posterior probability p depends on m, ni, c, w and bC�
p only through m, ni, c and bC�

p=w.
Denoted C� ¼ bC�

p=w. There is a one-to-one correspondence between p and C� when m and ni, are given, and
by the fact that c and bC�

p can be calculated from the process data, we find that the minimum value of C�

required to ensure the posterior probability p reaching a certain desirable level, can be useful in assessing

process capability. Denote this minimum value as C�ðpÞ. Then, the value C�ðpÞ satisfies
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p ¼ PrfCp > w jXg ¼ Pr Cp

(
>

bC�
p

C�ðpÞ jX
)
:

Therefore, a 100p% credible interval for Cp is ½bC�
p=C

�ðpÞ;1), where p is a number between 0 and 1, say 0.95,

for 95% confidence interval, which means that the posterior probability that the credible interval contains

Cp is p. We say that the process is capable in a Bayesian sense if all the points in this credible interval are

greater than a pre-specified value of w, say 1.00 or 1.33. When this happens, we have p ¼ PrfCp > w jXg. In
other words, to see if a process is capable (with capability level w and confidence level p), we only need to

check if bC�
p > C�ðpÞ � w. For the single sample, that is, m ¼ 1, c ¼ 1, and sp ¼ s, the results obtained in this

paper can be reduced to those obtained in Cheng and Spiring (1989).
4. Decision making for testing Cp

In current practice, process precision is said to be inadequate if Cp < 1:00; it indicates that the process is
not adequate with respect to the production tolerances. Process precision is said to be marginally capable if

1:006Cp < 1:33; it indicates that caution needs to be taken regarding the process consistency and some

process control is required (usually using R or S control charts). Process precision is said to be satisfactory if

1:336Cp < 1:67; it indicates that process consistency is satisfactory, material substitution may be allowed,

and no stringent precision control is required. Process precision is said to be excellent if 1:676Cp < 2:00; it
indicates that process precision exceeds satisfactory. Finally, process precision is said to be superior if

Cp P 2:00.
In recent years, many companies have adopted criteria for evaluating their processes based on process

capability objectives that are more stringent than those recommended minimums above. For instance, the

’’six-sigma’’ program pioneered by Motorola essentially requires that when the process mean is in control,

it will not be closer than six standard deviations from the nearest specification limit. Thus, in effect, requires

that the process capability ratio will be at least 2.0 (Harry, 1988).

Therefore, it would be desirable to determine a bound which practitioners would be expected to find the

true value of the process capability no less than the bound value with certain level of confidence. For users’

convenience in applying our Bayesian procedure, we tabulate the minimum values C�ðpÞ of bC�
p=w, for

various c with m ¼ 2ð2Þ10; 15, ni ¼ n ¼ 10ð5Þ30 in Tables 1–3 to ensure p ¼ 0:99, 0.975, and 0.95,
respectively. For example, if w ¼ 1:33 is the minimum capability requirement, then for p ¼ 0:95, with
m ¼ 10 of each sample size ni ¼ n ¼ 10 and c ¼ 0:90, we can find C�ðpÞ ¼ 1:1297 by checking Table 3.

Thus, the minimum value of bC�
p required for a capable process is C�ðpÞ � w ¼ 1:1297� 1:33 ¼ 1:5026. That

is, if bC�
p is greater than 1.5026, we say that the process is capable in Bayesian sense.

As a result, to judge if a given process meets the capability requirement, we first determine the pre-

specified capability level w, and the confidence level p or the a-risk for the interval. Check the appropriate

table or solve Eq. (1) or (2), we may obtain the minimum value of C�ðpÞ based on given values of p, m sub-

samples of size ni and c calculated from samples. If the estimated value bC�
p is greater than the critical value

C�ðpÞ � w, then we may conclude that the process meets the capability requirement (Cp > w). Otherwise, we

do not have sufficient information to conclude that the process meets the present capability requirement. In

this case, we would believe that Cp 6w. Therefore, the practitioners can easily use the procedure on their in-

plant applications to obtain reliable decisions.

We remark that the process must be stable in order to produce a reliable estimate of process capability. If

the process is out of control, it will be unreliable to estimate process capability. In these cases the priority is

to find and eliminate the assignable causes of variability in order to bring the process in-control.



Table 1

The minimum values of C�ðpÞ of bC�
p=w, with m ¼ 2ð2Þ10; 15, n ¼ 10ð5Þ30 required to ensure p ¼ 0:99

m c (n ¼ 10) c (n ¼ 15) c (n ¼ 20) c (n ¼ 25) c (n ¼ 30)

0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1

2 1.7577 1.6442 1.5502 1.4706 1.6297 1.5244 1.4373 1.3635 1.5601 1.4593 1.3759 1.3053 1.5151 1.4173 1.3362 1.2676 1.4831 1.3873 1.3079 1.2408

4 1.5168 1.4188 1.3376 1.2690 1.4566 1.3625 1.2846 1.2187 1.4208 1.3290 1.2530 1.1887 1.3964 1.3062 1.2316 1.1684 1.3785 1.2895 1.2158 1.1534

6 1.4296 1.3373 1.2608 1.1961 1.3908 1.3010 1.2266 1.1637 1.3665 1.2782 1.2051 1.1433 1.3494 1.2622 1.1900 1.1290 1.3366 1.2503 1.1788 1.1182

8 1.3821 1.2928 1.2189 1.1564 1.3543 1.2668 1.1943 1.1330 1.3359 1.2496 1.1781 1.1177 1.3227 1.2373 1.1665 1.1067 1.3127 1.2279 1.1577 1.0983

10 1.3514 1.2641 1.1918 1.1306 1.3303 1.2444 1.1732 1.1130 1.3158 1.2308 1.1604 1.1008 1.3051 1.2208 1.1510 1.0919 1.2968 1.2131 1.1437 1.0850

15 1.3061 1.2217 1.1518 1.0927 1.2946 1.2110 1.1418 1.0831 1.2856 1.2025 1.1338 1.0755 1.2785 1.1959 1.1275 1.0697 1.2728 1.1906 1.1225 1.0649

Table 2

The minimum values C�ðpÞ of bC�
p=w, with m ¼ 2ð2Þ10; 15, n ¼ 10ð5Þ30 required to ensure p ¼ 0:975

m c (n ¼ 10) c (n ¼ 15) c (n ¼ 20) c (n ¼ 25) c (n ¼ 30)

0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1

2 1.6272 1.5221 1.4350 1.3614 1.5361 1.4369 1.3547 1.2852 1.4848 1.3889 1.3095 1.2422 1.4509 1.3572 1.2796 1.2140 1.4266 1.3345 1.2581 1.1936

4 1.4435 1.3503 1.2731 1.2077 1.4011 1.3106 1.2357 1.1723 1.3748 1.2860 1.2124 1.1503 1.3566 1.2689 1.1964 1.1350 1.3429 1.2562 1.1843 1.1236

6 1.3752 1.2863 1.2128 1.1505 1.3487 1.2616 1.1894 1.1284 1.3312 1.2452 1.1740 1.1137 1.3185 1.2334 1.1628 1.1032 1.3089 1.2243 1.1543 1.0951

8 1.3374 1.2510 1.1795 1.1189 1.3193 1.2341 1.1635 1.1038 1.3064 1.2220 1.1521 1.0930 1.2968 1.2131 1.1437 1.0850 1.2893 1.2061 1.1371 1.0787

10 1.3128 1.2280 1.1578 1.0984 1.2999 1.2159 1.1464 1.0876 1.2900 1.2067 1.1377 1.0793 1.2824 1.1996 1.1310 1.0729 1.2764 1.1939 1.1256 1.0679

15 1.2762 1.1938 1.1255 1.0677 1.2708 1.1887 1.1208 1.0632 1.2652 1.1835 1.1158 1.0586 1.2605 1.1791 1.1117 1.0546 1.2566 1.1755 1.1082 1.0514

Table 3

The minimum values C�ðpÞ of bC�
p=w, with m ¼ 2ð2Þ10; 15, n ¼ 10ð5Þ30, required to ensure p ¼ 0:95

m c (n ¼ 10) c (n ¼ 15) c (n ¼ 20) c (n ¼ 25) c (n ¼ 30)

0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1

2 1.5268 1.4282 1.3465 1.2774 1.4622 1.3678 1.2896 1.2234 1.4246 1.3326 1.2564 1.1919 1.3992 1.3089 1.2340 1.1707 1.3808 1.2916 1.2177 1.1552

4 1.3850 1.2956 1.2215 1.1588 1.3561 1.2685 1.1960 1.1346 1.3372 1.2508 1.1793 1.1188 1.3237 1.2382 1.1674 1.1075 1.3135 1.2287 1.1584 1.0989

6 1.3310 1.2450 1.1738 1.1136 1.3141 1.2292 1.1589 1.0995 1.3020 1.2179 1.1482 1.0893 1.2929 1.2094 1.1402 1.0817 1.2858 1.2027 1.1340 1.0758

8 1.3008 1.2168 1.1472 1.0883 1.2903 1.2070 1.1380 1.0796 1.2818 1.1991 1.1305 1.0725 1.2752 1.1928 1.1246 1.0669 1.2698 1.1878 1.1199 1.0624

10 1.2810 1.1983 1.1297 1.0718 1.2746 1.1923 1.1241 1.0664 1.2685 1.1866 1.1187 1.0613 1.2634 1.1818 1.1142 1.0570 1.2592 1.1778 1.1105 1.0535

15 1.2514 1.1706 1.1036 1.0470 1.2509 1.1701 1.1032 1.0466 1.2482 1.1676 1.1008 1.0443 1.2454 1.1650 1.0984 1.0420 1.2429 1.1627 1.0961 1.0399
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5. Application example

Liquid crystals have been used in various configurations for display applications. Most of the current

displays involve the use of either Twisted Nematic (TN) or Super Twisted Nematic (STN) liquid crystals.

The STN-LCD products are used in making PDAs (personal digital assistants), notebook computers, word
processors and other peripherals. Due to the advancement of modern manufacturing technology STN-

LCD and relatively low production cost, STN-LCDs maintained a competitive advantage in the market.

To illustrate the practicality of our proposed Bayesian approach, we present a case study on a STN-LCD

manufacturing process, which located in the Science-Based Industrial Park, Taiwan. This factory manu-

factures various types of the LCD. For a particular model of the STN-LCD investigated, the upper

specification limit, USL, of a glass substrate’s thickness is 0.77 mm, the lower specification limit, LSL, of a

glass substrate’s thickness is 0.63 mm, and the target value is T ¼ 0:70 mm. If the product characteristic

does not fall within the tolerance (LSL, USL), the lifetime or reliability of the STN-LCD will be discounted.
The collected sample data (15 samples each of size 10) are displayed in Table 4.

A 100p% credible interval means the posterior probability that the true capability index lies in this

interval is p. Let p be a high probability, say, 0.95. Suppose for this particular process under consideration

to be capable, the process index must reach at least a certain level w, say, 1.33. Now, from the process data,

we compute the lower bound of the credible interval for the index. The resulting Bayesian testing procedure

is simple. That is, if bC�
p > C�ðpÞ � w, then we say that the process is capable.

As noted earlier, in order to make the estimation of these capability indices meaningful, we would check

if the manufacturing process is under statistical control and the distribution is normal. For those 15 samples
of size 10 each, the Shapiro–Wilk test for normality confirms this with p-value > 0.1. That is, it is reasonable

to assume that the process data collected from the factory is normally distributed. We then construct the

X � S charts to check if the process is in control. The X � S charts based on the collected samples are

displayed in Figs. 1 and 2. The X � S control charts show that the process seems to be in-control since all

the sample points are within the control limits without any special pattern. Therefore, the basic assump-

tions are justified so we could proceed with the capability calculations. The calculated sample mean �xi and
the sample variance s2i for the fifteen samples are summarized in the last two columns of Table 4. Thus, we

have s2p ¼
Pm

i¼1 s
2
i =m ¼ 0:000158, ��x ¼ 0:6998 and c ¼ 0:869, bC�

p ¼ bPm

i¼1
ðni�1Þ � ðUSL� LSLÞ=ð6spÞ ¼

1:8459. We run the computer program by solving equation (1) (which is available from authors) to
Table 4

The 15 samples of 10 observations with calculated sample statistics

Sample

i
Observations �xi s2i

1 0.727 0.701 0.678 0.694 0.713 0.699 0.695 0.696 0.733 0.703 0.7039 0.000267

2 0.677 0.712 0.686 0.689 0.682 0.683 0.709 0.687 0.698 0.699 0.6922 0.000139

3 0.692 0.687 0.685 0.698 0.687 0.698 0.707 0.717 0.702 0.717 0.6990 0.000140

4 0.701 0.702 0.695 0.703 0.682 0.696 0.692 0.720 0.687 0.686 0.6964 0.000120

5 0.700 0.719 0.699 0.697 0.714 0.697 0.683 0.688 0.693 0.714 0.7004 0.000139

6 0.693 0.690 0.709 0.707 0.713 0.701 0.706 0.684 0.695 0.688 0.6986 0.000099

7 0.699 0.722 0.714 0.706 0.694 0.700 0.699 0.704 0.683 0.704 0.7025 0.000113

8 0.708 0.712 0.703 0.721 0.692 0.691 0.678 0.698 0.712 0.713 0.7028 0.000170

9 0.711 0.693 0.677 0.710 0.708 0.702 0.680 0.713 0.711 0.694 0.6999 0.000177

10 0.703 0.686 0.720 0.727 0.714 0.713 0.698 0.713 0.693 0.685 0.7052 0.000208

11 0.693 0.724 0.715 0.708 0.722 0.705 0.710 0.715 0.714 0.694 0.7100 0.000109

12 0.700 0.712 0.686 0.707 0.683 0.699 0.705 0.705 0.691 0.727 0.7015 0.000169

13 0.708 0.696 0.718 0.704 0.678 0.703 0.713 0.694 0.684 0.681 0.6979 0.000188

14 0.686 0.688 0.678 0.701 0.718 0.694 0.688 0.691 0.704 0.689 0.6937 0.000128

15 0.690 0.693 0.673 0.678 0.711 0.684 0.712 0.714 0.694 0.686 0.6935 0.000210
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obtain the critical value bC�ðpÞ � w ¼ 1:4938 based on p ¼ 0:95, m ¼ 15, n ¼ 10. The calculated sample

estimator bC�
p ¼ 1:8456 is greater than the critical value bC�ðpÞ � w ¼ 1:4938 and the lower confidence bound

of Cp is obtained as bC�
p=C

�ðpÞ ¼ 1:8459=1:1231 ¼ 1:6346. Therefore, we may conclude, with 95% confi-

dence level, that the process meets the capable precision requirement ‘Cp > 1:33’ in this case.
6. Conclusions

Process capability indices establish the relationships between the actual process performance and the

manufacturing specifications. Statistical properties of the estimated Cp based on one single sample, have

been investigated extensively, but not for multiple samples. For applications where a routine-based data

collection plans are implemented, a common practice on process control is to estimate the process precision
by analyzing past ’’in control’’ data. Therefore, the manufacturing information regarding product quality

characteristic should be derived from multiple samples rather than one single sample. In this paper, we

considered estimating and testing Cp with multiple samples using Bayesian approach, and propose

accordingly Bayesian procedure for capability testing. The posterior probability, p, for which the process
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under investigation is capable, is derived. The credible interval, a Bayesian analogue of the classical lower

confidence interval, is obtained. The results obtained in this paper, are generalizations of those obtained in

Cheng and Spiring (1989). To make this Bayesian procedure practical for in-plant applications, we tabu-

lated the minimum values of C�ðpÞ for which the posterior probability p reaches various desirable confi-

dence levels. Subsequently, a real-world case on the STN-LCD manufacturing process, is also investigated

using the proposed approach to data collected from the factory.
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