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Abstract

Multidisk vertical allocation (MDVA) problems intend to find an allocation of relations to disks such that the

expected query cost is minimized. Recently, Chang [European Journal of Operational Research 143 (2002) 210]

modified Rotem et al.’s [IEEE Transactions on Knowledge and Data Engineering 5 (1993) 882] method for solving an

MDVA problem using a smaller number of binary variables. Chang’s method however is unable to treat MDVA

problems with possible replication of relations. This paper proposes another method to solve MDVA problems, which

is more effective than Rotem et al.’s and is able to treat replication problems insolvable by Chang’s method.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Early research by Rotem et al. [3] proposed a mathematical model for multidisk vertical allocation

(MDVA) problems. Their model minimizes the expected query cost subjected to the constraints that all

relations have to be allocated to a multidisk system with possible replication of relations. Many 0–1

variables are involved in Rotem et al.’s model, which cause a heavy computational burden. Recently,
Chang [1] used a smaller number of binary variables to reformulate Rotem et al.’s model at the price of

prohibiting the replication of relations. The prohibition means that each relation can only be assigned to a

single disk. Since the replication of relations can improve the retrieval time on a distributed network system

significantly [2], Chang’s model may not generate the best solution of an MDVA problem.

This study proposes a novel model to improve both Rotem et al.’s model and Chang’s model. By uti-

lizing a linearization strategy, the proposed model not only reformulates Rotem et al.’s model using a
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smaller number of binary variables but keeps the possibility of replication of relations. The computation

results of the numerical examples in Section 4 reveal that the proposed model is more efficient than Rotem

et al.’s model and can lead to optimal solutions within less than three seconds.

The remainder of this paper is organized as follows. Section 2 discusses Rotem et al.’s and Chang’s

models. Section 3 presents the proposed method for MVDA problems with possible replication of relations.

Section 4 contains numerical examples that demonstrate the advantages of the proposed model over the
models of Rotem et al. and Chang.
2. Review of Rotem et al.’s and Chang’s models

2.1. Rotem et al.’s model

Rotem et al. [3] developed an optimization model to find an allocation of relations to disks such that the
expected query cost is minimized. Their model is based on database statistics of access patterns and sizes of

relations and has to satisfy the constraint that each relation appears at least once in the system, as well as to

guarantee that disk capacity limits are not exceeded. The notations used throughout this paper, referring to

Rotem et al. [3], are described as below:

CIO: I/O cost unit (in terms of I/O time per block of data);

Ck: capacity of disk k;
M : number of disks in the multidisk storage system;
N : number of relations in the database;

pij: the probability of a query Qij
PN�1

i¼1

PN
j¼iþ1 pij ¼ 1

� �
;

Ri: relation i in the database;

Si: size of the relation Ri (number of blocks);

T : value of the objective (cost) function;

xik: an indicator of relation Ri being allocated to disk k;
yij: an indicator of Ri and Rj not available on two different disks;

zijk: an indicator of Ri and Rj being placed on the disk k;
Smaxði;jÞ ¼ maxðSi; SjÞ, Sminði;jÞ ¼ minðSi; SjÞ;
xik ¼ 1 if Ri is allocated to disk k, otherwise xik ¼ 0;

yij ¼ 1 if Ri, Rj are not available on two different disks k, otherwise yij ¼ 0;

zijk ¼ 1 if Ri, Rj are stored on disk k, otherwise zijk ¼ 0.

An MDVA problem can be formulated as follows:

min T ¼
XN�1

i¼1

XN
j¼iþ1

pijCIOðSmaxði;jÞ þ yijSminði;jÞÞ ð2:1Þ

s:t:
XN
i¼1

Sixik 6Ck; k ¼ 1; 2; . . . ;M ; ð2:2Þ

XM
k¼1

xik P 1; i ¼ 1; 2; . . . ;N ; ð2:3Þ

z P x þ x � 1; i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ; k ¼ 1; . . . ;M ; ð2:4Þ
ijk ik jk
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yij > 1þ
XM
k¼1

ðzijk � xik � xjkÞ; i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ; ð2:5Þ

xik; yij; zijk 2 f0; 1g for all i; j; k:

The objective function represents the expected query cost. Constraint (2.2) enforces the total size of

relations stored on a disk cannot exceed the disk’s capacity. Constraint (2.3) assures that each relation is

assigned to at least one disk; this constraint allows a relation being assigned to more disks. That is so called
‘‘possible replication of relations’’. As pointed by Loomis and Popek [2], placing multiple copies of data on

a network can significantly improve the efficiency of queries. Constraints (2.4) and (2.5) guarantee correct

values of yij. If yij ¼ 1 for some pair i and j, then there does not exist a pair of disks such that Ri is on one of

them and Rj is on the other. Otherwise, yij ¼ 0. Although Rotem et al. [3] have proposed a promising

solution for MDVA problems, their model contains too many 0–1 variables in constraints (2.4) and (2.5).

Therefore, solving the problem by Rotem et al.’s model will be too time-consuming. For the MDVA

problem with N relations and M disks, there are MN þ NðN � 1Þ=2þMNðN � 1Þ=2 0–1 variables in their

model.

2.2. Chang’s model

Chang [1] proposed the following model for solving the MDVA problem without replication of relations:

min T ¼
XN�1

i¼1

XN
j¼iþ1

pijCIOðSmaxði;jÞ þ yijSminði;jÞÞ

s:t:
XN
i¼1

Sixik 6Ck; k ¼ 1; 2; . . . ;M ;

XM
k¼1

xik ¼ 1; i ¼ 1; 2; . . . ;N ; ð2:6Þ

yij P xik þ xjk � 1; i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ; k ¼ 1; . . . ;M ; ð2:7Þ
yij P 0; i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ; ð2:8Þ

where all variables are the same as defined in Rotem et al.’s model.

The equality constraint (2.6) restricts that each relation being assigned to one disk only. Constraints (2.7)

and (2.8) guarantee that if yij ¼ 1, Ri and Rj are on the same disk, and if yij ¼ 0, Ri and Rj are on different

disks. Comparing with Rotem et al.’s model, the benefit of Chang’s model is that it only involves

MN þ NðN � 1Þ=2 0–1 variables. This benefit comes at a price of sacrificing the possibility of replication of

relations. Since the constraint set in Chang’s model is a subset of that in Rotem et al.’s model, the optimal

solution of Chang’s model may not be the optimum of Rotem et al.’s model. Later, we will illustrate it by
examples.
3. Proposed method

Consider the following propositions:

Proposition 1. Constraints (2.4) and (2.5) in Rotem et al.’s model can be replaced by the following

expressions:
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XM
k¼1

xik xjk

0
@ �

X
k0 6¼k

xjk0

1
A6 yij; i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ; ð3:1Þ

where all variables are the same as defined in Rotem et al.’s model.

Proof

Case 1: For any k, if xik ¼ 1, xjk ¼ 1, and xjk0 ¼ 0 (for all k0 6¼ k), then yij ¼ 1.

Case 2: For any k, if xik ¼ 1, xjk ¼ 1, and
P

k0 6¼k xjk0 P 1, then yij ¼ 0 or 1. Since the objective should be

minimized, yij is then force to be 0.

Case 3: For any k, if xik ¼ 1 and xjk ¼ 0, then yij ¼ 0.

Therefore, the proposition is proved. h

Constraint (3.1) involves nonlinear term xikðxjk �
P

k0 6¼k xjk0 Þ which requires to be linearized.

Proposition 2 [5]. A product term z ¼ uf ðxÞ is equivalent to the following linear inequalities:

i(i) Mðu� 1Þ þ f ðxÞ6 z6Mð1� uÞ þ f ðxÞ,
(ii) �Mu6 z6Mu,

u 2 f0; 1g, z is an unrestricted in sign variable, and M ¼ max f ðxÞ is a large constant.

Proof. If u ¼ 1 then z ¼ f ðxÞ, and if u ¼ 0 then z ¼ 0. h

Following Proposition 2, a product term xikðxjk �
P

k0 6¼k xjk0 Þ can be linearized as follows by introducing

the continuous variable z0ijk:

Mðxik � 1Þ þ xjk �
X
k0 6¼k

xjk0 6 z0ijk 6Mð1� xikÞ þ xjk �
X
k0 6¼k

xjk0 ; i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ;

k ¼ 1; . . . ;M ; ð3:2Þ

�Mxik 6 z0ijk 6Mxik; i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ; k ¼ 1; . . . ;M ; ð3:3Þ

where z0ijk is continuous variable (for i ¼ 1; . . . ;N � 1, j ¼ iþ 1; . . . ;N , k ¼ 1; . . . ;M), and the other vari-

ables are the same as defined in Rotem et al.’s model.

It is clear that z0ijk is equivalent to xikðxjk �
P

k0 6¼k xjk0 Þ following Proposition 2. Replacing the product

term z0ijk ¼ xikðxjk �
P

k0 6¼k xjk0 Þ by (3.2) and (3.3), Rotem et al.’s model can be reformulated as a mixed 0–1

integer program below:

min T ¼
XN�1

i¼1

XN
j¼iþ1

pijCIOðSmaxði;jÞ þ yijSminði;jÞÞ

s:t:
XN
i¼1

Sixik 6Ck; k ¼ 1; 2; . . . ;M ;

XM
k¼1

xik P 1; i ¼ 1; 2; . . . ;N ;
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Mðxik � 1Þ þ xjk �
X
k0 6¼k

xjk0 6 z0ijk 6Mð1� xikÞ þ xjk �
X
k0 6¼k

xjk0 ;

i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ; k ¼ 1; . . . ;M ;

�Mxik 6 z0ijk 6Mxik; i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ; k ¼ 1; . . . ;M ;

XM
k¼1

z0ijk 6 yij; i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N ; ð3:4Þ

where z0ijk is continuous variable (for i ¼ 1; . . . ;N � 1, j ¼ iþ 1; . . . ;N ; k ¼ 1; . . . ;M), and the other vari-

ables are the same as defined in Rotem et al.’s model.

Since the binary variable zijk in Rotem et al.’s model can be replaced by the continuous variable z0ijk in the

proposed model, the required number of 0–1 variables used in an MDVA problem is reduced from

MN þ NðN � 1Þ=2þMNðN � 1Þ=2 to MN þ NðN � 1Þ=2.
4. Numerical examples

Example 1. The problem represented in Fig. 1 shows a database of four relations as vertices of the graph

where each edge represents two-way join query likelihood. Suppose that all applications in the example run

only two-way join queries and the entire database must be allocated to two disks.

This example with the disk capacity C1 ¼ C2 ¼ 1 can be formulated by the proposed method as the
following program:

min 0:5ð0:5þ 0:3y12Þ þ 0:1ð0:5þ 0:45y13Þ þ 0:1ð0:5þ 0:4y14Þ þ 0:1ð0:45þ 0:3y23Þ þ 0:1ð0:4þ 0:3y24Þ
þ 0:1ð0:45þ 0:4y34Þ

s:t: 0:5x11 þ 0:3x21 þ 0:45x31 þ 0:4x41 6 1;

0:5x12 þ 0:3x22 þ 0:45x32 þ 0:4x42 6 1;

x11 þ x12 P 1; x21 þ x22 P 1; x31 þ x32 P 1; x41 þ x42 P 1;

z0121 þ z0122 P 1; z0131 þ z0132 P 1; z0141 þ z0142 P 1;

z0231 þ z0232 P 1; z0241 þ z0242 P 1; z0341 þ z0342 P 1;

2ðx11 � 1Þ þ x21 � x22 6 z0121 6 2ð1� x11Þ þ x21 � x22;

2ðx12 � 1Þ þ x22 � x21 6 z0122 6 2ð1� x12Þ þ x22 � x21;

2ðx11 � 1Þ þ x31 � x32 6 z0131 6 2ð1� x11Þ þ x31 � x32;
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Fig. 1. Examples of two disks and four relations [1].
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2ðx12 � 1Þ þ x32 � x31 6 z0132 6 2ð1� x12Þ þ x32 � x31;

2ðx11 � 1Þ þ x41 � x42 6 z0141 6 2ð1� x11Þ þ x41 � x42;

2ðx12 � 1Þ þ x42 � x41 6 z0142 6 2ð1� x12Þ þ x42 � x41;

2ðx21 � 1Þ þ x31 � x32 6 z0231 6 2ð1� x21Þ þ x31 � x32;

2ðx22 � 1Þ þ x32 � x31 6 z0232 6 2ð1� x22Þ þ x32 � x31;

2ðx21 � 1Þ þ x41 � x42 6 z0241 6 2ð1� x21Þ þ x41 � x42;

2ðx22 � 1Þ þ x42 � x41 6 z0242 6 2ð1� x22Þ þ x42 � x41;

2ðx31 � 1Þ þ x41 � x42 6 z0341 6 2ð1� x31Þ þ x41 � x42;

2ðx32 � 1Þ þ x42 � x41 6 z0342 6 2ð1� x32Þ þ x42 � x41;

� 2x11 6 z0121 6 2x11; �2x12 6 z0122 6 2x12;

� 2x11 6 z0131 6 2x11; �2x12 6 z0132 6 2x12;

� 2x11 6 z0141 6 2x11; �2x12 6 z0142 6 2x12;

� 2x21 6 z0231 6 2x21; �2x22 6 z0232 6 2x22;

� 2x21 6 z0241 6 2x21; �2x22 6 z0242 6 2x22;

� 2x31 6 z0341 6 2x31; �2x32 6 z0342 6 2x32;

where xik; xjk; yij 2 f0; 1g and z0ijk is continuous variable (for i ¼ 1; 2; 3, j ¼ iþ 1; . . . ; 4, k ¼ 1; 2).
Solving the program using LINDO [4] in the same computer, we can have the results in Table 1. Table 1

shows that (i) For the case C1 ¼ 1:5 and C2 ¼ 1, the objective value found by Chang [1] is 0.55 which is worse

than the objective value found by Rotem et al. [3] and the proposed method. This is owing to the fact that the

constraint set in Chang’s model is more restrictive than that in Rotem et al.’s model. (ii) The proposed model

contains less 0–1 variables than Rotem et al.’s model for solving the same problems to get a global optimum.
The optimal allocations of this example with different disk capacities are depicted in Fig. 2.

Example 2. An example of a relational database adapted from Rotem et al. [3] is illustrated in Fig. 3.

Suppose that the database with 19 relations must be allocated to three disks each of capacity 256 Mb, and

all applications run only two-way join queries.
Table 1

Computational results of three models with different disk capacities

Disk capacity Rotem et al.’s model Chang’s model Proposed model

0–1 variables Objective value 0–1 variables Objective value 0–1 variables Objective value

C1 ¼ C2 ¼ 1 26 0.55 14 0.55 14 0.55

C1 ¼ 1:5, C2 ¼ 1 26 0.51 14 0.55 (no replication) 14 0.51

32 RR

41 RR

Disk #1

Disk #2

(a) 121 == CC

421 RRR

31 RR

Disk #1

Disk #2

(b) 1,5.1 21 == CC

Fig. 2. Optimal allocations with replication of relations.
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Fig. 3. A weighted graph of a relational database [3].

Table 2

Computational comparison of two models

Sub-graph M � N Rotem et al.’s model Proposed model

Number of 0–1

variables

Computing time

(ssms)

Number of 0–1

variables

Computing time

(ssms)

1 3· 5 55 0.21 25 0.2

2 3· 7 105 24.72 42 1.65

3 3· 7 105 31.09 42 2.64
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For solving the problem by Rotem et al.’s and the proposed models, the problem has to be decomposed
into three sub-problems such that each sub-problem can be solved on the commercially available software

LINDO [4]. Solving the sub-problems by LINDO [4] on the same computer, we can find that the proposed

model is more computational efficient than Rotem et al.’s model. The computational results are shown in

Table 2.
5. Conclusions

An optimal data allocation could lead to significant decrease in communication costs and/or unrea-

sonable response times in satisfying user queries. Although Rotem et al.’s model can obtain the optimal

allocation of relations to a multidisk database system, their model contains too many 0–1 variables which

will increase the computational burden in the solution process. Chang’s model can only treat an MDVA
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problem without the replication of relations. Chang’s model, therefore, may not save retrieval time by

keeping copies of some of the relations local to various disks. The proposed method not only uses fewer

additional 0–1 variables than Rotem et al.’s model to formulate the same problem but also is more general

than Chang’s method. The computational results show that the proposed method can efficiently solve an

MDVA problem with possible replication of relations which cannot be treated by Change’s method.
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