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Abstract

This paper presents theories and algorithms for 3-D root canal model construction from 2-D X-ray images in a clinically practical way: (1)

the geometrical rectification algorithm for correcting distorted 2-D X-ray images, (2) the transformation algorithms from 2-D X-ray image

coordinate system to unified 3-D reference coordinate system, (3) the merging algorithms and theory for obtaining spatial root canal

centerline by intersecting two surfaces with assumed parallel projection, and (4) the elliptical theory for exploring the root canal cross-

sectional geometry. Using those theories and algorithms, three 3-D computer models constructed from teeth samples are presented to show

the feasibility. The internal geometrical structure provided by 3-D computer graphics enables the clinician and the patient to comprehend root

canal morphology efficiently, and the destructive access preparation before a clinician’s inspection may be avoided during clinic practice.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The knowledge of 3-D morphology of root canals is

important for dental clinician to perform successful endodon-

tic treatment. Because the canal geometry may not be known

without opening the canal, a destructive access preparation by

removing parts of tooth crown and dentin is usually needed

even before a clinician’s inspection and diagnosis by ‘feeling’

with instruments. There is a need for a 3-D root canal model

that will reveal the dimensions and geometry of the root canal,

and display the locations of canal orifice and canal curvature in

3-D computer graphics. It will enable clinician to efficiently

comprehend, diagnose, and record a problem within seconds

or minutes, and to accurately shape and clean the root canal.

With it, the destructive access preparation before a clinician’s

inspection can be avoided.

3-D Root canal model is also the foundation of computer-

aided process planning for endodontic therapy. With known

root canal shape and its geometrical characteristics, such as

canal length, taper, curvature and orifice, a treatment planning
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system will be able to select the treatment tool (detail shape,

size, and material), to determine the cutting parameters, and to

generate tool paths for automated treatment.

In order to construct 3-D root canal model, this paper will

explore the theories and algorithms needed for the

modeling, then apply them in modeling some tooth samples.
2. Review of previous efforts and modeling strategy

for clinical practice

Throughout this century, research on dental anatomy has

to a great extent concentrated on exploration of the anatomy

of root canal systems using different techniques [1–3].

Schneider [4] was one of the first to describe a reliable

method of determining the curvatures from mesiodistal

(from side to side of tooth) and buccolingual (front and back

of tooth) views by means of radiographs. Methods to

produce 3-D constructions of root canal morphology have

been introduced in the last decade. Mayo et al. [5]

introduced computer-assisted tomography in endodontic

research to allow 3-D imaging of root canals. In this

method the tooth was filled with a contrast medium,

‘Ethiodol’, and positioned on a grid (Everett Fixott). This

method required six radiographs of each tooth. However, it

is virtually impossible to take these X-rays in vivo with
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a 45–1358 rotation of a root. Berutti [6] used a computerized

reconstruction by taking serial sections photographs under

stereomicroscope on extracted teeth. This method made it

possible to analyze the changes in morphology of the root

canal on an actual tooth during endodontic treatment. But

these are destructive techniques, which cannot be used in

clinics. Nielsen et al. [7] evaluated X-ray microtomography

in endodontic research. Baume and Doll [8] published 3-D

reconstruction of magnetic resonance imaging data using

extracted teeth. These images were accurate to within

w0.1 mm. Dowker et al. [9] presented a 3-D root canal

reconstruction using X-ray microtomography. The root

canal systems of extracted teeth were reconstructed with a

resolution of 40 mm cubic side length. These 3-D methods

can be used in in vitro studies of root canal morphology.

Dobó-Nagy et al. [10,11] described root canal axis with

fourth order polynomial function by taken two images of

extracted human teeth. Although this method needed only

two images, these two images were taken by orthographic

projection and situated perpendicularly, which is not

possible when treating a patient. Although all of these

methods improved our understanding of root canal anatomy,

they cannot be used in clinical practice.
3. Reference fixture and image geometric rectification
3.1. Reference fixture design

Before a radiograph is taken a tooth reference fixture is

clamped to the patients’ teeth. This compact fixture is made

of material with minimal radiation density, except for three

imbedded reference points. These three reference points,

serving as markers, are precision balls of known dimension

and made of high-density material, so that X-rays won’t

penetrate through them. These three markers provide the

reference coordinate frame in the radiographic image for

accurate dimensional calibration, and 3-D modeling. The

dental film (or sensor) is then placed between the tongue and

the tooth. The three reference balls will be part of the image.

A fixture design and placement in a human mouth is

illustrated in Fig. 1.
Fig. 1. The fixture design and placement in a human mouth.
3.2. Image geometric rectification

If an image is taken from an oblique direction, i e. the

X-ray center beam is not perpendicular to the film it will

cause image distortion. In order to minimize the geometric

distortion of tooth image, two methods can be used. One is

to use the film holder such as the one provided by the Digora

system [12] to ensure a projection perpendicular to the film.

Another is to find the virtual geometrical information in

such an image that is perpendicular to X-ray central beam.

The first method is simple and easy to achieve, the second

method requires mathematical calibration and transform-

ation with a marker as reference. Usually, the clinician

places the film in one location and takes several images

through changing the X-ray central beam direction and

keeping the position of the film unmoved. If two images are

needed, the dentist will take one image by using film holder,

which ensures 908 angle between the X-ray center beam and

film and then take another image mesially (towards middle)

about 208 or distally (away from tooth) about 208, or tilt the

X-ray machine vertically, depending on which tooth is

being examined. So the second image is usually an oblique

image with distortion. Before modeling, geometrical

rectification is needed to correct the distortion.

The three reference points of markers are precision balls of

known dimension, they appear as white dots in the radio-

graphic images. If the image is taken with orthogonal

projection, i.e. the X-ray central beam is perpendicular to the

film; these reference points will become three white circular

dots. If the film is oblique with the X-ray central beam

direction, these dots will instead appear as ellipses [13]. From

the ratio of the long and short axis lengths of the ellipse, the

oblique angle of the image film from X-ray imaging direction

can be determined. Based on this a corrected image with true

geometrical information can be found. This corrected image

will be without distortion, and reflecting the true geometrical

information, which is needed for 3-D modeling.

Fig. 2(a) illustrates the principle of the geometric

rectification method. Because the distance between Markers

A and O is longer than the distance between Markers O and

B, there is less chance that Marker A overlaps with Marker O

and B, Marker A is chosen to calculate the film oblique

angle. Since the fixture is very close to the film with respect

to the focal length of X-ray cone source, we consider this is

the oblique parallel projection in the following calculation.
3.2.1. Calculate major axis length of projective ellipse

and its orientation angle

As shown in Fig. 2(b), the distance between any two

pixel-points (us, vs) on an ellipse of oblique image is:

d Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðus

i Þ
2 K ðus

j Þ
2�2 C ½ðvs

i Þ
2 K ðvs

j Þ
2�2

q
(1)

Through the iterative method, the maximum distance can

be found which equals to major axis length of the ellipse,

2a Z dmax; (2)



Fig. 2. (a) Image geometric rectification method using Marker A as

reference. (b) Calculate major axis length of Market A projective ellipse in

an oblique image.
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and the coordinates of points E and F in the major axis of the

ellipse can be found at the same time, so the orientation of

major axis of the ellipse is

tan q2 Z
vs

F Kvs
E

us
F Kus

F

; (3)

where q2 is the angle between ellipse major axis and u axis.

The center location of Marker A is obtained by the

following equations

us
A Z

1

2
ðus

E Cus
FÞ

vs
A Z

1

2
ðvs

E Cvs
FÞ

8><
>: (4)

3.2.2. Find minor axis length of Marker A and oblique angle

The half-length of minor axis of Marker A is the

minimum distance between center point of Marker A
and any point in ellipse, that is

b Z minðdAÞ; (5)

where dA can be obtained from Eq (1) with (us
j , vs

j )

substituted by Marker A center point coordinates (us
A, vs

A).

The oblique angle between the film plane normal

direction and X-ray source direction is shown in Fig. 2(a)

cos q Z
b

a
(6)

3.2.3. Obtain geometrically corrected image and oblique

transformation matrix S

Once calculated the oblique angle q the true dimension of

the canal can be obtained in the corrected image, which is

perpendicular to X-ray direction and obtained by rotating

the film plane q degree from oblique position to perpen-

dicular position.

So the true dimensions in corrected image are expressed

as below

u

v

1

2
64

3
75 Z

cos q 0 0

0 1 0

0 0 1

2
64

3
75

u0

v0

1

2
64

3
75 Z S

u0

v0

1

2
64

3
75; (7)

where S is oblique transformation matrix,

S Z

cos q 0 0

0 1 0

0 0 1

2
64

3
75 (8)

Shown in Fig. 2(a) and (b), u 0 and v 0 are coordinates in

major axis and minor axis of the ellipse, which is obtained

by the following equations

u0

v0

1

2
64

3
75 Z

cos q2 Ksin q2 0

sin q2 cos q2 0

0 0 1

2
64

3
75

us

vs

1

2
64

3
75 Z RA

us

vs

1

2
64

3
75; (9)

where RA is major axis rotation matrix,

RA Z

cos q2 Ksin q2 0

sin q2 cos q2 0

0 0 1

2
64

3
75 (10)

So the corrected image is calculated from original

oblique image as

u

v

1

2
64

3
75 Z SRA

us

vs

1

2
64

3
75

Z

cos q cos q2 Kcos q sin q2 0

sin q2 cos q2 0

0 0 1

2
64

3
75

us

vs

1

2
64

3
75 (11)



Fig. 3. Image geometrical rectification for maxillary left incisor.

(a) Original image, (b) corrected image.
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When the image is taken from mesial or distal direction,

q2Z0, the corrected image is simplified as

u

v

1

2
64

3
75 Z

cos q 0 0

0 1 0

0 0 1

2
64

3
75

us

vs

1

2
64

3
75 Z

uscos q

vs

1

2
64

3
75; (12)

which is achieved by shrinking the original image in us

direction.

If the image is taken from upward or downward

direction, q2ZK908, the corrected image is obtained by

u

v

1

2
64

3
75 Z

0 cos q 0

K1 0 0

0 0 1

2
64

3
75

us

vs

1

2
64

3
75 Z

vscos q

Kus

1

2
64

3
75; (13)

which is the shrunk image in vs direction from the original

image.

Fig. 3 gives an example image after geometrical

rectification. (a) is the original (oblique) maxillary left

incisor image taken from mesial 208. (b) is the corrected

image after geometrical rectification. From (b) one can see

how Marker A’s projection becomes a circle compared to

the ellipse in original image (a).
4. Transformation and calibration algorithms

Before constructing a 3-D root canal model, its 3-D

coordinates should be found from a set of 2-D images, based

on stereo principles and corresponding mathematical

algorithms. There are four coordinate systems involved in

the application of 3-D root canal modeling from 2-D

images.
(1)
 Pixel coordinate system: uvop

Pixel coordinate system is an original 2-D image

coordinate system where the image plane is

perpendicular to the optical axis of X-ray central

beam, or corrected image coordinate system after

distortion rectification from oblique projection

image. Its origin is located at left top corner of

the image. The unit of this system is pixel. P(u,v)

represents a point in pixel coordinate system.
(2)
 Dimensional image coordinate system: xyo

Dimensional image coordinate system is a 2-D

coordinate system. Its origin is the center point of

Marker O. The unit of this coordinate system is

millimeter. P(x, y) represents a point in dimensional

image coordinate system.
(3)
 X-ray perspective imaging coordinate system:

XCYCZCOC

X-ray perspective imaging coordinate system refers

to X-ray sources perspective projection system,

which has the origin at X-ray source center and the

optical axis (established by the center of the X-ray

source) as ZC axis. The XCYCOC plane is parallel to

the image film. (According to dental terminology,

the X-ray center beam refers to the optical axis). Any

point in such coordinate system is expressed as P(XC,

YC, ZC).
(4)
 World coordinate system: XWYWZWOW

The fixture frame with three markers A, B, and O

on a right angle bracket is defined as world

coordinate system. O is the origin; OA denotes to

XW axis, OB as YW axis, ZW is perpendicular to

the plane formed by OA and OB. Any point in

world coordinate system is expressed as P(XW,

YW, ZW).
4.1. Transformation between world coordinate

system and X-ray imaging coordinate system

(XWYWZWOW–XCYCZCOC)

In 3-D space, an object has six degree of freedom.

The motion of a rigid body can be divided into a

transmission and a rotation. So the relationship between

two 3-D coordinate systems can be described by a

rotation matrix R and a transmission matrix T [14].

Suppose we wish to transform a point H with world

coordinate (XW, YW, ZW) into X-ray coordinate system,

as shown in Fig. 4, the transformation form can be

expressed as,

XC

YC

ZC

1

2
66664

3
77775 Z R

XW

YW

ZW

1

2
66664

3
77775CT ; (14)



Fig. 4. Transformation among four coordinate systems during modeling.
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where [XC, YC, ZC]T is the coordinate of same point H in

X-ray coordinate system. T is transmission matrix from the

origin in world coordinate system to the origin in X-ray

coordinate system,

T Z

1 0 0 TX

0 1 0 TY

0 0 1 TZ

0 0 0 1

2
66664

3
77775 (15)

R is the rotation matrix by rotating point H in an arbitrary

direction. The calculation of R can be simplified by rotating

point H about three coordinate axes and obtaining

composite result. That is

R Z RaRbRg; (16)

where Rg is the rotation matrix of rotating a point about

ZC-axis by an angle g, which is measured clockwise when

looking at the origin from a point on CZC axis, Ra is the

rotation matrix about XC-axis by an angle a, Rb is the

rotation matrix about the YC-axis by an angle b. Rg, Ra and

Rb can be obtained in reference [15], so composite rotation

matrix R is the following
R Z

cos b cos g cos b sin g sin b 0

sin a sin b cos g Kcos a sin g sin a sin b sin g Ccos a cos g sin a cos b 0

cos a sin b cos l Csin a sin g cos a sin b sin g Ksin a cos g cos a cos b 0

0 0 0 1

2
66664

3
77775 (17)
The matrices T and R describe the position and

orientation of the X-ray central beam with respect to the

fixture frame (world coordinate system). There are totally

six independent variables in above transformation, three

for rotation R, i.e. a, b and g, and three for translation T,

i.e. TX, TY, TZ, which are also called the extrinsic
parameters of the X-ray cone in terms of computer vision

[15].

If we want to use the unified matrix representation,

Eq. (14) can be expressed in the following format:

HC Z RHW CT (18)

or

HW Z RK1ðHC KTÞ; (19)

where HC is a column vector whose components are the

transformed coordinates

HC Z

XC

YC

ZC

1

2
66664

3
77775 (20)

and HW is the column vector containing the original

coordinates in the world coordinate system,

HW Z

XW

YW

ZW

1

2
66664

3
77775 (21)

4.2. X-ray perspective projection transformation

(XCYCZCOC–xyo)

The radiography is considered a system that performs a

linear projective transformation from the projective space

P3 into the projective plane P2 [16]. A perspective

transformation, also called an imaging transformation,

projects 3-D points or object onto an image plane. Any

point in a 3-D X-ray coordinate system (XC, YC, ZC) is

projected by perspective transformation onto an image

plane with coordinate as (x, y). The relationship of (x, y) and

(XC, YC, ZC) can be easily accomplished by the use of

similar triangle.

x Z l
XC

ZC

and y Z l
YC

ZC

; (22)
where l is the distance between X-ray source and the

film, called focal length of X-ray central beam. It can

be obtained either by fixture design or X-ray cone

calibration.

The above equations can be rewritten linearly using

homogeneous coordinates:
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x

y

z

1

2
6664

3
7775 Z

1 0 0 0

0 1 0 0

0 0 1 0

0 0
1

l
0

2
6666664

3
7777775

XC

YC

ZC

1

2
66664

3
77775 (23)

The above formula expresses the fact that the relation-

ship between image and 3-D X-ray coordinates is linear in

projective coordinates and can be written in matrix form as

h Z PHC; (24)

where

h Z x y z 1

 �T

; (25)

and P is the perspective transformation matrix,

P Z

1 0 0 0

0 1 0 0

0 0 1 0

0 0
1

l
0

2
6666664

3
7777775

(26)

4.3. Image dimensional calibration (xyo–uvop)

Both the dimensional image coordinate system (xyo) and

pixel coordinate system (uvop) are 2-D coordinate systems.

The former has millimeter as unit and the latter has pixel

value as unit. The coordinates of point (u, v) in pixel

coordinate system can be found through the coordinates of

same point (x, y) in the dimensional image system by the

following equations

u Z uo K
x

dx

v Z vo K
y

dy

;

8><
>: (27)

where (uo, vo) is the coordinate of the origin of metric image

coordinate system in pixel coordinate system, which is the

center location of Marker O. The quantities dx and dy can be

interpreted as the size in millimeters of per horizontal and

vertical pixel, respectively. They can be obtained by metal

ball marker calibration.

From Eqs. (5) and (1), the half-length of minor axis b,

which is the projective diameter of Marker A in pixel, is

known, and the real diameter of marker ball db is also known

from fixture design, then dx and dy are

dx Z dy Z scale Z
db

2b
ðmm=pixelÞ (28)

The Eq. (27) can be rewritten linearly using homo-

geneous coordinates,

hP Z Mh; (29)
where

hP Z u v 1 1

 �T

; (30)

and M is the transformation matrix from dimensional image

to pixel coordinate system,

M Z

K1

dx

0 uO 0

0
K1

dy

vO 0

0 0 1 0

0 0 0 1

2
6666664

3
7777775

(31)

The parameters uo, vo along with focal length l do not

depend on the position and orientation of the X-ray central

beam in 3-D space, and they can thus be called intrinsic.

Knowledge of the intrinsic parameters allows us to perform

metric measurements in X-ray central beam systems, i.e. to

compute the real length of root canal and real width of cross-

section shape of canal in millimeter.
4.4. X-ray central beam calibration to obtain

transformation matrices

The accuracy in interpreting the true dimension of root

canal can be achieved by X-ray central beam self-

calibration procedure. In the previous sections, explicit

equations are obtained for the image coordinates (u, v) of a

world point H (XW, YW, ZW). The implementation of these

equations requires knowledge of the X-ray cone intrinsic

and extrinsic parameters, and measurement of dimensions.

The X-ray beam calibration is to determine intrinsic and

extrinsic parameters so that images relative positions and

orientations are known. The intrinsic parameter can be

obtained by fixture design. The extrinsic parameters can be

determined using a set of image points whose world

coordinates are known. These points are markers and the

computational procedure to obtain the X-ray beam extrinsic

parameters using markers is the procedure to determine the

transformation matrices.

Combining Eqs. (18), (24), and (29), any pixel point is

expressed by

hP Z M P ðRHW CTÞ; (32)

in which M has two parameters of uo and vo, P has one

parameter l, R has three parameters of g, a, and b, and T

has three parameters of TX, TY and TZ, so there are totally

nine unknown parameters. From Eq. (18) we know that

each point gives two equations. So five markers are

needed for the cone calibration. However, parameter l

can be determined by fixture design or measured while

taking the image, and uo and vo can be simply obtained

by fixture design in this case, so only three markers (six

unknown, two equations) are needed for the application.

These three markers are Marker A, O and B in the

fixture.
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The coordinates of Marker A, O and B in world

coordinate system are known from the fixture design,

which are (XA, YA, ZA), (XO, YO, ZO), and (XB, YB, ZB). Their

2-D pixel coordinates can be obtained from image edge

map, they are (uA, vA), (uO, vO), and (uB, vB). Substitute A, O

and B coordinates into Eq. (32), we have the following

formulations,

uA

vA

1

1

2
66664

3
77775 Z MP R

XA

YA

ZA

1

2
66664

3
77775CT

0
BBBB@

1
CCCCA

uO

vO

1

1

2
66664

3
77775 Z MP R

XO

YO

ZO

1

2
66664

3
77775CT

0
BBBB@

1
CCCCA

uB

vB

1

1

2
66664

3
77775 Z MP R

XB

YB

ZB

1

2
66664

3
77775CT

0
BBBB@

1
CCCCA

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

(33)

Resolve above six equations group, the ration angle a, b,

and g, and displacement Tx, Ty and Tz can be found. The

transformation matrices R and T therefore are obtained.

After X-ray cone calibration, the transform matrix, M, P,

R and T are known, with reference to Eq. (19), the world

coordinates of any image point can be mathematically

expressed by

HW Z RK1ðPK1 MK1 hP KTÞ: (34)
5. 3-D Root canal model construction

We consider 3-D root canal model construction to be

finding the spatial root canal centerline and its cross-

sectional geometry at each centerline point. By combining

the centerline curve with each cross-sectional shape

mathematically, a 3-D root canal model and its represen-

tation of the geometrical entity can be formulated.

5.1. -D curve of root canal centerline/root canal axis

After image processing and analysis, the pixels repre-

senting the canal boundary can be obtained and saved in the

database. Through the transformation from the image pixel

coordinate system to world coordinate system, the canal

centerline points or root axis points can be found in world

coordinate system. The 2-D root canal centerline can be

fitted into polynomials [17]. The spatial root canal center-

line can be obtained by merging and intersecting two

surfaces, which are represented by two 2-D canal centerline

curves of image 1 and 2.
For a 3-D root canal centerline curve, suppose l1 is its

projection in image 1 and l2 is its projection in image 2. These

two planar algebraic centerline and their mathematical

representations of polynomial are obtained in last section

by planar root canal centerline curve fitting. Exerting a pull

on l1 toward to its X-ray source direction, a extrusion surface

surf1 is obtained. In the same way by stretch curve l2 toward

the corresponding X-ray direction, another extrusion surface

surf2 are obtained. Then the 3-D root canal centerline is

obtained by calculating the intersection points of above two

cylindrical surfaces surf1 and surf2.

In general, the problem of finding intersections for two

surfaces leads to an under-determined nonlinear system of

equations, independent of the nature of the surface

representations being used. To compute four parameters of

an intersection point, we have only three coordinate

equations at our disposal. So we have to discretize the

surface representation to reduce the number of degrees of

freedom to three. Since the extrusion surface is formed by

moving the generatrix along the curve, which consists of a

group of spatial straight lines, we choose a parameter

discretization method to find the intersection for two

extrusion surfaces such that finding the intersection points

of two extrusion surfaces can be achieved by calculating the

intersections between a extrusion surface and a set of straight

lines, the generatrix of another extrusion surface. The

procedure is first to find the point in the root canal projection

line l2, stretch this point along the extrusion generatrix

direction, to obtain its parametric equation. Secondly, to find

another surface which is formed by root canal centerline l1 in

image 1, compute the intersection point p1 between the

straight line and above extrusion surface. In this way, we can

calculate a set of intersection points of the straight lines and

extrusion surface by a numerical method. The spatial root

canal centerline is therefore obtained by fitting these

intersection points with polynomial approximations.

In image 1, the generatrix of surf1 can be obtained by

stretch point piðx
1
i ; y

1
i Þ in l1 toward generatrix direction (X-

ray 1 source direction), and its parametric representation is:

X1
C Z x1

i

Y1
C Z y1

i

Z1
C Z q1

;

8>><
>>: (35)

where the superscript 1 of each coordinate denotes the

coordinate obtained in taking X-ray image 1, q1 is parameter

and x1
i and y1

i are obtained from transformation matrix

between image coordinate system and pixel coordinate

system while taking X-ray image 1, that is

x1
i

y1
i

1

1

2
666664

3
777775 Z MK1

1

ui

vi

1

1

2
66664

3
77775; (36)
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where M1 is transformation matrix from image 1 dimen-

sional coordinate system to pixel coordinate system, shown

in Eq. (31).

The generatrix equation g1 of surf1 in world coordinate

system is

X1

Y1

Z1

1

2
666664

3
777775 Z RK1

1

X1
C

Y1
C

Z1
C

1

2
666664

3
777775 Z RK1

1

x1
i

y1
i

q1

1

2
66664

3
77775; (37)

where R1 is the transformation matrix between world

coordinate system and X-ray imaging 1 coordinate system,

which are obtained by Eq. (17).

In image 2, the planar centerline point of root canal is

obtained as (u2
i , v2

i ) in image 2 pixel coordinate system,

the superscript 2 is related to image 2, does not means

square.

After the transformation between dimensional

image coordinate system and pixel coordinate system

using Eq. (31), the root canal centerline point in image 2

can be represented in dimensional image coordinate

system as

x2 Z t2

y2 Z f2ðt2Þ
;

(
(38)
where f2ðtÞ Z
Xn

jZ0

bj t2 (39)

In 3-D X-ray imaging 2 coordinate system, the above

root canal centerline curve represents an extrusion surface,

which is:

X2
C Z t2

Y2
C Z f2ðt2Þ

Z2
C Z q2

;

8>><
>>: (40)

where t2 and q2 are parameters in X-ray imaging 2

coordinate system. Transform it to world coordinate system,

the extrusion surface surf2 can be written as

X2

Y2

Z2

1

2
666664

3
777775 Z RK1

2

X2
C

Y2
C

Z2
C

1

2
666664

3
777775 Z RK1

2

t2

f2ðt2Þ

q2

1

2
66664

3
77775; (41)

where R2 is transformation matrix from Eq. (17).
Let

X1

Y1

Z1

1

2
66664

3
77775 Z

X2

Y2

Z2

1

2
66664

3
77775

to find the intersection point between surf2 and generatrix

g1, that is

RK1
1

x1
i

y1
i

q1

1

2
6664

3
7775 Z RK1

2

t2

f2ðt2Þ

q2

1

2
6664

3
7775; (42)

where q1, q2 and t2 are three variables, and are computed by

resolving above three equations. Therefore, any point (Xi,

Yi, Zi) in spatial root canal centerline curve is obtained,

Xi

Yi

Zi

1

2
6664

3
7775 Z RK1

1

x1
i

y1
i

q1

1

2
66664

3
77775 or

Xi

Yi

Zi

1

2
6664

3
7775 Z RK1

2

t2

f2ðt2Þ

q2

1

2
6664

3
7775 (43)

Using the same procedure as above, a set points of spatial

root canal centerline (Xi, Yi, Zi), iZ1, 2,., m, can be found,

in which m is the total point number in root canal centerline.

Based on the fitting algorithm to fit the above points using

3–5 order polynomials, then the spatial root canal centerline

curve is represented in the following format,

X Z f ðtÞ

Y Z gðtÞ

Z Z t

;

8><
>: (44)

where t is parameter, f(t) and g(t) are 3–5 order polynomial

fitting functions.

Fig. 5 shows the spatial root canal centerline of maxillary

left incisor obtained by calculating intersection line of two

extrusion surfaces, (a) and (b) are different views. Surface 1

and surface 2 describe two different X-ray imaging

directions. Surface 1 is formed by taking image 1 and

surface 2 is formed by taking image 2. Two surfaces angle a

q degree-the oblique angle while taking image 2 relative to

taking image 1.
5.2. Building 3-D root canal entity as elliptical cone

Strictly speaking, the X-ray source is a point source, and

a planar X-ray image is a result of perspective projection of

the tooth to the image plane. 3-D Model construction is

therefore better handled by epipolarity technique. Since the

dental film is very close to the real tooth (about a

centimeter), compared to X-ray source (20–40 cm), the

distortion and dimensional error is minimal, usually

less than 1% [18]. This error can be further reduced by



Fig. 6. (a) Formulation theory of 3-D root canal model with ellipse as cross-

sectional shape, (b) calculation of half-length of major axis of an ellipse.

Fig. 5. Find the spatial root canal centerline of maxillary left incisor by

intersecting two cylinder surface. (a) and (b) are different views.

J. Dong et al. / Computer-Aided Design 37 (2005) 1177–1189 1185
the dimensional calibration procedure using the three

markers. To simplify calculations of the 3-D root canal

model a parallel projection is assumed. The morphology

study of the root canal shows that root canal cross-section

trends to be circle and egg shaped. Therefore, in the

following approach, the root canal cross-section shape is an

ellipse, and the 3-D root canal entity is an ellipse cone.

Fig. 6 shows a cross-sectional root canal shape that is an

ellipse. It is encapsulated in the rhombus and tangent to four

edges of the rhombus. The rhombus is formed and controlled

by two X-ray directions, X-ray 1 and 2, and four points in

image 1 and 2, F1, L1, F2, and L2. F1 is start point of root canal

contour in image 1, L1 is end point of root canal contour in

image 1, F2 is start point of root canal contour in image 2, and

L2 is end point of root canal contour in image 2. Two lines

passed through F1 and L1 along the X-ray 1 imaging direction

and two lines passed through F2 and L2 along the X-ray 2

imaging direction forms a rhombus, P1P2P3P4.
Usually Image 1 is taken from facial direction. From

the knowledge of tooth anatomy, the root canal width is

the shortest in facial image, so the minor axis is always

lies on the XC axis, and its length 2b is equal to F1L1,

that is,

b Z
1

2
F1L1 Z S1 Z

1

2
ðxL1 KxF1Þ Z

1

2
scaleðuL1 KuF1Þ

(45)

The major axis lies on ZC axis, and its half-length a is

unknown and to be found. As shown in Fig. 6(b), line

P1P2 is tangent to the ellipse at point Pt(xt, zt). The

ellipse and line P1P2 mathematical equations are

x2

S2
1

C
z2

a2
Z 1

x cos q Cz sin q Z S2

;

8<
: (46)



Fig. 7. 3-D Root canal model of maxillary left incisor. (a) 3-D Root canal

ellipse cone with four contours (frame), (b) root canal solid model.

Fig. 8. Two images of human mandibular left premolar. (a) Facial view, (b)

about 908 distal view.
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where S2 is the cross-sectional width of canal in Image 2,

and calculated using Eq. (45) with uL1, uF1 substituted by

uL2, uF2.

Solve above two equations to find expression of

intersection points as below:

x1;2 Z
S2ða

2sin2q Cb2cos2qÞKsin qða2S2sin qGDÞ

cos qða2sin2q Cb2cos2qÞ

z1;2 Z
a2S2sin qGD

a2sin2q Cb2cos2q

;

8>><
>>:

(47)

where

D2 Z a2S2
1cos2qða2sin2q CS2

1cos2q KS2
2Þ (48)

Since the ellipse is tangent to line P1P2, there is only one

intersection point between ellipse and line P1P2, that

requires

D Z 0 (49)

Resolve Eqs. (49) and (48), the half-length of major axis

of ellipse a is

a Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

2 KS2
1cos2q

p
sin q

(50)

The S1 is always less than S2, so there is unique solution

for a.

To represent the ellipse mathematically in world

coordinate system, the ellipse parametric equation in

cross-section YC can be written as

XC Z XCO Cb cos t

ZC Z ZCO Ca sin t
;

(
(51)

where (XC, YC, ZC) is the X-ray 1 imaging coordinates of

any point on the ellipse with specific canal height YC. (XCO,

YC, ZCO) is the coordinates of ellipse center in the same

canal height YC. The ellipse center in each height is the

center of 3-D root canal model in the same cross-section.

The centerline of 3-D canal model is the centerline of ellipse

cone, and each center point in the centerline is the ellipse

center in the same cross-section.

Through the transformation matrix R1 between world

coordinate system and X-ray 1 coordinate system, the

ellipse mathematical equation in cross-section YZYCO can

be obtained in the following format,

X

Y

Z

1

2
66664

3
77775 Z RK1

1

XC

YC

ZC

1

2
66664

3
77775 Z RK1

1

XCO Cbcos t

YCO

ZCO Casin t

1

2
66664

3
77775 (52)

Change value YCO from root canal foreman to canal

orifice, to obtain a series of conic cross-section ellipses.

These ellipses are combined into the spatial root canal

model whose whole entity is an elliptical cone.
Fig. 7 shows an example of canal model for a maxillary

left central incisor.
6. Examples of 3-D root canal model

Three typical sample teeth were chosen based on their

different possible treatment procedures. The teeth were

sterilized in formaldehyde, with calculus and soft tissue

removed. All teeth had intact crowns and fully developed

apices. For each specimen, two images were taken using the

Digora photo stimulable phosphor sensors (Soredex,

Finland) that are reusable image plates (normal size:

30!40 mm of image area and 466!628 pixels of image

size). All image plates were placed perpendicularly to

radiographic beam. Using a 20 cm X-ray tube all exposures

were done at 70 kVp, 10 mA, and 16 impulses (Gendex

X-ray machine). After exposure the sensors were processed

in the Digora fmx system (Soredex, Finland). The Digora

scanner moves the imaging plate with a conveyor and scans

the surface of the plate with a laser beam at a frequency of

about 30 scans per second. One readout pass consists of 628



Fig. 9. Root canal model of human mandibular left premolar with chamber

and tooth outlines.

Fig. 11. Root canal model of maxillary right canine with tooth outlines.
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scans. During each scan, the emitted light is measured 466

times. Each of these measurements represents one pixel of

the final image. The measurements are displayed as an

image on the computer screen and later stored in an image

file of .bmp. The fixture was mounted on the tooth with

Markers A and O close to the X-ray source and Marker B on

the lingual side of the tooth.

Based on the theories and algorithms presented in the

previous sections, three 3-D root canal models with

chamber and teeth outlines were constructed.
6.1. Human mandibular left premolar with one root canal

This was a single-rooted, young permanent human

posterior tooth-mandibular premolar with short tooth length

and wide cross-sectional dimension. This tooth had one root

canal with an elongated cross-sectional shape, like a

‘ribbon’, at each cross-sectional view of the canal. Two

images were taken according to above descriptions. One

was a facial view image with the central X-ray beam

perpendicular to the plate. After the first image was taken,

tooth is turned around 908 along the tooth’s long axis. There

another image is taken from a distal 908 angulation, also

with the central X-ray beam perpendicular to the image

plate. Two images are shown in Fig. 8. Using ellipses as
Fig. 10. Images of maxillary right canine. (a) Original facial view, (b)

original mesial view.
canal cross-sectional shapes, the 3-D model of human

mandibular premolar is constructed as shown in Fig. 9.

6.2. Human maxillary right canine with one root canal

This was a permanent human anterior tooth-maxillary

canine in a skull. Two radiographic images were taken from

the human skull of the maxillary right canine. One was a

facial view, Fig. 10(a). Another one was a distal view of 208,

Fig. 10(b). In Fig. 10(b), three markers’ projection became

three ellipses, not circles, showing a distortion of the image.

Therefore, a geometrical correction process was needed to

correct the distortion. Using the geometric rectification

algorithm stated in Section 3.2, the image orientation angle

and oblique angle were calculated. The corrected distal view

image was obtained by transforming the original image

using the two angles. Based on facial image and corrected

distal image, its 3-D canal model is constructed as shown in

Fig. 11 with two different views.

6.3. Pig mandibular premolar with two root canals

The last sample tooth was a pig premolar It had two canals

in two roots-one canal in each root. Modeling such canals

helped us understand the spatial relationship of two canals in

one tooth, i.e. their relative directions and orientations. A

successful modeling of two canals in one tooth proved the

possibility of modeling more than one canal at a time. The

original pig premolar images were shown in Fig. 12, in which
Fig. 12. Two original images of pig mandibular premolar. (a) Facial view,

(b) distal view about 308.



Fig. 13. Root canals model of pig mandibular premolar in three different views.
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(a) is a facial view, and (b) is a distal view about 208. The

canal model was shown in Fig. 13 in two different views.

Canal models with chamber and tooth outlines are shown in

Fig. 14, also in two different views.
7. Conclusion

3-D Modeling of root canal is an important step to obtain

information on the inner tooth anatomy prior to un-roofing

of the pulp chamber. It is also the basis for computer aided

endodontic treatment procedure planning [19]. The model-

ing algorithms and construction theories from two ordinary

radiographic images were explored to obtain the 3-D root

canal morphology in a way that is clinically possible. Three

sample teeth were modeled to verify the feasibility of using

the above theories and algorithms in clinic practice. The
Fig. 14. Root canal model of pig mandibular premolar with chamber and

tooth outlines in two different views.
work in this paper is a pioneer effort to obtain 3-D root canal

geometrical information from X-ray images available in

clinical practice. The 3-D root canal model can be rotated

and viewed from different angles. The clinician can see its

internal structure by sectioning the 3-D model, which helps

clinician treat root canal accurately and instantly. This is an

important step towards achieving more precise root canal

treatment.
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