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Abstract. We propose an inverse iterative method for computing the Perron pair of an irre-
ducible nonnegative third order tensor. The method involves the selection of a parameter θk in the
kth iteration. For every positive starting vector, the method converges quadratically and is positivity
preserving in the sense that the vectors approximating the Perron vector are strictly positive in each
iteration. It is also shown that θk = 1 near convergence. The computational work for each iteration
of the proposed method is less than four times (three times if the tensor is symmetric in modes two
and three, and twice if we also take the parameter to be 1 directly) that for each iteration of the
Ng–Qi–Zhou algorithm, which is linearly convergent for essentially positive tensors.
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1. Introduction. A real-valued mth order n-dimensional tensor A consists of
nm entries in R, and takes the form

A = (Ai1i2...im), Ai1i2...im ∈ R, 1 ≤ i1, i2, . . . , im ≤ n.

A tensor A is called nonnegative (positive) if Ai1i2...im ≥ 0 (Ai1i2...im > 0) for all
i1, . . . , im. For various applications of tensors, nonnegative tensors in particular,
see [13].

For an n-dimensional column vector x = [x1, x2, . . . , xn]T ∈ Rn, we define an
n-dimensional column vector

(1.1) Axm−1 :=

 n∑
i2,...,im=1

Ai i2...imxi2 . . . xim


1≤i≤n

.

Definition 1.1 (see [3, 16]). Let A be an mth order n-dimensional tensor and C
be the set of all complex numbers. Assume that Axm−1 is not identically zero. We
say that (λ,x) ∈ C× (Cn\{0}) is an eigenpair (eigenvalue-eigenvector) of A if

(1.2) Axm−1 = λx[m−1],

where x[m−1] = [xm−11 , xm−12 , . . . , xm−1n ]T .
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912 CHING-SUNG LIU, CHUN-HUA GUO, AND WEN-WEI LIN

For an irreducible nonnegative tensor A, the Perron–Frobenuis theorem [3, The-
orem 1.4] states that there are scalar λ∗ > 0 and unit vector x∗ > 0 satisfying (1.2),
and that |λ| ≤ λ∗ for every eigenvalue λ of A. The number λ∗ is then called the
spectral radius of A, denoted by ρ(A), and is also called the Perron root of A. The
corresponding positive unit vector x∗ is unique [3] and is called the Perron vector of
A. The Perron pair (ρ(A),x∗) is needed in several applications. In particular, it is
related to measuring higher order connectivity in hypergraphs [7, 8], and determines
the probability distribution of higher order Markov chains [16]. By computing ρ(A)
for a suitable irreducible nonnegative tensor A, we can also determine whether an
irreducible Z-tensor is an M -tensor [21]. The problem of computing the Perron pair
has attracted much attention in recent years.

In 2009, Ng, Qi, and Zhou [16] presented a power method for computing ρ(A) for a
nonnegative tensor. Later on, Chang, Pearson, and Zhang [2] proved its convergence
for primitive tensors. Linear convergence of the algorithm was then proved in [20]
for essentially positive tensors with a particular starting vector. Without giving the
detailed definitions, we simply mention that essentially positive tensors are primitive
tensors, and primitive tensors are irreducible nonnegative tensors. Liu, Zhou, and
Ibrahim [14] noted that for any irreducible nonnegative tensor A, one can apply the
Ng–Qi–Zhou (NQZ) algorithm to B = A + sI, where s is a positive scalar and I
is the unit tensor. Convergence of the algorithm is then guaranteed by [2] since
B is primitive. For a primitive tensor, starting with any positive vector, the NQZ
algorithm also produces approximations to the Perron vector that are positive vectors.
So the algorithm is positivity preserving. But it is noted in [20] that the rate of
convergence could be worse than linear if the tensor is primitive, but not essentially
positive.

The Perron pair can also be found by Newton’s method [15], which has local
quadratic convergence, but is not positivity preserving. Global convergence may be
achieved through a line search [15], but this requires additional assumptions and the
resulting algorithm is more complicated and is still not positivity preserving. The
positivity of approximations is important in applications; if the approximations lose
positivity then they may be meaningless and could not be interpreted.

For irreducible nonnegative second order tensors (i.e., matrices), there are fast-
converging and positivity preserving methods [17, 5, 9] for computing the Perron
pair. Our goal in this paper is to propose a fast-converging and positivity preserving
algorithm for computing the Perron pair of an irreducible nonnegative third order
tensor A, with a detailed convergence analysis. Third order tensors, as the immediate
generalization of matrices, have received special attention [11, 12, 18].

In 1971, Noda [17] introduced a positivity preserving method for the nonnegative
matrix eigenvalue problem, which has quadratic convergence [5] and is now called
the Noda iteration. In this paper, we propose a positivity preserving iteration for
nonnegative third order tensors by combining the idea of Newton’s method with the
idea of the Noda iteration. We, therefore, call the iteration a Newton–Noda iteration
(NNI). NNI is an inverse iterative method with variable shifts, and naturally preserves
the strict positivity of the Perron vector in its approximations at all iterations for a
positive starting vector. The major advantage of NNI is that, for any positive initial
vector, it converges quadratically and computes the desired eigenpair correctly. Fur-
thermore, NNI always generates a monotonically decreasing sequence of approximate
eigenvalues, converging quadratically to ρ(A), and the computational work (in terms
of flop counts) each iteration is less than four times (and sometimes just twice) that
for each iteration of the NQZ algorithm.
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A POSITIVITY PRESERVING INVERSE ITERATION 913

The paper is organized as follows. In section 2, we introduce some preliminaries
and motivation. In section 3, we present an NNI, and prove some basic properties
for it. In section 4, we establish its convergence theory, and derive the asymptotic
convergence rate precisely. Finally, in section 5 we present some numerical examples
illustrating the convergence theory and the effectiveness of NNI, and we make some
concluding remarks in section 6.

2. Preliminaries, notation, and motivation. A real matrix A = [Aij ] ∈
Rn×k is called nonnegative (positive) if Aij ≥ 0 (Aij > 0) for all i and j. For real
matrices A and B of the same size, if A−B is nonnegative (positive), we write A ≥ B
(A > B). A real square matrix A is called a Z-matrix if all its off-diagonal elements
are nonpositive. Any Z-matrix A can be written as sI −B with B ≥ 0; it is called a
nonsingular M -matrix if s > ρ(B), and a singular M -matrix if s = ρ(B), where ρ(·)
is the spectral radius.

In addition, we denote |A| = [|Aij |], and the superscript T denotes the transpose
of a vector or matrix. From now on we use v(i) (instead of vi) to represent the ith
element of a vector v, since the notation vi may be confused with a vector sequence
vi. Throughout the paper, we use the 2-norm for vectors and matrices. All vectors
are real n-vectors and all matrices are real n× n matrices, unless specified otherwise.

The following result is well known (see [1, Theorems 6.2.3 and 6.2.7] for example).

Theorem 2.1. For a Z-matrix A, the following are equivalent:
(i) A is a nonsingular M -matrix.

(ii) A−1 ≥ 0.
(iii) Av > 0 for some vector v > 0.

An irreducible Z-matrix is a nonsingular M -matrix if and only if for some v > 0 the
vector Av is nonnegative and nonzero.

The irreducibility of a tensor is a natural generalization of the irreducibility of a
matrix.

Definition 2.2 (see [3, 16]). An mth order n-dimensional tensor A is called
reducible if there exists a nonempty proper index subset S ⊂ {1, 2, . . . , n} such that

Ai1i2...im = 0 ∀ i1 ∈ S, ∀ i2, . . . , im /∈ S.
If A is not reducible, then we call A irreducible.

For vectors v = [v(1),v(2), . . . ,v(n)]T and w = [w(1),w(2), . . . ,w(n)]T , with

v(i) 6= 0 for all i, we define w
v to be the n-vector whose ith element is w(i)

v(i) , and
then define

max
(w
v

)
= max

i

(
w(i)

v(i)

)
, min

(w
v

)
= min

i

(
w(i)

v(i)

)
.

Theorem 2.3 (see [3, Theorems 1.4 and 4.2]). Let A be an irreducible nonneg-
ative tensor of order m and dimension n. Then there exist λ∗ > 0 and a unit vector
x∗ > 0 such that

Axm−1∗ = λ∗x
[m−1]
∗ .

If λ is an eigenvalue of A, then |λ| ≤ λ∗. Denote λ∗ by ρ(A). If λ is an eigenvalue with
a nonnegative unit eigenvector x, then λ = ρ(A) and x = x∗. Moreover, for any v > 0

min

(
Avm−1

v[m−1]

)
≤ ρ(A) ≤ max

(
Avm−1

v[m−1]

)
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914 CHING-SUNG LIU, CHUN-HUA GUO, AND WEN-WEI LIN

For a third order n-dimensional tensor, (1.1) can be written as

(2.1) Ax2 :=

 xTA1x
...

xTAnx

 ,
where the n×n matrices Ai are given by A(i, :, :), using the Matlab multidimensional
array notation. From (2.1), the nonnegative tensor eigenvalue problem (1.2) can be
written as a nonlinear eigenvalue problem, i.e.,

A(x)x = λx,

where

(2.2) A(x) = D(x)−1

 xTA1

...
xTAn

 , D(x) =

 x(1)

. . .

x(n)

 .
We will also need

(2.3) B(x) = D(x)−1

 xT
(
A1 +AT1

)
...

xT
(
An +ATn

)
 .

Note that for each x > 0, A(x) and B(x) are nonnegative and

(2.4)
Ax2

x[2]
=
A(x)x

x
, B(x)x = 2A(x)x.

Lemma 2.4. Let v be a positive vector and A be an irreducible nonnegative third
order n-dimensional tensor. Then A(v) and B(v) are irreducible nonnegative
matrices.

Proof. If A(v) is a reducible matrix, then there exists a nonempty proper index
subset S ⊂ {1, 2, . . . , n} such that

(2.5) (A(v))ij = 0 ∀ i ∈ S ∀ j /∈ S.

Because v is a positive vector, from (2.2) and (2.5), it follows that

(2.6) (D(v)A(v))ij =

 vTA1

...
vTAn


ij

= 0 ∀ i ∈ S ∀ j /∈ S.

On the other hand,

(2.7) (D(v)A(v))ij =

n∑
k=1

Aikjv
(k).

Since A ≥ 0 and v > 0, by combining (2.6) and (2.7), it follows that

Aikj = 0 ∀ i ∈ S ∀ j /∈ S k = 1, . . . , n,

which contradicts the fact that A is irreducible. Hence, A(v) is an irreducible matrix.
Since B(v) ≥ A(v), B(v) is also an irreducible matrix.
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A POSITIVITY PRESERVING INVERSE ITERATION 915

Theorem 2.5. For any positive unit vector v, let λ = max(Av2

v[2] ). If v 6= x∗
(where x∗ is the Perron vector of A) , then λI−A(v) and 2λI−B(v) are nonsingular
M -matrices. If v = x∗, then λI − A(v) and 2λI − B(v) are singular M -matrices,
i.e., ρ(A(x∗)) = ρ (A) and ρ(B(x∗)) = 2ρ (A). Moreover, if (2ρ(A)I −B(x∗))q ≥ 0
for a unit vector q, then q = ±x∗.

Proof. We have by (2.4)

λ = max

(
Av2

v[2]

)
= max

(
A(v)v

v

)
≥ ρ(A(v)).

Moreover, λ = max(A(v)v
v ) = ρ(A(v)) if and only if A(v)v = ρ(A(v))v (see [1,

Exercise 2.2.12]), i.e., Av2 = ρ(A(v))v[2], which holds if and only if v = x∗ by
Theorem 2.3. This proves the statements about A(v).

Similarly, we have by (2.4)

2λ = max

(
2Av2

v[2]

)
= max

(
B(v)v

v

)
≥ ρ(B(v)),

and 2λ = max(B(v)v
v ) = ρ(B(v)) if and only if v = x∗.

For the irreducible singular M -matrix M = 2ρ(A)I −B(x∗), we have v > 0 such
that Mv = 0. Given Mq ≥ 0 for a unit vector q. Suppose Mq 6= 0. Then for s > 0
large enough, w = sv + q > 0 is such that Mw ≥ 0 and Mw 6= 0. Thus M is a
nonsingular M -matrix by Theorem 2.1, a contradiction. Therefore, Mq = 0 and thus
B(x∗)q = 2ρ(A)q. Since B(x∗)x∗ = 2ρ(A)x∗, it follows from the Perron–Frobenius
theorem that q = ±x∗.

2.1. Motivation. We define two vector-valued functions r : Rn+1
+ → Rn and

f : Rn+1
+ → Rn+1 as follows:

(2.8) r(x,λ) = λx[2] −Ax2, f(x, λ) =

[
−r(x,λ)

1
2

(
1− xTx

) ] .
Then the Jacobian of f(x, λ) is given by

(2.9) Jf(x, λ) = −
[

Jxr(x,λ) x[2]

xT 0

]
.

Here Jxr(x,λ) is the matrix of partial derivatives of r(x, λ) with respect to x, i.e.,

(2.10) Jxr(x,λ) = 2λD(x)−G(x),

where D(x) is defined by (2.2) and

(2.11) G(x) =

 xT
(
A1 +AT1

)
...

xT
(
An +ATn

)


with Ai = A(i, :, :).
Note that Ax2 = 1

2G(x)x. It follows from (2.10) that

(2.12) r(x, λ) = λx[2] −Ax2 =
1

2
Jxr(x, λ)x.
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916 CHING-SUNG LIU, CHUN-HUA GUO, AND WEN-WEI LIN

We now consider using Newton’s method to solve f(x,λ) = 0. Given an approxi-

mation (x̂k, λ̂k), Newton’s method produces the next approximation (x̂k+1, λ̂k+1) as
follows:

Jf(x̂k, λ̂k)

[
dk
δk

]
=

[
λ̂kx̂

[2]
k −Ax̂2

k
1
2

(
x̂Tk x̂k−1

) ] ,(2.13)

x̂k+1 = x̂k + dk,(2.14)

λ̂k+1 = λ̂k + δk.(2.15)

Using elimination in (2.13), we find

(2.16) δk =

1
2

(
x̂Tk x̂k − 1

)
− x̂Tk

(
Jxr(x̂k, λ̂k)

)−1 (
λ̂kx̂

[2]
k −Ax̂2

k

)
x̂Tk

(
Jxr(x̂k, λ̂k)

)−1
x̂
[2]
k

.

By (2.12) we can simplify (2.16) to

(2.17) δk =
−1

2x̂Tk

(
Jxr(x̂k, λ̂k)

)−1
x̂
[2]
k

.

From the first equation of (2.13) we have, using (2.8), (2.9), (2.14), and (2.12),

0 = Jxr(x̂k, λ̂k) (x̂k+1 − x̂k) + r(x̂k, λ̂k) + δkx̂
[2]
k

= Jxr(x̂k, λ̂k)x̂k+1 −
1

2
Jxr(x̂k, λ̂k)x̂k + δkx̂

[2]
k

= Jxr(x̂k, λ̂k)

(
x̂k+1 −

1

2
x̂k

)
+ δkx̂

[2]
k .

Hence, we have the following linear system

(2.18) Jxr(x̂k, λ̂k)ŵk = x̂
[2]
k ,

where

(2.19) ŵk =
−1
δk

(
x̂k+1 −

1

2
x̂k

)
, i.e., x̂k+1 =

1

2
x̂k − δkŵk.

This means that x̂k+1 is a linear combination of x̂k and ŵk. Suppose we already
have x̂k > 0. We would like to guarantee x̂k+1 > 0. What is needed here is that

Jxr(x̂k, λ̂k) is a nonsingular M -matrix. In this case, ŵk > 0 by (2.18) and δk < 0 by
(2.17), and thus x̂k+1 > 0.

When x̂k > 0, the matrix Jxr(x̂k, λ̂k) is an irreducible Z-matrix by Lemma 2.4.

By (2.12) and Theorem 2.1, it is a nonsingular M -matrix if λ̂kx̂
[2]
k −Ax̂2

k is nonnegative

and nonzero. This suggests taking λ̂k = max(
Ax̂2

k

x̂
[2]
k

), which is precisely the idea of the

Noda iteration [17]. Newton’s method does not determine λ̂k in this way, and it

is unlikely that Jxr(x̂k, λ̂k) will be a nonsingular M -matrix when (x̂k, λ̂k) is close
to (x∗, ρ(A)) since Jx (x∗, ρ(A)) is a singular M -matrix. Indeed, we have examples
showing that the sequence {x̂k} produced by Newton’s method can fail to be positive.

We are thus motivated to present a new algorithm that combines the idea of
Newton’s method with the idea of the Noda iteration.
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3. The NNI and some basic properties. In this section, we will propose
an NNI for computing the spectral radius ρ(A) and the associated eigenvector of
an irreducible nonnegative third order tensor A, and then we prove a number of
basic properties of the NNI, which will be used to establish its convergence theory in
section 4.

3.1. NNI. Based on (2.18)–(2.19) and the Noda iteration, we propose an NNI
which is an inverse iteration, and each iteration consists of four steps:

Jxr(xk, λk)wk = x
[2]
k , yk = wk/ ‖wk‖ ,(3.1)

x̃k+1 = xk + θkyk,(3.2)

xk+1 = x̃k+1/ ‖x̃k+1‖ ,(3.3)

λk+1 = max

(
Ax2

k+1

x
[2]
k+1

)
,(3.4)

where θk > 0 is to be defined later by (3.11).
The following lemma shows that the parameter θk > 0 in (3.2) naturally preserves

the strict positivity of xk at all iterations.

Lemma 3.1. Let A be an irreducible nonnegative third order tensor. Given a unit
vector xk > 0, if xk 6= x∗ and θk > 0, then yk,xk+1 > 0 and

(3.5) λk+1 = λk −min

(
hk(θk)

x̃
[2]
k+1

)
,

where

(3.6) hk(θ) =
θx

[2]
k

‖wk‖
+ θ2r

(
yk,λk

)
+ r

(
xk,λk

)
.

Proof. By (2.10), Jxr(xk,λk) = 2λkD(xk)−G(xk) = D(xk)
(
2λkI −B(xk)

)
. So

the vector wk in (3.1) satisfies

(3.7)
(
2λkI −B(xk)

)
wk = xk.

Since λk = max(
Ax2

k

x
[2]
k

) and xk 6= x∗, we know by Theorem 2.5 that 2λkI −B(xk) is a

nonsingular M -matrix. Thus

wk =
(
2λkI −B(xk)

)−1
xk > 0.

Then yk > 0 and xk+1 > 0 since θk > 0.
By (3.1),

(3.8) Jxr(xk,λk)yk =
(
2λkD(xk)−G(xk)

)
yk =

x
[2]
k

‖wk‖
.

Therefore,

2λkD(xk)yk −
x
[2]
k

‖wk‖

= G(xk)yk =

 xTk
(
A1 +AT1

)
yk

...
xTk
(
An +ATn

)
yk

 =

 xTkA1yk
...

xTkAnyk

+

 yTkA1xk
...

yTkAnxk

 .(3.9)
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918 CHING-SUNG LIU, CHUN-HUA GUO, AND WEN-WEI LIN

From (3.2) and (3.9), we have

Ax̃2
k+1 =

 x̃Tk+1A1x̃k+1

...
x̃Tk+1Anx̃k+1

 = Ax2
k + θk

 xTkA1yk
...

xTkAnyk

+ θk

 yTkA1xk
...

yTkAnxk

+ θ2kAy2
k

= Ax2
k + 2λkθkD(xk)yk −

θkx
[2]
k

‖wk‖
+ θ2kAy2

k

=
(
λkx

[2]
k + 2λkθkD(xk)yk + λkθ

2
ky

[2]
k

)
−
θkx

[2]
k

‖wk‖
+θ2kAy2

k − λkθ2ky
[2]
k +Ax2

k − λkx
[2]
k

= λkx̃
[2]
k+1 −

θkx
[2]
k

‖wk‖
+ θ2k

(
Ay2

k − λky
[2]
k

)
+Ax2

k − λkx
[2]
k .

Therefore,

(3.10) Ax̃2
k+1 = λkx̃

[2]
k+1 − hk(θk),

where

hk(θ) =
θx

[2]
k

‖wk‖
+ θ2r

(
yk,λk

)
+ r

(
xk,λk

)
.

From (3.10), it follows that

λk+1 = max

(
Ax2

k+1

x
[2]
k+1

)
= max

(
λkx̃

[2]
k+1 − hk(θk)

x̃
[2]
k+1

)
= λk −min

(
hk(θk)

x̃
[2]
k+1

)
.

We next show that {λk} is strictly decreasing for suitable θk, unless xk = x∗ for
some k, in which case NNI terminates with λk = ρ(A).

Theorem 3.2. Let A be an irreducible nonnegative third order tensor and η > 0
be a fixed constant. Given a unit vector xk > 0, suppose xk 6= x∗ and θk in (3.2)
satisfies

(3.11) θk =

{
1 if hk(1) ≥ x

[2]
k

(1+η)‖wk‖ ,

ηk otherwise,

where for each k with hk(1) <
x
[2]
k

(1+η)‖wk‖ ,

ηk =
η

(1 + η) ‖wk‖
(
µk − λk

) min

(
x
[2]
k

y
[2]
k

)

with µk = max(
Ay2

k

y
[2]
k

). Then 0 < ηk < 1 whenever it is defined, xk+1 > 0 in (3.3), and

(3.12) λk > λk+1 ≥ ρ(A).
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A POSITIVITY PRESERVING INVERSE ITERATION 919

Proof. By Lemma 3.1, we have

λk+1 = λk −min

(
hk(θk)

x̃
[2]
k+1

)
.

We need to prove hk(θk) > 0.
From (3.6), we have

hk(θ) =
θx

[2]
k

‖wk‖
+ θ2r

(
yk,λk

)
+ r

(
xk,λk

)
=

θx
[2]
k

‖wk‖
+ θ2r (yk,µk) + r

(
xk,λk

)
+ θ2

(
λk − µk

)
y
[2]
k(3.13)

=
θx

[2]
k

(1 + η) ‖wk‖
+

θηx
[2]
k

(1 + η) ‖wk‖
+ θ2r (yk,µk) + r

(
xk,λk

)
+ θ2

(
λk − µk

)
y
[2]
k ,(3.14)

where µk = max

(
Ay2

k

y
[2]
k

)
. When µk ≤ λk,

hk(1) ≥
x
[2]
k

‖wk‖
+ r (yk,µk) + r

(
xk,λk

)
(by (3.13))

≥
x
[2]
k

(1 + η) ‖wk‖
> 0.

Whenever hk(1) ≥ x
[2]
k

(1+η)‖wk‖ , we have λk+1 < λk with θk = 1. If hk(1) <
x
[2]
k

(1+η)‖wk‖ ,

then µk > λk and ηk > 0 is defined. Suppose ηk ≥ 1, then

η

(1 + η) ‖wk‖
min

(
x
[2]
k

y
[2]
k

)
≥
(
µk − λk

)
and, thus,

ηx
[2]
k

(1 + η) ‖wk‖
+
(
λk − µk

)
y
[2]
k ≥ 0.

It follows from (3.14) that hk(1) ≥ x
[2]
k

(1+η)‖wk‖ , a contradiction. So ηk < 1. We now

have

(3.15) θk = ηk =
η

(1 + η) ‖wk‖
(
µk − λk

) min

(
x
[2]
k

y
[2]
k

)
,

which ensures the inequality

(3.16)
θkηx

[2]
k

(1 + η) ‖wk‖
≥ θ2k

(
µk − λk

)
y
[2]
k .
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920 CHING-SUNG LIU, CHUN-HUA GUO, AND WEN-WEI LIN

Substituting (3.16) into (3.14), we obtain

hk(θk) =

[
θkx

[2]
k

(1 + η) ‖wk‖
+ θ2kr (yk,µk) + r

(
xk,λk

)]

+

[
θkηx

[2]
k

(1 + η) ‖wk‖
+ θ2k

(
λk − µk

)
y
[2]
k

]

≥
θkx

[2]
k

(1 + η) ‖wk‖
+ θ2kr (yk,µk) + r

(
xk,λk

)
.

Therefore,

(3.17) hk(θk) ≥
θkx

[2]
k

(1 + η) ‖wk‖
> 0

and then

λk+1 = λk −min

(
hk(θk)

x̃
[2]
k+1

)
< λk.

By Theorem 2.3 we have λk+1 ≥ ρ(A).

Based on (3.1)–(3.4) and (3.11), we can present the NNI as Algorithm 3.1. The
main computational work in each iteration is in lines 3, 5, and 8. The computational
work in line 8 is the same as that for one iteration of the NQZ algorithm, which is
2n3 flops, since the main computational work for one iteration of the NQZ algorithm
is just one evaluation of Av2 for a positive vector v. If θk needs to be determined in
step 5, then an additional 2n3 flops are needed. But we will see later in this section
that we always have θk = 1 near convergence. Forming the linear system in step 3
requires 2n3 flops in general. But if the tensor A is symmetric in modes two and three
[13], i.e., Ai = ATi for all i = 1, . . . , n, then forming the linear system only requires
O(n2) flops. Solving the linear system in step 3 by the Grassmann–Taksar–Heyman
(GTH) algorithm [6] will require 4

3n
3 flops. Therefore, the computational work (in

terms of flop counts) in each iteration of NNI is less than four times (and sometimes
just twice) that for each iteration of the NQZ algorithm.

The vector wk can be computed by the GTH algorithm accurately even near
convergence, and is guaranteed to be positive. Therefore, Algorithm 3.1 generates

Algorithm 3.1 NNI

1. Given x0 > 0 with ‖x0‖ = 1, λ0 = max(
Ax2

0

x
[2]
0

), η > 0, and tol > 0.

2. for k = 0, 1, 2, . . .

3. Solve the linear system Jxr(xk, λk)wk = x
[2]
k .

4. Normalize the vector wk: yk = wk/‖wk‖.
5. Compute the scalar θk satisfying (3.11).
6. Compute the vector x̃k+1 = xk + θkyk.
7. Normalize the vector x̃k+1: xk+1 = x̃k+1/‖x̃k+1‖.
8. Compute λk+1 = max(

Ax2
k+1

x
[2]
k+1

) and λk+1 = min(
Ax2

k+1

x
[2]
k+1

).

9. until convergence: |λk+1 − λk+1|/λk+1 < tol.
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a positive vector sequence {xk}, so it is a positivity preserving algorithm. In what
follows we will prove some properties of θk,xk, and yk. These properties will help us
to establish the global and quadratic convergence of NNI.

3.2. Some basic properties. Lemma 2.4 shows that B(x∗) is an irreducible
nonnegative matrix. Recall that B(x∗)x∗ = ρ(B(x∗))x∗. Then for any orthogonal
matrix

[
x∗ V

]
direct computation gives[
xT∗
V T

]
B(x∗)

[
x∗ V

]
=

[
ρ(B(x∗)) cT

0 L

]
.

Similarly, for an irreducible nonnegative matrix B(xk), let uk be the unit length
positive eigenvector corresponding to ρ(B(xk)). Then for any orthogonal matrix[
uk Vk

]
it holds that

(3.18)

[
uTk
V Tk

]
B(xk)

[
uk Vk

]
=

[
ρ(B(xk)) cTk

0 Lk

]
.

When B(xk)→ B(x∗), we have uk → x∗ and choose Vk such that Vk → V, and then
we have ck → c and Lk → L.

Now define

(3.19) εk = λk − ρ(A), Bk = 2λkI −B(xk), τk = 2λk − ρ(B(xk)).

Then from (3.18) we have[
uTk
V Tk

]
Bk
[
uk Vk

]
=

[
τk −cTk
0 Lk

]
,

where Lk = 2λkI − Lk. For 2λk 6= ρ(B(xk)), it is easy to verify that

(3.20)

[
uTk
V Tk

]
B−1k

[
uk Vk

]
=

[
1
τk

bTk

0 L
−1
k

]
with bTk =

cT
k L

−1
k

τk
.

Lemma 3.3. Assume that the sequence
{
λk,xk,yk

}
is generated by Algorithm 3.1.

For any subsequence
{
xkj
}
⊆ {xk} , we have the following results:

(i) If xkj → v as j →∞, then v > 0.
(ii) If xkj → x∗ as j →∞, then ykj → x∗ as j →∞.
Proof. (i) If limj→∞ xkj = v, then v ≥ 0. Let S be the set of all indices t such

that limj→∞ x
(t)
kj

= v(t) = 0. Since
∥∥xkj∥∥ = 1, S is a proper subset of {1, 2, . . . , n}.

Suppose S is nonempty. Then by the definition of λk,

λ0 ≥ λkj = max

Ax2
kj

x
[2]
kj

 ≥ xTkjAtxkj(
x
(t)
kj

)2 for all t = 1, 2, . . . , n.

Since limj→∞ x
(t)
kj

= 0 for t ∈ S, it holds that limj→∞ xTkjAtxkj = vTAtv = 0 for

t ∈ S. Thus, Atpq = 0 for all t ∈ S and for all p, q /∈ S, which contradicts the
irreducibility of A. Therefore, S is empty and thus v > 0.
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922 CHING-SUNG LIU, CHUN-HUA GUO, AND WEN-WEI LIN

(ii) Since xkj → x∗, we have B(xkj )→ B(x∗). Then we have ukj → x∗, εkj → 0,
and τkj → 0, where we have used ρ(B(x∗)) = 2ρ(A). From (3.7) and (3.20), we get

τkjwkj = τkjB
−1
kj

xkj =
(
ukju

T
kj + ukjc

T
kjL
−1
kj V

T
kj + τkjVkjL

−1
kj V

T
kj

)
xkj .

Since L
−1
kj → [ρ(B(x∗))I − L]

−1
and τkj → 0, we have τkjVkjL

−1
kj V

T
kj
→ 0. Note that

V Tkjukj = 0 and V Tx∗ = limk→∞ V Tkjukj = 0. We then get

lim
j→∞

ukjc
T
kjL
−1
kj V

T
kjxkj = x∗c

T (ρ(B(x∗))I − L)
−1
V Tx∗ = 0.

A combination of the above relations shows that

lim
j→∞

τkjwkj = lim
j→∞

(
ukju

T
kj + ukjc

T
kjL
−1
kj V

T
kj + τkjVkjL

−1
kj V

T
kj

)
xkj = x∗.

Hence,

lim
j→∞

ykj = lim
j→∞

τkjwkj∥∥τkjwkj

∥∥ = x∗.

Lemma 3.4. Assume that the sequence
{
λk,xk,yk

}
is generated by Algorithm 3.1.

Then the sequence {‖wk‖ ‖yk − xk‖} is bounded, that is, there exists a constant M1 >
0 such that

‖wk‖ ‖yk − xk‖ ≤M1 for all k.

Proof. From (2.12),

Jxr(xk,λk)yk − Jxr(xk,λk) (yk − xk) = Jxr(xk,λk)xk = 2r(xk,λk) ≥ 0.

This means

(3.21) Jxr(xk,λk)yk ≥ Jxr(xk,λk) (yk − xk) .

We may assume xk 6= yk. From (3.8) and (3.21), we have

(3.22) x
[2]
k ≥ ‖wk‖ ‖yk − xk‖Jxr(xk,λk)pk,

where pk = (yk − xk) / ‖yk − xk‖ with ‖pk‖ = 1. Because xk,yk > 0 and ‖xk‖ =
‖yk‖ = 1, we have pk � 0 and pk � 0 for all k.

Suppose {‖wk‖ ‖yk − xk‖} is not bounded. Since {xk} and {pk} are bounded,
we have for some subsequence {kj}

(3.23) lim
j→∞

∥∥wkj

∥∥ ∥∥ykj − xkj
∥∥ =∞, lim

j→∞
xkj =: v, lim

j→∞
pkj =: p.

Since
∥∥wkj

∥∥∥∥ykj − xkj
∥∥ ≤ 2

∥∥wkj

∥∥, we also have limj→∞
∥∥wkj

∥∥ =∞. By Lemma 3.3
we have v > 0. We now prove v = x∗.

Since the sequence
{
λk
}

is monotonically decreasing and bounded below by ρ(A),

limj→∞ 2λkj = 2α exists. By Theorem 2.5, the 2λkjI − B(xkj ) are nonsingular M -
matrices. Thus 2αI − B(v) is an M -matrix, so 2α ≥ ρ(B(v)). If 2α > ρ(B(v)),
then

lim
j→∞

wkj = lim
j→∞

(
2λkjI −B(xkj )

)−1
xkj = (2αI −B(v))

−1
v =: w > 0,
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A POSITIVITY PRESERVING INVERSE ITERATION 923

in contradiction to limj→∞
∥∥wkj

∥∥ =∞. Thus 2α = ρ(B(v)). Now

ρ(B(v)) = lim
j→∞

2λkj = lim
j→∞

2 max

Ax2
kj

x
[2]
kj

 = 2 max

(
Av2

v[2]

)
= max

(
B(v)v

v

)
.

It follows that B(v)v = ρ(B(v))v and then Av2 = 1
2ρ(B(v))v[2]. Thus v = x∗ by

Theorem 2.3.
Now limj→∞ xkj = x∗ and limj→∞ λkj = α = 1

2ρ(B(x∗)) = ρ(A) by Theorem 2.5.
It follows from (3.22) and (3.23) that

Jxr(x∗,ρ(A))p = lim
j→∞

Jxr(xkj ,λkj )pkj ≤ lim
j→∞

x
[2]
kj∥∥wkj

∥∥∥∥ykj − xkj
∥∥ = 0.

Thus (2ρ(A)I −B(x∗))p ≤ 0. Then we have p = ±x∗ by Theorem 2.5. But by the
definition of pk, p is neither positive nor negative. The contradiction shows that the
sequence {‖wk‖ ‖yk − xk‖} is bounded.

Lemma 3.5. Assume that the sequence
{
λk,xk,yk

}
is generated by Algorithm 3.1.

Then hk(θk) can be expressed in the form

(3.24) hk(θk) =
2θkx

[2]
k

‖wk‖
+ R(θkyk,xk, λk),

where
∥∥R(x,xk,λk)

∥∥ ≤M2 ‖x− xk‖2 for some constant M2.

Proof. To prove this, we use Taylor’s theorem for the function r(x,λk) around the
point xk:

(3.25) r(x,λk) = r(xk,λk) + Jxr(xk,λk)(x− xk) + R(x,xk,λk),

where
∥∥R(x,xk,λk)

∥∥ ≤M2 ‖x− xk‖2 for some constant M2, noting that λk ≤ λ0 for
all k.

Therefore, from (3.25), we have

r(θkyk,λk) = r(xk,λk) + Jx(xk,λk)(θkyk − xk) + R(θkyk,xk,λk).

Since r(xk,λk) = 1
2Jxr(xk,λk)xk by (2.12), we get

r(θkyk,λk) = −r(xk,λk) + Jxr(xk,λk)(θkyk) + R(θkyk,xk,λk)

= −r(xk,λk) +
θkx

[2]
k

‖wk‖
+ R(θkyk,xk,λk).

Hence, noting that r(θkyk,λk) = θ2kr
(
yk,λk

)
,

hk(θk) =
θkx

[2]
k

‖wk‖
+ θ2kr

(
yk,λk

)
+ r

(
xk,λk

)
=

2θkx
[2]
k

‖wk‖
+ R(θkyk,xk, λk),

which completes the proof.
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Lemma 3.6. For the NNI, we have the following.

(i) θk = 1 if ‖yk − xk‖ ≤
min(x

[2]
k )

M1M2
, where M1 and M2 are as in Lemmas 3.4 and

3.5.
(ii) {θk} is bounded below by some constant ξ > 0, assuming that xk 6= x∗ for

each k.

Proof. (i) From Lemma 3.4 and assumption, we have

x
[2]
k

M2 ‖wk‖ ‖yk − xk‖
≥

min
(
x
[2]
k

)
M2 ‖wk‖ ‖yk − xk‖

e

≥
min(x

[2]
k )

M1M2
e ≥ ‖yk − xk‖ e,(3.26)

where e = [1, . . . , 1]T . Then, from (3.26) and Lemma 3.5,

(3.27)
x
[2]
k

‖wk‖
≥M2‖yk − xk‖2e ≥

∣∣R(yk,xk,λk)
∣∣ .

Substituting (3.27) into (3.24), we obtain

hk(1) =
2x

[2]
k

‖wk‖
+ R(yk,xk,λk) ≥

x
[2]
k

‖wk‖
>

x
[2]
k

(1 + η) ‖wk‖
,

which means θk = 1.
(ii) From (3.11), we recall that

θk =

{
1 if hk(1) ≥ x

[2]
k

(1+η)‖wk‖ ,

ηk otherwise,

where ηk = η

(1+η)‖wk‖(µk−λk)
min(

x
[2]
k

y
[2]
k

) < 1 with µk = max(
Ay2

k

y
[2]
k

) > λk. Suppose θk is

not bounded below by ξ > 0. Since xk is bounded, we can find a subsequence {kj}
such that

(3.28) lim
j→∞

θkj = 0, lim
j→∞

xkj =: v.

Note that v > 0 by Lemma 3.3.
As in the proof of Lemma 3.4, we have limj→∞ 2λkj = 2α ≥ ρ(B(v)).
If 2α > ρ(B(v)), then limj→∞wkj =: w > 0, as in the proof of Lemma 3.4. In

this case,

lim
j→∞

ykj = lim
j→∞

wkj∥∥wkj

∥∥ =: y > 0.

If ηk is defined only on a finite subset of {kj}, then θkj = 1 except for a finite number
of j values, contradicting limj→∞ θkj = 0. If ηk is defined on an infinite subset {kji}
of {kj}, then

lim
i→∞

ηkji =
η

(1 + η) ‖w‖ (µ− α)
min

(
v

y

)2

> 0,
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where limi→∞ µkji = µ > α since ηkji < 1. This is contradictory to limj→∞ θkj = 0.
Thus 2α = ρ(B(v)), and v = x∗ as in the proof of Lemma 3.4. Hence, limj→∞ xkj =
x∗ and by Lemma 3.3 limj→∞ ykj = x∗, which means xkj and ykj are close enough
for j sufficiently large. Therefore, from (i), θkj = 1 for j large enough, a contradiction
to limj→∞ θkj = 0.

This Lemma shows that if xk and yk are close enough, then the parameter θk in
(3.2) can easily be determined, i.e., θk = 1.

Corollary 3.7. If xk = yk for any k ≥ 0 in Algorithm 3.1, then xk = x∗.

Proof. If xk = yk, then θk = 1 by Lemma 3.6, and it is easily seen from Algo-
rithm 3.1 that λk+1 = λk. By Theorem 3.2, we have xk = x∗.

4. Convergence analysis. In this section, we prove that the convergence of the
NNI is global and quadratic, assuming that xk 6= x∗ for each k.

4.1. Global convergence of the NNI. Theorem 3.2 shows that the sequence{
λk
}

is strictly decreasing and bounded below by ρ(A), and hence converges. We

now show that the limit of λk is precisely ρ(A).

Theorem 4.1. Let A be an irreducible nonnegative third order tensor and the
sequence

{
λk
}

is generated by Algorithm 3.1. Then the monotonically decreasing se-

quence
{
λk
}

converges to ρ(A), and {xk} from Algorithm 3.1 converges to the positive
eigenvector x∗ corresponding to ρ(A).

Proof. From (3.5), (3.17), and Lemma 3.6, we have

λk − λk+1 = min

(
hk(θk)

x̃
[2]
k+1

)
≥ min

(
θkx

[2]
k

(1 + η) ‖wk‖ x̃[2]
k+1

)

≥ min

(
ξx

[2]
k

(1 + η) ‖wk‖ x̃[2]
k+1

)
.(4.1)

Since θk ≤ 1 by construction, we have ‖x̃k+1‖ = ‖xk + θkyk‖ ≤ 2. It follows from

(4.1) that limk→∞ ‖wk‖−1 min(x
[2]
k ) = 0.

Suppose min(x
[2]
k ) is not bounded below by a positive constant. Then there exists

a subsequence {kj} such that limj→∞min(x
[2]
kj

) = 0. Since ‖xkj‖ = 1, we may assume

that limj→∞ xkj = v exists. Then limj→∞min(x
[2]
kj

) = min(v[2]) = 0. This is a

contradiction since v > 0 by Lemma 3.3. Therefore, min(x
[2]
k ) is bounded below by a

positive constant, and thus limk→∞ ‖wk‖−1 = 0.
Let v be any limit point of {xk}, with limj→∞ xkj = v. If limj→∞ 2λkj >

ρ(B(v)), then (as in the proof of Lemma 3.4) {wkj} is bounded, a contradiction. So

limj→∞ 2λkj = ρ(B(v)), which implies v = x∗, again as in the proof of Lemma 3.4.
Therefore, x∗ is the only limit point of the bounded sequence {xk}. Thus limk→∞ xk =

x∗ and it follows that limk→∞ λk = max
(
Ax2

∗

x
[2]
∗

)
= ρ(A).

4.2. Quadratic convergence of the NNI. The proof of quadratic convergence
uses a number of technical results in section 3 about the NNI. It also exploits a
connection between the NNI and Newton’s method. So we start with the following
result about Newton’s method.
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926 CHING-SUNG LIU, CHUN-HUA GUO, AND WEN-WEI LIN

Theorem 4.2. Let f(x, λ) be defined by (2.8) such that f(x∗, ρ(A)) = 0. Then
(i) Jf(x∗, ρ(A)) is nonsingular;

(ii) Jf(x, λ) satisfies a Lipschitz condition at (x∗, ρ(A)).
Let

{
xk, λk

}
be generated by the NNI. Then there is a constant β such that for all(

xk, λk
)

sufficiently close to (x∗, ρ(A))

(4.2)

∥∥∥∥[ x̂k+1

λ̂k+1

]
−
[

x∗
ρ(A)

]∥∥∥∥ ≤ β ∥∥∥∥[ xk
λk

]
−
[

x∗
ρ(A)

]∥∥∥∥2 ,
where

{
x̂k+1, λ̂k+1

}
is generated by the Newton step (2.13)–(2.15) from

{
xk, λk

}
,

instead of
{
x̂k, λ̂k

}
.

Proof. (i) Recall that Jf(x, λ) is given by (2.9). Let
(
zT , ζ

)T ∈ Rn+1 be such
that

0 = Jf(x∗, ρ(A))

[
z
ζ

]
=

[
−Jxr(x∗,ρ(A)) −x[2]

∗
−xT∗ 0

] [
z
ζ

]
.

We need to show
(
zT , ζ

)
= 0. Since Jxr(x∗,ρ(A)) is defined by (2.10), premultiplying

both sides by diag( (x∗)
T
, 1)
−1

yields

(4.3) 0 =

[
B(x∗)−2ρ(A)I −x∗

−xT∗ 0

] [
z
ζ

]
.

Since B(x∗) is an irreducible nonnegative matrix by Lemma 2.4, we assume that x`
is the left Perron vector of B(x∗). Premultiplying the first equation in (4.3) by xT` ,
we obtain

xT` [B(x∗)−2ρ(A)I] z− xT` x∗ζ = 0.

Since xT` B(x∗) = xT` 2ρ(A) and x` > 0, we get ζ = 0. The first equation of (4.3) then
becomes

[B(x∗)−2ρ(A)I] z = 0.

Then by the Perron–Frobenius theorem for a nonnegative irreducible matrix, z = sw
with w > 0. From the second equation of (4.3) we have xT∗ z = 0. So s = 0 and then
z = 0. Hence

(
zT , ζ

)
= 0.

(ii) Let N be a neighborhood of (x∗, ρ(A)). From the definition of Jf(x, λ), for
any (x, λ) ∈ N , we have

(4.4) Jf(x, λ)− Jf(x∗, ρ(A)) =

[
Jxr(x∗,ρ(A))− Jxr(x,λ) x

[2]
∗ − x[2]

xT∗ − xT 0

]
.

Direct computation yields

Jxr(x∗,ρ(A))− Jxr(x,λ) = [2ρ(A)D(x∗)−G(x∗)]− [2λD(x)−G(x)]

= [G(x)−G(x∗)]− [2λD(x)− 2ρ(A)D(x∗)]

= Jxr(x∗ − x,ρ(A))− 2 (ρ(A)− λ)D(x).(4.5)

Substituting (4.5) into (4.4) and using basic properties of matrix and vector norms,
we obtain the conclusion (ii): There is a constant κ such that

‖Jf(x, λ)− Jf(x∗, ρ(A))‖ ≤ κ
∥∥∥∥[ x

λ

]
−
[

x∗
ρ(A)

]∥∥∥∥ for all (x, λ) ∈ N .
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The inequality (4.2) is a basic result of Newton’s method after (i) and (ii) have been
verified; see [10, Theorem 5.1.2], for example.

However, the inequality (4.2) itself does not imply

(4.6)
∣∣∣λ̂k+1 − ρ(A)

∣∣∣ ≤ c ∣∣λk − ρ(A)
∣∣2

for some constant c > 0. We need to establish first a relationship between ‖xk − x∗‖
and

∣∣λk − ρ(A)
∣∣.

Theorem 4.3. Let
{
xk, λk

}
be generated by the NNI. Then there are constants

c1, c2 > 0 such that c1‖xk − x∗‖ ≤
∣∣λk − ρ(A)

∣∣ ≤ c2‖xk − x∗‖ for all k ≥ 0.

Proof. From (2.8) we have

Ax2

x[2]
= λe− r(x,λ)

x[2]
= ρ(A)e− r(x,ρ(A))

x[2]
.

Thus the Fréchet derivative of Ax2

x[2] is given by

−D(x)−2Jxr(x,ρ(A)) + 2D(x)−3D(r(x,ρ(A)).

Then by Taylor’s theorem

Ax2
k

x
[2]
k

− Ax
2
∗

x
[2]
∗

= −D(x∗)
−2Jxr(x∗,ρ(A))(xk − x∗) +O(‖xk − x∗‖2).

Now

∣∣λk − ρ(A)
∣∣ = max

(
Ax2

k

x
[2]
k

− Ax
2
∗

x
[2]
∗

)
≤

∥∥∥∥∥Ax2
k

x
[2]
k

− Ax
2
∗

x
[2]
∗

∥∥∥∥∥
≤
(
‖D(x∗)

−2Jxr(x∗,ρ(A))‖+ 1
)
‖xk − x∗‖

for k large enough, and the existence of c2 follows readily.
On the other hand,

∣∣λk − ρ(A)
∣∣ = max

(
Ax2

k

x
[2]
k

− Ax
2
∗

x
[2]
∗

)
≥ max

(
−D(x∗)

−2Jxr(x∗,ρ(A))(xk − x∗)
)
− c3‖xk − x∗‖2

for some c3 > 0. Let qk = (xk − x∗) / ‖xk − x∗‖ with ‖qk‖ = 1. Since xk,x∗ > 0 and
‖xk‖ = ‖x∗‖ = 1, we know that qk � 0 and qk � 0 for all k. To show the existence
of c1 in the theorem, we need to show that max

(
−D(x∗)

−2Jxr(x∗,ρ(A))qk
)
≥ c4 for

some c4 > 0. Suppose that such a constant c4 does not exist. Then there is subse-
quence {kj} such that limqkj = q with q neither positive nor negative, ‖q‖ = 1, and
max

(
−D(x∗)

−2Jxr(x∗,ρ(A))q
)

= 0. Now Jxr(x∗,ρ(A))q = (2ρ(A)I −B(x∗))q ≥ 0.
By Theorem 2.5 we have q = ±x∗, a contradiction.

We are now ready to prove the quadratic convergence of the NNI.

Theorem 4.4. Assume
{
xk, λk

}
is generated by the NNI. Then λk converges to

ρ(A) quadratically and xk converges to x∗ quadratically.
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Proof. Since the NNI has global convergence, we assume that (xk, λk) is suffi-

ciently close to (x∗, ρ(A)). Let {x̂k+1, λ̂k+1} be generated by the Newton step (2.13)–

(2.15) from {xk, λk}, instead of {x̂k, λ̂k}, and assume that (4.2) holds.
From (2.15), (2.17), and (3.1), we now have

λ̂k+1 = λk + δk = λk −
1

2xTkwk
= λk −

1

2 ‖wk‖xTk yk

and then

λ̂k+1 − ρ(A) = λk − ρ(A)− 1

2 ‖wk‖xTk yk
.

By (4.2) and Theorem 4.3, the inequality (4.6) holds with c = β(1 + 1/c21). It follows
that for εk = λk − ρ(A)

εk −
1

2 ‖wk‖xTk yk
= O(ε2k)

and then

‖wk‖ =
1

2xTk ykεk(1−O(εk))
.

In particular, limk→∞ εk ‖wk‖ = 1
2 .

From (3.5), we have

(4.7) εk+1 = εk −min

(
hk(θk)

x̃
[2]
k+1

)
.

By Theorem 4.1 and Lemmas 3.3 and 3.6, we have θk = 1 for k large enough, and
from (3.24) we have

hk(1)

x̃
[2]
k+1

=
2x

[2]
k

‖wk‖ x̃[2]
k+1

+
R(yk,xk, λk)

x̃
[2]
k+1

.

Now for some j dependent on k

(4.8) εk+1 = εk −min
hk(1)

x̃
[2]
k+1

= εk −
2(x

(j)
k )2

‖wk‖ (x̃
(j)
k+1)2

− R(yk,xk, λk)(j)

(x̃
(j)
k+1)2

.

From Lemmas 3.5 and 3.4, it follows that∥∥R(yk,xk, λk)
∥∥ ≤M2 ‖yk − xk‖2 ≤M2M

2
1 ‖wk‖−2 .

We then have

(4.9) − R(yk,xk, λk)(j)

(x̃
(j)
k+1)2

≤
∥∥R(yk,xk, λk)

∥∥
(x̃

(j)
k+1)2

≤ 4M2M
2
1

3(minx∗)2
ε2k

for k large enough. We also have

εk −
2(x

(j)
k )2

‖wk‖ (x̃
(j)
k+1)2

= εk −
2(x

(j)
k )2

(x̃
(j)
k+1)2

2xTk ykεk(1−O(εk)).(4.10)
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Note that ‖yk − xk‖ ≤ M1 ‖wk‖−1 ≤ 3M1εk for k large enough. Thus xTk yk =
1 + xTk (yk − xk) = 1 +O(εk) and

4(x
(j)
k )2

(x̃
(j)
k+1)2

=
(2x

(j)
k )2

(2x
(j)
k + y

(j)
k − x

(j)
k )2

=

(
1 +

1

2x
(j)
k

(yk − xk)(j)

)−2
= 1 +O(εk).

It follows from (4.10) that

εk −
2(x

(j)
k )2

‖wk‖ (x̃
(j)
k+1)2

= O(ε2k).

It then follows from (4.8) and (4.9) that εk+1 ≤ dε2k for some constant d. Thus λk
converges to ρ(A) quadratically. It follows from Theorem 4.3 that xk converges to x∗
quadratically.

Since we use λk − λk in the stopping criterion in Algorithm 3.1, the following
result is also relevant.

Theorem 4.5. Assume {λk, λk,xk}is generated by the NNI. Then λk − λk con-
verges to 0 quadratically.

Proof. From (3.10), we have

λk+1 = λk −max

(
hk(θk)

x̃
[2]
k+1

)
,

where λk = min

(
Ax̃2

k

x̃
[2]
k

)
. Then

λk+1 − λk+1 = λk+1 − λk + max

(
hk(θk)

x̃
[2]
k+1

)

= εk+1 −

(
εk −max

(
hk(θk)

x̃
[2]
k+1

))
.

As in the proof of Theorem 4.4, we now have εk −max

(
hk(θk)

x̃
[2]
k+1

)
= O(ε2k). Thus for

some constant c > 0, λk+1 − λk+1 ≤ cε2k = c(λk − ρ(A))2 ≤ c(λk − λk)2.

5. Numerical experiments. In this section, we present some numerical results
to support our theory for the NNI, and to illustrate its effectiveness. We compare the
NNI with the NQZ method [16]. All numerical tests were performed on an Intel (R)
Core (TM) i7 CPU 4770@ 3.4 GHz with 16 GB memory using Matlab R2013a with
machine precision ε = 2.22 × 10−16 under Microsoft Windows 7 64-bit. Throughout
the experiments, the initial vector is x0 = 1√

n
[1, . . . , 1]T ∈ Rn, which is precisely the

one used in [20] to prove the linear convergence of the NQZ algorithm. We also take
η = 0.1 for the NNI. But we found that the choice of η has no significant effect on
the performance of the NNI. For both methods, we terminate the iteration when one
of the following conditions is satisfied:

1. k ≥ 10000.

2.
(
λk − λk

)
/λk ≤ 10−13, where λk = min(

Ax2
k

x
[2]
k

).
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Fig. 1. The relative error versus the number of iterations for Example 1.

Note that
(
λk − λk

)
/λk is an upper bound for

(
λk − ρ (A)

)
/λk. For simplicity,

we call
(
λk − λk

)
/λk the relative error in step k.

We first apply the NNI and NQZ to compute the Perron pair of a transition prob-
ability tensor arising from a higher order Markov chain. A probability distribution of
the higher order Markov chain is then obtained by normalizing the Perron vector to
a positive vector with unit 1-norm [16].

Example 1. Consider the transition probability tensor P of order 3 and dimen-
sion 3 given by:

P(1, :, :) =

 0.9000 0.6700 0.6604
0.3340 0.1040 0.0945
0.3106 0.0805 0.0710

 ,
P(2, :, :) =

 0.0690 0.2892 0.0716
0.6108 0.8310 0.6133
0.0754 0.2956 0.0780

 ,
P(3, :, :) =

 0.0310 0.0408 0.2680
0.0552 0.0650 0.2922
0.6140 0.6239 0.8510

 .
The data here are obtained from the occupational mobility of physicists data in [19].

For Example 1, Figure 1 depicts how the relative error evolves versus the number
of iterations for the NQZ and NNI, respectively. It indicates that the NQZ converges
linearly and the NNI converges quadratically. Note that the NQZ and NNI use 33
and 5 iterations, respectively, to achieve the desired accuracy.

We then apply the NNI and NQZ to compute the Perron pair of a perturbation
of the third order n-dimensional signless Laplacian tensor [7, 8].

Example 2. Consider the third order n-dimensional signless Laplacian tensor
B = D + C of a connected hypergraph [7, 8], where D is the diagonal tensor with
diagonal element di,i,i equal to the degree of vertex i for each i, and C is the adjacency
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Table 1
Numerical results for Example 2(a).

Tensor A NNI NQZ
n Iter Err Iter Err
20 5 3.17e-15 37 9.64e-14
50 5 6.34e-15 38 8.79e-14

100 4 2.73e-14 38 6.53e-14
200 4 4.87e-14 37 3.22e-14

Table 2
Numerical results for Example 2(b).

Tensor A NNI NQZ
n Iter Err Iter Err
20 8 2.56e-15 131 9.86e-14
50 9 6.63e-15 513 9.50e-14

100 10 2.81e-14 1313 9.82e-14
200 11 4.23e-14 3033 9.54e-14

tensor defined in [4, 7, 8]. Let E1 = {(i, j, j + 1)} for i = 1, 2, 3 and j = i+1, . . . , n−1.
We consider two hypergraphs:

(a) The edge set of the hypergraph is given by E \E1, where E is the edge set of
the complete 3-uniform hypergraph [7, 8].

(b) The edge set of the hypergraph is E1 itself.

Since the tensor B is reducible, we follow the common approach (see [21], for
example) of obtaining a nearby irreducible tensor by letting A = B + 10−8E , where
E is the tensor with all entries equal to 1, and then apply the NNI and NQZ to the
irreducible nonnegative tensor A.

Tables 1 and 2 report the results obtained by the NQZ and NNI, for Examples 2(a)
and 2(b), respectively. In the tables, n specifies the dimension, “Iter”denotes the
number of iterations to achieve convergence, “Err”denotes the relative error when
the iterative methods are terminated. From the tables, we see that the number of
iterations for the NNI is at most 11, clearly indicating its quadratic convergence.

6. Conclusion. We have presented an efficient method for computing the Per-
ron pair of an irreducible nonnegative third order tensor, by combining the idea of
Newton’s method with the idea of the Noda iteration, and we have called it an NNI.
The iterative method has several very nice features: It is positivity preserving in its
computation of the positive Perron vector, and its convergence is global and quadratic.
The structure of the new algorithm is still very simple, although its convergence analy-
sis is rather involved for the third order tensor. We are currently working on the more
challenging problem of designing a proper NNI for higher-order tensors and providing
a rigorous convergence analysis.

REFERENCES

[1] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics
Appl. Math. 9, SIAM, Philadelphia, 1994.

[2] K.-C. Chang, K. J. Pearson, and T. Zhang, Primitivity, the convergence of the NQZ method,
and the largest eigenvalue for nonnegative tensors, SIAM J. Matrix Anal. Appl., 32 (2011),
pp. 806–819.

[3] K. C. Chang, K. Pearson, and T. Zhang, Perron–Frobenius theorem for nonnegative tensors,
Commun. Math. Sci., 6 (2008), pp. 507–520.

D
ow

nl
oa

de
d 

07
/2

8/
16

 to
 1

31
.1

72
.3

6.
29

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

932 CHING-SUNG LIU, CHUN-HUA GUO, AND WEN-WEI LIN

[4] J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl., 436 (2012),
pp. 3268–3292.

[5] L. Elsner, Inverse iteration for calculating the spectral radius of a non-negative irreducible
matrix, Linear Algebra Appl., 15 (1976), pp. 235–242.

[6] W. K. Grassmann, M. J. Taksar, and D. P. Heyman, Regenerative analysis and steady-state
distributions for Markov chains, Oper. Res., 33 (1985), pp. 1107–1116.

[7] S. Hu and L. Qi, The Laplacian of a uniform hypergraph, J. Comb. Optim., 29 (2015),
pp. 331–366.

[8] S. Hu, L. Qi, and J. Xie, The largest Laplacian and signless Laplacian H-eigenvalues of a
uniform hypergraph, Linear Algebra Appl., 469 (2015), pp. 1–27.

[9] Z. Jia, W.-W. Lin, and C.-S. Liu, A positivity preserving inexact Noda iteration for com-
puting the smallest eigenpair of a large irreducible M-matrix, Numer. Math., 130 (2015),
pp. 645–679.

[10] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Front. Appl. Math. 16,
SIAM, Philadelphia, 1995.

[11] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, Third-order tensors as operators on
matrices: A theoretical and computational framework with applications in imaging, SIAM
J. Matrix Anal. Appl., 34 (2013), pp. 148–172.

[12] M. E. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear
Algebra Appl., 435 (2011), pp. 641–658.

[13] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455–500.

[14] Y. Liu, G. Zhou, and N. F. Ibrahim, An always convergent algorithm for the largest eigenvalue
of an irreducible nonnegative tensor, J. Comput. Appl. Math., 235 (2010), pp. 286–292.

[15] Q. Ni and L. Qi, A quadratically convergent algorithm for finding the largest eigenvalue of a
nonnegative homogeneous polynomial map, J. Global Optim., 61 (2015), pp. 627–641.

[16] M. Ng, L. Qi, and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J.
Matrix Anal. Appl., 31 (2009), pp. 1090–1099.

[17] T. Noda, Note on the computation of the maximal eigenvalue of a non-negative irreducible
matrix, Numer. Math., 17 (1971), pp. 382–386.

[18] L. Qi, F. Wang, and Y. Wang, Z-eigenvalue methods for a global polynomial optimization
problem, Math. Program., 118 (2009), pp. 301–316.

[19] A. E. Raftery, A model of high-order Markov chains, J. R. Stat. Soc. Ser. B. Stat. Methodol.,
47 (1985), pp. 528–539.

[20] L. Zhang and L. Qi, Linear convergence of an algorithm for computing the largest eigenvalue
of a nonnegative tensor, Numer. Linear Algebra Appl., 19 (2012), pp. 830–841.

[21] L. Zhang, L. Qi, and G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal.
Appl., 35 (2014), pp. 437–452.

D
ow

nl
oa

de
d 

07
/2

8/
16

 to
 1

31
.1

72
.3

6.
29

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Preliminaries, notation, and motivation
	Motivation

	The NNI and some basic properties
	NNI
	Some basic properties

	Convergence analysis
	Global convergence of the NNI
	Quadratic convergence of the NNI

	Numerical experiments
	Conclusion
	References

