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Microscopic theory of equilibrium polariton condensates
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We present a microscopic theory of the equilibrium polariton condensate state of a semiconductor quantum
well in a planar optical cavity. The theory accounts for the adjustment of matter excitations to the presence of a
coherent photon field, predicts effective polariton-polariton interaction strengths that are weaker and condensate
exciton fractions that are smaller than in the commonly employed exciton-photon model, and yields effective
Rabi coupling strengths that depend on the detuning of the cavity-photon energy relative to the bare exciton
energy. The dressed quasiparticle bands that appear naturally in the theory provide a mechanism for electrical
manipulation of polariton condensates.
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I. INTRODUCTION

A polariton is a quantum state in which a photon is
coherently mixed with an elementary excitation of condensed
matter, for example, an exciton in a semiconductor or a
surface plasmon in a metal. Two-dimensional (2D) polariton
condensate states can be formed [1–12] when semiconductor
quantum wells are placed in a planar optical cavity [13] and
pumped to create populations of �q = 0 cavity photons and
�q = 0 quantum-well excitations. (See Fig. 1.) In the condensed
state the photon and quantum-well excitation states are both
separately and mutually coherent. When the scattering rates
between states formed by the quantum-well excitations and
the cavity photons exceed [12,14–16] polariton lifetimes, a cir-
cumstance that is regularly achieved [2,4,5,17], the polariton
condensate steady state can be described microscopically us-
ing equilibrium statistical mechanics. In this paper we present a
fully microscopic theory of equilibrium polariton condensates
that treats the two-dimensional quantum-well band states
explicitly and goes beyond the commonly used model in which
bare excitons are treated as Bose particles that are coupled
via flip-flop interactions with cavity photons. We find that
the effective polariton-polariton interaction strength is weaker
and that the condensate exciton fraction is smaller than in
the commonly employed exciton-photon theory of a polariton
condensate and that the quasiparticle bands are more strongly
dressed for a given polariton density at positive detuning δ

than at negative detuning. Similar calculations were preformed
previously [8,10,11,18] with the goal of shedding light on the
BEC-BCS crossover of exciton-polariton condensates. In this
paper, we are motivated by recent pioneering work on electrical
coupling to polariton condensates [19] anticipating that the
polariton dressing of the quantum-well band states on which
we focus provides a mechanism for electrical manipulation of
polariton condensates.

Some of our principal results are summarized in Figs. 1(b)
and 1(c) in which we plot the polariton chemical potential and
the polariton photon fraction as a function of detuning and
polariton density. We will compare these results and others
with the predictions of the simplified bosonic exciton-photon
theory [6,20]. Our paper is organized as follows. In Sec. II
we explain our formulation of the microscopic equilibrium
polariton condensate theory, which differs somewhat from the

one employed in previous work. In Sec. III we present and
discuss results obtained for equilibrium polariton condensate
properties using this approach, comparing where possible with
the corresponding results implied by the simplified theory.
Finally in Sec. IV we present our conclusions and comment
on potential applications of coherent electrical coupling to
polariton condensates.

II. EQUILIBRIUM POLARITON CONDENSATES

For simplicity we consider a polariton condensate system
with a single quantum well and neglect the electronic spin de-
gree of freedom. The Hamiltonian of the quantum-well/cavity-
photon system is then

ĤQWCP = Ĥmat + Ĥph + Ĥmat-ph, (1)

where
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∑

�k

[(
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2k2
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)
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†
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2k2
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)
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†
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εph + �

2q2
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, (2)

�
†
q and �q are cavity-photon creation and annihilation opera-

tors, εph is the �q = 0 cavity photon energy, a
†
c,v�k and ac,v�k are

quantum-well conduction- and valence-band electron creation
and annihilation operators, mph is the cavity-photon mass, A

is the two-dimensional system area, and V�q = 2πe2/εq is the
repulsive two-dimensional Coulomb interaction.

Because it neglects photon leakage from the optical cavity
and the weak purely electronic or phonon-mediated disorder
and interaction processes that can transfer electrons between
conduction and valence bands, the quantum-well/cavity-
photon Hamiltonian conserves not only electron number, but
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FIG. 1. (a) Typical polariton condensate geometry. One or several
quantum wells are placed between a pair of distributed Bragg
reflectors (DBRs). The two-dimensional quantum-well conduction-
and valence-band states are dressed by their interactions with
condensed cavity photons and by electron-electron (e-e) interactions.
(b) and (c) Polariton condensate chemical potential and photon
fraction as a function of detuning δ and polariton density npol.

also the sum of the number of photons and the number of
electrons that are promoted from the valence band to the
conduction band (i.e., the number of matter excitations). We
therefore define the number of polaritons as the sum of the
number of matter excitations and the number of photons,

Npol = Nph + Nex

=
∑

�k
[(a†

c�kac�k + av�ka
†
v�k)/2 + �

†
�k��k], (3)

and observe that both [ĤQWCP ,N ] and [ĤQWCP ,Npol] vanish.
Below we define N as the total electron number relative to the
number present in the neutral state with filled valence bands
and empty conduction bands.

We now use mean-field theory to approximate the ground
state of ĤQWCP in the Fock space sector with N = 0 and
Npol = npolA equal to an extensive value proportional to the
sample area A. The constraint on Nex + Nph = A(nex + nph)
is most conveniently enforced by using an exciton chemical
potential to vary the exciton density and then calculating the
photon chemical potential as a function of photon density to
find the point of mutual equilibrium.

In our mean-field approximation all cavity photons in the
equilibrium polariton condensate occupy the lowest-energy
�q = 0 state, and electron-electron interactions are approxi-
mated using Hartree-Fock theory. In addition to the Coulomb
exchange contribution to the mean-field Hamiltonian, which
includes self-consistently determined terms that mix conduc-
tion and valence bands [21–24], there is also a band-mixing
term that is proportional to the square root of the photon density
and due to electron interactions with the coherent photon
field. These approximations lead to the following mean-field

Hamiltonian for the matter subsystem,

HMF =
∑

�k
(a†

c�k,a
†
v�k)(ζ�k + ξ�kσz − 	�kσx)

(
ac�k
av�k

)
, (4)

where σz,x are Pauli matrices that act on coherently mixed
spinors with conduction- and valence-band components and
the dressed band parameters ξ�k and 	�k are obtained by solving
the self-consistent-field equations,

ξ�k = �
2k2

4m
+ Egap − μ

2
− 1

2A

∑
�k′

V�k−�k′(1 − ξ�k′/E�k′),

	�k = 1

2A

∑
�k′

V�k−�k′
	�k′

E�k′
+ g

√
nph, (5)

E�k =
√

ξ 2
�k + 	2

�k,

where m = memh/(me + mh) is the reduced mass, nph is the
density of photons, and Egap = Ec − Ev is the gap between
conduction and valence bands. The terms in Eq. (5) containing
V�k−�k′ factors are electron-electron interaction self-energies.
[Note that the band energies in Eq. (2) are defined as the
quasiparticle energies in the state with no electrons in the
conduction band and no holes in the valence band.] The term
proportional to ζk = �

2k2[1/(4me) − 1/(4mh)] in Eq. (4)
accounts for the effective mass difference between conduction
and valence bands and plays no role in the excitation spectrum
because it simply adds a constant to the many-body energy at
zero temperature.

These mean-field equations are identical to those that
appear in the theory of purely excitonic condensates, apart
from the contribution g

√
nph to the self-energy 	�k . This

term adds to electronic self-energies in supporting coherence
between conduction- and valence-band states in the dressed
quantum-well bands [21–24]. As emphasized in earlier work
[8,10,11,18] because the coupling to the photon field is
independent of momentum in the �k · �p theory we use, which
is accurate for all systems of interest, it yields electron-hole
pairs that are more tightly bound than they would be if
only electron-electron interactions were present. For purely
excitonic condensates mean-field theory is known to fail as
the Mott transition [25–28] is approached by overestimating
the tendency toward coherence. This deficiency can partly be
remedied by adding screening effects [29–31] in an ad hoc
manner. These considerations are however irrelevant in the
low exciton density regime in which polariton condensation
is achieved. In these equations we have already enforced the
N = 0 electron-number constraint by occupying only dressed
valence-band states in constructing the electron-electron in-
teraction self-energies. Below we will measure excitation
energies relative to Egap, thereby setting the zero for matter
excitation energies at the quantum-well energy gap.

After solving Eq. (5) self-consistently, we can evaluate the
exciton density nex and the matter energy per area εmat =
(〈Ĥmat〉 + 〈Ĥmat-ph〉)/A as a function of the exciton chemical
potential μ and the density of photons nph,

nex = 1

2A

∑
�k

(1 − ξk/Ek), (6)
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εmat = 1

2A

∑
�k

[(
�

2k2

4m
+ μ

2
+ ξk

)(
1 − ξk

Ek

)

− (g
√

nph + 	k)
	k

Ek

]
. (7)

Note that all quantities are functions of wave-vector magnitude
k only since the excitons condense in an s-wave state.

In a quasiequilibrium polariton condensate light and matter
share a common chemical potential μ. In order to enforce this
mutual equilibrium between the photon and the quantum-well
excitation parts of the condensate we need to evaluate the
photon chemical potential and set it equal to the excitation
chemical potential. It follows that for a given nph and μ,

μph = ∂ 〈ĤQWCP 〉
∂Nph

= εph + ∂εmat

∂nph
= μ. (8)

We follow normal practice in expressing the cavity-photon
energy in terms of the detuning δ, defined as the difference
between εph and the energy of a single isolated exciton εex.
With our choice of the quantum-well band gap as the zero
of excitation energy εex = −Eb and εph = δ − Eb where Eb

is the exciton binding energy. In the illustrative calculations
performed below, which do not correct for the finite width of
the quantum well, Eb = 4 Ry∗ = 2�

2/ma2
B , where Ry∗ is the

semiconductor Coulomb energy scale and a∗
B = �

2ε/(me2) is
the corresponding length scale.

For any given value of nph and μ, the quantum-well
excitations and the photons are in mutual equilibrium at some
value of the detuning energy δ. We therefore solve the matter
equations self-consistently over a range of nph and μ values
and evaluate μph by using a Hellmann-Feynman expression
for the derivative in Eq. (8),

∂εmat

∂nph
=

〈
∂Ĥmat-ph

∂N̂ph

〉
= − 1

A

g√
nph

∑
�k

u�kv�k, (9)

where u�k =
√

1
2 (1 + ξ�k/E�k) and v�k =

√
1
2 (1 − ξ�k/E�k) are the

bare valence- and conduction-band components of the dressed
valence bands and ξ�k and E�k are determined by solving Eq. (5).
We then find the value of δ consistent with specified values of
nph and μ by observing that

δ = εph + Eb = μ − ∂εmat

∂nph
+ Eb

= μ + Eb + 1

A

g√
nph

∑
�k

u�kv�k. (10)

In this way we can solve for all physical quantities as a
function of the physical variables δ and npol. For example in
Fig. 1 we plot the chemical potential μ and the photon fraction
nph/npol as a function of δ and npol over the experimentally
relevant range of these two parameters. The polariton density
is of course not directly controlled experimentally but depends
nonlinearly on the nonresonant exciton pumping power and on
the planar cavity leakage rate in a manner that can successfully
be modeled.

III. RESULTS

A. Exciton-photon model

Thermodynamic properties of the polariton condensate can
be predicted on the basis of an attractive simplified model that
contains only a bare exciton and photon degrees of freedom.
In mean-field theory the ground-state condensed exciton (�ex)
and photon (�ph) fields have identical phases and magnitudes
that are determined by minimizing the energy with respect
to the exciton and photon densities nex = |�ex|2 and nph =
|�ph|2. In the simplest version of this model no interactions are
included. Because of the photon and exciton kinetic energies
the ground-state condensates are spatially uniform, and the
energy per unit area is

ε(nex,nph) = εexnex + εphnph − 2�
√

nexnph, (11)

where �, the Rabi coupling, is the matrix element of the
matter-photon coupling term in Eq. (2) between the one-
photon/zero-exciton and the zero-photon/one-exciton states,
which we discuss further below. In the polariton condensate
the excitons and photons share the same chemical potential,

μ = ∂ε

∂nex
= εex − �

√
nph

nex
,

(12)

μ = ∂ε

∂nph
= εph − �

√
nex

nph
.

Solving Eq. (12) we obtain

μ = εLP = εex + εph

2
−

√(
δ

2

)2

+ �2, (13)

where δ = εph − εex is the detuning. As expected the chemical
potential of a polariton condensate is equal to the energy of a
single polariton when interactions are neglected.

A more realistic version of the exciton-photon model can
be obtained by adding a term to the energy function to account
for the repulsive interactions between excitons,

ε = εexnex + εphnph − 2�
√

nexnph + U

2
n2

ex, (14)

where U is the short-range exciton-exciton repulsive inter-
action [1]. With this change the formula for the exciton
chemical potential is modified by replacing the exciton energy
by a renormalized value containing a mean-field blueshift:
εex → ε̃ex = εex + Unex. The resulting implicit expression for
the polariton chemical potential can be reorganized as an
expression for the chemical potential as a function of polariton
density by using the relation,

npol = nex + nph = nex

(
1 + �2

(εph − μ)2

)
. (15)

It follows that for large positive detunings, npol ≈ nex and μ ≈
ε̃ex, which increase strongly with polariton density, whereas for
large negative detunings nex ≈ npol�

2/δ2 and μ ≈ εph, which
are nearly independent of polariton density. Below we compare
our full microscopic results closely with this model of photons
coupled optically to interacting excitons.
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B. Fermionic mean-field theory

The numerical results presented below were obtained by
solving the self-consistent-field equations explained in Sec. II.
For convenience we consider the case in which the conduction-
and valence-band masses are identical, ignore the reduction
in two-dimensional electron-electron interactions associated
with finite quantum-well widths, and use Bohr radius a∗

B =
ε�

2/(me2) as our length unit and the excitonic Rydberg Ry∗ =
e2/(2εa∗

B) as our energy unit. For typical GaAs quantum-
well materials, me = 0.067m0, mh = 0.6m0, and ε = 13.18ε0

[32], yielding a∗
B ∼ 115 Å and Ry∗ ∼ 4.7 meV. In our numeri-

cal calculation, we choose the band gap as the zero of energy so
that εex = −Eb = −4 Ry∗, in agreement with the narrow well
2D hydrogenic exciton limit. In realistic calculations the exci-
ton binding energy is substantially reduced by finite well-width
effects that allow electrons to spread their charge across the
quantum well. We choose g = 0.5 Ry∗a∗

B for the band-edge
photon-induced interband excitation coupling constant. From
isolated-polariton calculations, which are equivalent to the
dilute-polariton limit of our polariton condensate calculations,
we find that the relationship between the Rabi coupling and
the photon-induced transition coupling constant is

� = g

∫
d2�k

(2π )2
φ�k = 4g√

2πa∗
B

, (16)

where φ�k is the momentum-space hydrogenic ground-state
wave function in the narrow quantum-well limit. In this way
we obtain � ≈ 1 Ry∗. As we emphasize below, the effective
Rabi coupling constant � implied by our fermionic mean-field-
theory calculations is not constant as it is in the exciton-photon
model.

We present our results as a function of detuning δ and
polariton density npol. The detuning is readily adjusted [17]
experimentally simply by varying the optical excitation loca-
tion and using wedged microcavity structures. The polariton
density can be increased by increasing the intensity of the
pumping laser used to create a bath of nonequilibrium excitons.
Polariton condensates that are in an effective equilibrium state
can however be obtained only over a limited range of polariton
densities with a small but nonzero threshold. For very strong
pumping, the matter excitations fall out of equilibrium with
the cavity photons, and the pumped steady state is that of a
standard laser. Our theory does not address these limits on
the range of polariton density over which quasiequilibrium
condensates can be realized.

The change from nph to δ as a control variable is unique
provided that δ = f (nph) at fixed μ is invertible, i.e., that
the relationship is monotonic. We establish this property by
explicit numerical calculation. Figure 2 demonstrates that
detuning δ is always a monotonically decreasing function
of photon density nph. We can understand this property by
comparing with Eq. (10) from which we can immediately see
that δ decreases when nph increases when we can ignore the
implicit dependence of u�kv�k on nph.

In the exciton-photon model calculation corresponding to
Fig. 2, we first solve

μ = εex + Unex − �

√
nph

nex
(17)
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FIG. 2. (a)–(d) Detuning δ (red line) at which mutual equilibrium
is established as a function of photon density nph for a series of
chemical potentials μ which lie between the lower-polariton and
the isolated exciton energies. The detuning value predicted by an
exciton-photon model is plotted as a black line for comparison. The
chemical-potential-dependent effective Rabi coupling � values listed
in the four panels were determined by fitting Eq. (18) in the main text
to our numerical data.

to obtain nex as a function of nph and μ and then use

δ = εph + Eb = μ + Eb + �

√
nex

nph
. (18)

Comparing Eq. (18) with Eq. (10), the effective � from our
microscopic model is given by

�eff = 1

A

g√
nex

∑
�k

u�kv�k. (19)

In the exciton-photon model, � is a constant whereas in our
microscopic theory its effective value depends on detuning
as explicitly shown in Eq. (19). In Fig. 2 the black dashed
line is a fit to the exciton-boson model expression for the
dependence of detuning on photon density at a fixed chemical
potential, and the corresponding values of � are provided in
the panel legends. The effective values of � obtained in this
way characterize light-matter interactions and approach the
single-polariton value when the photon density is small and
the photon fraction is small, i.e., when the detuning is positive.
The effective Rabi coupling is expected to be stronger for more
photonlike condensates because the exciton wave function is
more spread out in momentum space and more localized in
real space [10], in agreement with Fig. 2.

As illustrated in Fig. 3, we find that for a fixed detuning
there is a minimum value of the chemical potential at which
an equilibrium polariton condensate can be established and
that the chemical potential increases linearly with polariton
density in the low-density limit in agreement with experiment
[4,17]. We identify the smallest value of the chemical potential
at which mutual equilibrium between photons and matter
excitations can be established as the lower-polariton energy
εLP . The value of εLP predicted by the microscopic mean-field
equations can be compared with the value predicted by the
analytic expression Eq. (13) by defining another effective Rabi
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FIG. 3. (a)–(d) Polariton chemical potential μ as a function of
polariton density npol at a series of fixed detuning values. The dashed
line is a linear fit to the numerical data from which we determine the
effective polariton-polariton interaction strength and lower-polariton
energy as the slope and intercept. [See Eq. (21).] The value of Upol

predicted by the exciton-photon model [see Eq. (23)] is calculated
using the Rabi coupling strength defined by the lower-polariton
energy [Eq. (20)] and U = 6 Ry∗a∗2

B [1] and is given in the upper left
of each panel. These values should be compared with the microscopic
polariton-polariton interactions determined by the slopes of the μ vs
npol plots.

splitting energy � as

� =
√

(2εex + δ − 2εLP )2 − δ2

2
. (20)

(Note that εLP is always smaller than both εex and εph.) We find
that at the detuning values we have studied the effective �’s
calculated in this way are always close to the bare 1 Ry∗ value
as shown in Fig. 4. The origin of the stronger Rabi coupling
at smaller detuning is the reduced matter-excitation size in
the presence of photons discussed above in connection with
Fig. 2.

The initial increase in chemical potential with polariton
density can be used to define an effective polariton-polariton
interaction Upol using

μ = εLP + Upolnpol. (21)
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FIG. 4. Effective Rabi coupling � determined by the smallest
chemical potential value at which an equilibrium polariton condensate
can be formed as a function of detuning δ. � is calculated from
Eq. (20).

Figures 3(a)–3(d) show that Upol is always positive, i.e., that
the polariton-polariton interactions are always repulsive. These
results show that the polariton interaction strength increases
monotonically upon going from negative to positive detuning
as the exciton fraction of the polariton condensate increases.

We can achieve a qualitative understanding of polariton-
polariton interaction,

Upol ≡ ∂μ

∂npol

∣∣∣∣
npol=0

, (22)

using the simplified exciton-photon model from which we find
that

Upol

U
=

(
nex

npol

)2

|npol=0

= 1

4

(
1 + δ√

δ2 + 4�2

)2

. (23)

The factor on the right side of Eq. (23) approaches 1 at strong
positive detuning. Microscopically the interaction between
excitons is repulsive [21,23] and in the dilute limit equal
6 Ry∗a∗2

B [1,33]. Equation (23) accounts for the polariton-
polariton interaction that emerges from the matter portion of
the condensate but not for the fact that the matter excitations
are altered by the photon portion of the condensate. Using the
effective Rabi coupling defined by Eq. (20), we can compare
the prediction of the analytic exciton-photon model expression
for Upol, reported in the upper left of each panel in Fig. 3, with
the values determined by the full microscopic calculations,
i.e., with the slopes of the straight-line fits to the μ vs npol

plots. We see that the polariton-polariton interactions weaken
even more rapidly as δ is decreased than in the exciton-photon
model. This property can be understood in terms of the
decrease in exciton size induced by the photon portion of
the condensate mentioned above, which acts to weaken the
short-range repulsive exciton-exciton interactions.

In Figs. 5(a)–5(d) we plot the microscopic exciton fraction
of the condensate x = nex/npol as a function of the polariton
density at different fixed detuning values and compare with
the exciton-photon model prediction for the same quantity
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FIG. 5. (a)–(d) Exciton fraction x = nex/npol as a function of the
density of polaritons npol at different fixed detuning values δ. The red
lines are obtained from microscopic mean-field-theory calculations,
and the blue dashed lines are obtained from the analytic expressions
[Eq. (15)] for x in the simplified exciton-photon model. Note that red
and blue points have different y values which are shown by red and
black marks, respectively.
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Eq. (15). The simplified model captures the largest trends,
namely, that polaritons are more excitonlike at more positive
detuning and that the exciton fraction decreases as the polariton
density increases. The decrease with polariton density is due
to repulsive exciton-exciton interactions which increase the
effective exciton energy and therefore decrease the effective
detuning. For example, for exciton fractions close to 1,

x ≈ 1 − �2

(εph − εLP − Upolnpol)2 + �2
. (24)

As explained above, polariton-polariton interactions are
weaker at smaller values of x than predicted by the simplified
model.

C. Dressed bands

The quasiparticle bands of polariton condensates are
dressed by both electron-photon (e-ph) and electron-electron
interactions. Results from self-consistent calculations at a
series of detuning and polariton density values are illustrated
in Fig. 6. The property that the dressed bands are coherent
combinations of the bare conduction and valence bands is the
most crucial difference between the steady state of polariton
condensates and the steady state of standard lasers.

In the rotating-wave picture that we employ, the bare
bands, plotted as red dot-dashed lines in Fig. 6, have a gap
εgap = Egap − μ or simply −μ because we have chosen the
semiconductor band-gap Egap as the zero of excitation energy.
The increase in gap size in the dressed bands, plotted in blue, is
due to energy-level repulsion that is a consequence of mixing
between conduction and valence bands. For negative values of
μ, the BEC limit [24] case of interest for polariton condensates,
the minimum gap occurs at �k = 0 and has the value,

εgap = 2
√

(μ/2)2 + 	2
�k=0

, (25)

where 	�k has contributions due to both electron-electron
interactions and electron-photon interactions as specified
in Eq. (5). As noted there the photon contribution to the

FIG. 6. (a)–(h) Quasiparticle bands at various detuning and po-
lariton density values. The blue lines denote the dressed quasiparticle
band structure, whereas the red dot-dashed lines illustrate the bands at
the same value of μ when the self-energies responsible for interband
coherence are neglected. The bare conduction- and valence-band
extrema, marked by dashed horizontal lines, are located at �k = 0
in all cases and have the values ±μ/2 in the undressed case. This
figure is based on calculations with me = mh.

band mixing self-energy is proportional to
√

nph and the
proportionality constant g ∼ 0.5 Ry∗a∗

B . We can derive a
similar expression for the exciton contribution to the band
dressing self-energy, valid in the low exciton density limit, by
examining the linearized gap equation,

k2

2m

	k

2Ek

− 1

A

∑
�k′

V�k−�k′
	k′

2Ek′
= μ

	k

2Ek

, (26)

and identifying it with the two-dimensional hydrogenic
Schrödinger equation. We find that

	k =
(

k2

2m
− μ

)√
nexφk,

(27)
	�k=0 = −

√
2πa∗

Bμ
√

nex.

In Eq. (27) φk is the 1s hydrogenic wave function in
momentum space. Setting μ → −4 Ry∗, the exciton binding
energy implies a coefficient of

√
nex that is around 10 Ry∗a∗

B ,
more than one order of magnitude larger than the coefficient
g = 0.5 Ry∗a∗

B that appears in front of
√

nph. The exciton
component of the condensate is therefore more effective than
the photon component in dressing the quasiparticle bands.
This qualitative point is confirmed by the full microscopic self-
consistent calculations summarized in Fig. 7. The band-mixing
self-energy plotted in Fig. 7 is the maximum value of 	k over
values of k. In most cases, the maximum is located at exactly
�k = 0 which corresponds to the BEC limit discussed above.
Both the electron-electron self-energies and the electron-
photon self-energies are monotonic functions of detuning at
fixed polariton density with the e-e self-energies increasing
and the electron-photon self-energies decreasing with δ. The

/

e-ph ratio

/

/

total/

e-ph/(a) (b)

(c) (d)

e-e/

/

FIG. 7. Contour plots of the (a) e-e and (b) e-ph contributions
to the maximum band-mixing self-energy as a function of polariton
density and detuning. All energies are in Ry∗ units, and the polariton
density is in a∗−2

B units. Panels (c) and (d) plot the total self-energies
and the e-ph interaction fractional contribution to the total self-
energies. Note that the e-e interaction self-energy is largest even
when the polariton condensate is photon dominated and that the
electron-electron interaction contribution is enhanced by the presence
of the photon field.
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presence of a small photon fraction in the polariton condensate
actually increases the electron-electron self-energy because of
the tendency of photons to produce smaller excitons. For this
reason the electron-electron self-energy increases more slowly
at fixed polariton density than the exciton fraction upon tuning
toward positive detuning.

IV. DISCUSSION

In this paper we have explored a number of properties of
equilibrium polariton condensates using a microscopic mean-
field approximation that becomes exact in the limit of low
polariton densities. Quasiequilibrium steady states of polariton
condensates are most easily achieved in a polariton condensate
when it has a substantial exciton fraction, which leads to
relatively strong particle-particle scattering. Because of the
active pumping and decay processes, the effective temperature
of a quasiequilibrium polariton condensate can never vanish. In
performing calculations for the low-temperature limit, we are
limiting our attention to the normal experimental case [4,17]
in which the effective temperature is low compared to both the
exciton binding energy and the two-dimensional superfluid’s
Kosterlitz-Thouless transition temperature.

Our microscopic mean-field calculation demonstrates that
polariton-polariton interactions rates are approximately pro-
portional to the square of the exciton fraction as implied
by simplified models that approximate the matter portion of
the condensate by bare bosonic excitons. Indeed polariton
condensate formation is closely related to exciton condensate
formation [21–24,33–35]. The most important distinction is
that, even with a small fraction of the total condensate, the
light portion of the condensate dramatically enhances the
stiffness of the condensate, promoting longer-range phase
coherence, increasing its robustness in the presence of disorder
and suppressing the high-exciton-density Mott transition
[25–28] between condensate and incoherent photon-electron-
hole plasma states.

A polariton condensate achieves coherence between matter
and light excitations. The most important consequence of this
property is that the mean-field quasiparticle bands of a polari-
ton condensate possess coherence between their valence- and
their conduction-band components driven by both electron-
electron and electron-photon interaction self-energies. We
find that the photon contributions to the long-wavelength

anomalous self-energy are proportional to the square root of
the photon density and that the matter contribution is, for
small densities, also proportional to the square root of the
matter excitation density. However, our calculations show that
the coefficients of these dependences are rather different and
that the electron-electron contribution dominates even when
the photon fraction of the condensate is relatively large. The
photons provide the glue that holds the condensate together
because of their large stiffness energy but the system otherwise
behaves much like a simple exciton condensate.

We anticipate that the properties of these quasiparticle
bands will be important for future research on the properties of
electrically driven polariton condensates. If so, an important
issue concerns the coherence strength, which is proportional to
the ratio of the total band-mixing self-energy to the difference
between the energy gap of the quantum wells and the chemical
potential of the polariton condensate. Neglecting Rabi split-
ting, the latter quantity is comparable to the exciton binding
energy when the polariton density is low. Our calculations
show that polariton condensates can have substantial interband
coherence, driven mainly by the electron-electron interaction
band-mixing self-energy.

The mean-field Hamiltonian of a polariton condensate
violates total polariton number conservation. This property
of polariton condensates is analogous to the corresponding
properties of superconductors and ferromagnets in which
the mean-field Hamiltonians violate exact conservation of
total particle number and approximate conservation of total
spin, respectively. When charge is driven through spatially
inhomogeneous superconductors and ferromagnets the order
parameter of condensate is altered because of Cooper pair
creation or annihilation in the superconductor case and because
of spin-transfer torques in the ferromagnetic case. These
effects restore the conservation laws. We anticipate that
analogous effects will occur when charge is driven through
polariton condensates in which inhomogeneities have been
introduced, for example, by varying the local detuning to
provide convenient electrically tunable polariton sources and
sinks.
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