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Abstract

Given a graph, the Hamiltonian path completion problem is to find an augmenting edge set such
that the augmented graph has a Hamiltonian path. In this paper, we show that the Hamiltonian path
completion problem will unlikely have any constant ratio approximation algorithm unless NP= P.
This problem remains hard to approximate even when the given subgraph is a tree. Moreover, if the
edge weights are restricted to be either 1 or 2, the Hamiltonian path completion problem on a tree is
still NP-hard. Then it is observed that this problem is strongly NP-hard, so it does not have any fully
polynomial-time approximation scheme (FPTAS) unless NP= P. When the given tree is ak-tree, we
give an approximation algorithm with performance ratio 1.5.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Hamiltonian path completion problem; Trees; Strongly NP-hard; Approximation algorithm; Fully
polynomial-time approximation scheme

∗ Corresponding author. Tel.: +88635712121x56949; fax: +88635729288.
E-mail addresses:solomon@ipv6.club.tw(Q. Wu), cllu@mail.nctu.edu.tw(C.L. Lu), rctlee@ncnu.edu.tw

(R.C.-T Lee).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.03.043

http://www.elsevier.com/locate/tcs
mailto:solomon@ipv6.club.tw
mailto:cllu@mail.nctu.edu.tw
mailto:rctlee@ncnu.edu.tw


386 Q.Wu et al. / Theoretical Computer Science 341 (2005) 385–397

1. Introduction

Given a graphG, a Hamiltonian path is a simple path onGwhich traverses each vertex
exactly once. Finding a Hamiltonian path is often required in problems involving routing
and the periodic updating of data structures. In the past, the Hamiltonian path completion
problem was defined on unweighted graphs. For a given unweighted graphG = (V ,E0),
the Hamiltonian path completion problem is to find an augmenting edge setE2 such that
G′ = (V ,E0 ∪ E2) has a Hamiltonian path. Such an edge setE2 is called anaugment. It
was shown that to find an edge setE2 with minimum cardinality is an NP-hard problem[9,
p. 198]. If the given graphG is a tree [6,10,11,13,16], a forest [20], an interval graph [1],
a circular-arc graph [7], a bipartite permutation graph [21], a block graph [21,22,24], or a
cograph [15], it was shown that there exist polynomial-time algorithms for this problem
by computing thepath covering number, which is the minimum number of vertex-disjoint
paths covering all vertices. In general, for a complete bipartite graphK1,n, the path covering
number isn − 1, and at leastn − 2 edges must be added to make it have a Hamiltonian
path. In other words, forK1,n to have a Hamiltonian path, any optimal augment must have
exactlyn − 2 edges [6]. For example, in Fig. 1, the graph can be covered by three paths
{(4,1,5), (2), (3)}, so two edges, say (2,3) and (3,4), may be added to make the original
graph have a Hamiltonian path.
In this paper, we shall discuss theweightedHamiltonian path completion problem,whose

formal definition is given below.

Weighted Hamiltonian Path Completion Problem (WHPCP). Givenacompletegraph
G = (V ,E) with edge weightsw : E → R+, and an edge subsetE0 ⊆ E, find an aug-
mentE2 ⊆ E such thatG′ = (V ,E0 ∪ E2) has a Hamiltonian path and

∑
e∈E2

w(e) is
minimized.

For example, in Fig. 2, givenE0 = {(1,2), (3,4), (5,6)} and the weight of each edge
assigned as in the table aside, the optimal augment isE2 = {(1,7), (2,5), (3,6)} with
weight 10. However, this problem is hard to solve ifE0 is arbitrary. Throughout this paper,
we shall assume thatE0 constitutes a tree. The formal definition of the problem is given
below.

1 1

22 33 44 5 5

Fig. 1. A bipartite graphK1,4 which can be covered by 3 paths.
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Fig. 2. An example for the weighted Hamiltonian path completion problem, where the given edge setE0 is
represented by solid lines and augmentE2 by dashed lines, and the weights of all the edges are shown in the table
aside.

Weighted Hamiltonian Path Completion Problem on a Tree (WHPCT). Givenacom-
plete graphG = (V ,E) with edge weightsw : E → R+, and an edge subsetE0 consti-
tuting a spanning tree on G, find an augmentE2 ⊆ E such thatG′ = (V ,E0 ∪ E2) has a
Hamiltonian path and the weight

∑
e∈E2

w(e) is minimized.

In this paper, we shall first show that the weighted Hamiltonian path completion problem
on a tree (WHPCT) will unlikely have any constant ratio approximation algorithm and it is
still NP-hard even when the edge weights are restricted to be either 1 or 2. We then observe
that this problem is strongly NP-hard, so it has no fully polynomial-time approximation
scheme (FPTAS) unless NP=P. Furthermore, when the given tree has only one internal
node, we give an approximation algorithm with performance ratio 1.5 and then extend this
algorithm to trees withk internal nodes.

2. Non-approximability of WHPCT

To prove that WHPCT is hard to approximate, we adopt a technique which is similar
to the one applied to prove that the traveling salesperson problem will unlikely have any
�-approximation algorithm as in[19]. In our proof, we shall reduce the Hamiltonian path
problem, which is a well-known NP-complete problem [9, pp. 199–200], to the WHPCT
problem. Let us define the problem first.

Hamiltonian Path Problem (HPP). GivenG = (V ,E), where |V | = n, determine
whether G has a path of lengthn− 1.

An approximation algorithmA is said to be�-approximationif for any problem instance,
the weight of the approximate solution obtained byA is bounded by� times the weight of
the optimal solution. We then have the following theorem:

Theorem 2.1. For any� > 1, if there exists a polynomial-time�-approximation algorithm
for WHPCT, thenNP=P.
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Fig. 3. Reduction fromG in HPP toG′ in WHPCT. InG′, the dashed edges have weight 1 and other edges have
weight 24�.

Proof. Suppose there exists an approximation algorithmA of WHPCT that will find an
approximation solution of ratio� in polynomial time. We then reduce HPP to WHPCT
as follows: Given an instance of HPP, sayG = (V ,E) with V = {v1, v2, . . . , vn}, we
construct an instance of WHPCT, sayG′ = (V ′, E′) andE0, as follows.
• G′ is the complete graph with vertex setV ′ = V ∪ {v0, vn+1}.
• For eache ∈ E′, w(e) =

{
1 if e ∈ E,
�|E|(n− 1) otherwise.

• E0 = {(v0, vi) | 1� i�n+ 1}.
Let us see Fig.3 for an example of the reduction.
First, we claim thatG has a Hamiltonian path if and only ifG′ has an optimal augment

with weightn−1. It is easy to see that ifGhas a Hamiltonian path, then by the construction
ofG′,G′ has an augmentwithn−1 edges, and each of these edges hasweight 1. Conversely,
supposeE0 has an optimal augmentE2 of weightn − 1. According to the discussion in
the previous section, since the givenE0 constitutes a treeK1,n+1, E2 must have exactly
n − 1 edges. SinceE2 is of weight n − 1, each of then − 1 edges inE2 must have
weight exactly equal to 1 and henceE2 ⊆ E. Let P ⊆ E0 ∪ E2 be a Hamiltonian path
in G′′ = (V ′, E0 ∪ E2). SinceV ′ hasn + 2 vertices,|P | = n + 1. Because the path is
Hamiltonian, the vertexvn+1 must be covered by the path. Since vertexvn+1 is of degree
1 and adjacent tov0 in G′′, P must pass throughv0 to visit vn+1 and then stop. In other
words, if we deletev0 andvn+1 from P, we can obtain a pathP ′ ⊆ E2 which visits all
vertices in{v1, v2, . . . , vn} exactly once. SinceE2 ⊆ E, P ′ is a Hamiltonian path for
G. Therefore,G has a Hamiltonian path if and only ifG′ has an optimal augment with
weightn− 1.
Second, we claim that there is an optimal augment forG′ with weight n − 1 if and

only if A cannot generate a solution containing any edge with weight�|E|(n − 1). If the
approximate solution contains any such edge, the weight of the augment would be at least
�|E|(n − 1). Since(�|E|(n− 1))/(n− 1) = �|E| > �, this violates the assumption that
A is an�-approximation algorithm. Conversely, ifA generates an augment with weight
less than or equal to|E|, then we know this augment does not contain any edge inG′ with
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weight�|E|(n− 1). In other words, all the edges in this augment are contained inE of the
original graphG. Since such a subset inE constitutes a Hamiltonian path inG, it leads to
the conclusion that the graphG has a Hamiltonian path.
By the above discussion,Ghas a Hamiltonian path if and only ifA generates an augment

with weight less than or equal to|E| for G′. Hence we can useA to solve the HPP in
polynomial time, by examining the weight of the solution returned byA. Thus, if WHPCT
has a polynomial-time�-approximation algorithm, then NP=P.�

3. Hardness results of (1,2)-HPCT

In this section, we shall discuss the (1,2)-HPCT problem, which is the WHPCT problem
whose edge weights are restricted to be either 1 or 2.

(1,2)-Hamiltonian Path Completion Problem on a Tree ((1,2)-HPCT).Given a com-
plete graphG = (V ,E) with edge weightsw : E → {1,2}, and an edge subsetE0
constituting a spanning tree on G, find an augmentE2 ⊆ E such thatG′ = (V ,E0 ∪ E2)

has a Hamiltonian path and the weight
∑
e∈E2

w(e) is minimized.

In [3], an NP-hard problem is defined to bestrongly NP-hardif it remains to be NP-
hard even when the value of the maximum number occurring in the input is bounded by
some polynomial in the length of the input. That is, for any inputx, max(x)�p(|x|).
Since the edge weights in any instancex of (1,2)-HPCT are either 1 or 2, max(x) =
2, which is a constant and certainly bounded by any polynomial. It can also be shown
that (1,2)-HPCT is NP-hard with a similar technique applied in the first part of Theorem
2.1. The only difference is that in the construction ofG′, the weight of those edges not
in E is set to 2, instead of�|E|(n − 1). Therefore, we have the following observation
immediately.

Observation 3.1. (1,2)-HPCT is stronglyNP-hard.

A polynomial-time approximation scheme(PTAS) is a family of algorithms such that for
any rational value� > 0, there is a corresponding approximation algorithm whose solution
is within ratio 1+ �, and the time complexity of this approximation algorithm is polynomial
in the size of its input. Furthermore, when the running time of a PTAS is polynomial both in
the size of the input and in 1/�, the scheme is called afully polynomial-time approximation
scheme(FPTAS)[3]. Some problems, like themaximum independent set problem on planar
graphsand theEuclidean travelingsalespersonproblemare found tohavePTASs [2,4],while
the 0–1 knapsack problem admits an FPTAS [12]. On the contrary, some problems, such
as the maximum 3-satisfiability problem, the maximum leaves spanning tree problem, the
superstring problem, and the traveling salesperson problem with distances one and two, are
proven by a reduction from the MAX SNP-complete class that they do not have any PTAS
unless NP=P [5,8,17,18].
The following lemma states the relationship between strongly NP-hard problems and

FPTAS solutions.
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Lemma 3.1([3] , Corollary 3.19). Let P be a strongly NP-hard problem that admits a
polynomial p such thatm∗(x)�p(|x|,max(x)) for any input x, wherem∗(x) denotes the
value of any optimal solution of x and|x| denotes the length of x. IfP �= NP, thenP does
not have any FPTAS.

Theorem 3.1. If (1,2)-HPCT has an FPTAS, thenNP=P.

Proof. Given any instancex of (1,2)-HPCT withG = (V ,E), the optimal augmentE∗
will not contain all edges inE, which implies thatm∗(x) < 2|E|. Since it is bounded by
a polynomial, by Observation3.1 and Lemma 3.1, if (1,2)-HPCT has an FPTAS, then
NP=P. �

4. A 1.5-approximation algorithm for (1,2)-hamiltonian path completion problem
on 1-star

The1-star is a complete bipartite graphK1,n, which is a tree withn leaf vertices and 1
non-leaf vertex. In this section, we shall give a 1.5-approximation algorithm for the (1,2)-
Hamiltonian path completion problem on a 1-star. Before that, we would like to mention
here that the minimum-weight maximal matching problem in a weighted complete graph,
by which we adopt to design the approximation algorithms throughout the rest of this paper,
can be solved in polynomial time, in contrast to the fact that the minimum-weight maximal
matching problem is NP-hard for general graphs [9].

Lemma 4.1. The minimum-weight maximal matching problem in a weighted complete
graph can be solved in polynomial time.

Proof. Suppose that theminimum-weightmaximalmatchingproblem isgiven inaweighted
complete graphG = (V ,E), with w(e) denoting the weight on each edgee ∈ E. Let �
be a positive real number greater than the weight of any edge inG. This problem can be
reduced to the maximum-weight maximal matching problem in a weighted complete graph
G′ = (V ′, E′) with V ′ = V , E′ = E andw′ = �−w(e). Clearly, a maximal matching in
G is also a maximal matching inG′, and vice versa. Moreover, all the maximal matchings
in G andG′ contain exactly�n/2� edges, wheren = |V |. Let w(M) = ∑

e∈M w(e) for
a maximal matchingM. For any two maximum matchingsM1 andM2 in G, we useM ′1
andM ′2 to denote their corresponding maximal matchings inG′, respectively. Then for
i ∈ {1,2}, w(M ′i ) = �n/2� × � − w(Mi). Consequently,w(M ′1)�w(M ′2) if and only
if w(M1)�w(M2). In other words, the maximal matching with maximum weight inG′
corresponds to a maximal matching with minimum weight inG, and vice versa. Note that
themaximum-weightmaximalmatching problem for general graphs can be solved inO(n3)

time [14, Chapter 6]. Hence, as discussed above, the minimum-weight maximal matching
problem in a weighted complete graph is solvable in O(n3) time.1 �

1 It is worth noticing that if the considered graph is not complete, then the above reduction does not work since
not all the maximal matchings have the same cardinalities.
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v0v0

v1v1 v2v2 v3v3 v4v4 v5v5

Fig. 4. Finding the minimum-weight maximal matching on a 1-star.

v0

vs vtv1 vn

Fig. 5. A Hamiltonian path inG′ = (V ,E0 ∪ E∗2).

Now, we describe our approximation algorithm for solving the (1,2)-Hamiltonian path
completion problemon a 1-star. Suppose thatG = (V ,E) is the given graph of the problem,
whereV = {v0, v1, v2, . . . , vn} andv0 is the root of the given 1-star. Our approximation
algorithm will first find a minimum-weight maximal matching in the induced complete
graph byV ′ = V \ {v0}, and then add edges to concatenate these matching pairs into a
Hamiltonian path. For example, in Fig.4, the matching may find{(v1, v2), (v3, v4)}, then
in the second step(v4, v5) is added to form a Hamiltonian path. The formal description of
our algorithm is as follows.

Algorithm 1
1. if n�2, then returnE2 = ∅;
2. Perform a minimum-weight maximal matching algorithm in the induced graph byV ′;

Suppose the matching is{(vi1, vj1), (vi2, vj2), . . . , (vi�n/2� , vj�n/2�)} and denote byvi�n/2�
the unmatched vertex ifn is odd.

3. ReturnE2 =
(⋃�n/2�

k=1 {(vik , vjk )}
)
∪

(⋃�n/2�−1
k=2 {(vjk , vik+1)}

)
;

Lemma 4.2. If the optimal augmentE∗2 contains k edges with weight 1, then our algorithm
finds at leastk/2 of edges with weight 1 in the solution.

Proof. It can be seen that forK1,n, any optimal augmentE∗2 always has exactlyn − 2
edges. Moreover, inG′ = (V ,E0 ∪ E∗2), there exist two edges(v0, vs) and(v0, vt ) in E0
such that they together with thesen − 2 edges inE∗2 constitute a Hamiltonian path, as
illustrated in Fig.5. By deleting the vertexv0 from the path, we obtain two vertex-disjoint
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paths to coverV ′ = {v1, v2, . . . , vn}. (Please note that a single vertex is also regarded as a
degenerated path here.) Connecting these two paths with “head to head” and “tail to tail” by
adding the two corresponding edges, we obtain a cycleC. ObviouslyE∗2 ⊂ C. Without loss
of generality, let us label this cycle as{(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}, where
(vs, vt ) and(vn, v1) are the two added edges. Let MM be the minimum-weight maximal
matching obtained in our algorithm.
Case1. If n is even, then each maximal matching hasn/2 edges since the given graph

is complete. It can be seen thatM1 = {(v1, v2), (v3, v4), . . . , (vn−1, vn)} is a maximal
matching andM2 = {(v2, v3), (v4, v5), . . . , (vn, v1)} is also a maximal matching. Suppose
MM containsk1 edges with weight 1. Then bothM1 andM2 contain at mostk1 edges with
weight 1; otherwise, MM cannot be minimum. Thus,C = M1 ∪M2 contains at most 2k1
edges with weight 1. Ifk1 < k/2, then 2k1 < k andC contains fewer thank edges with
weight 1. This contradicts the assumption that the subsetE∗2 of C already hask edges with
weight 1. Therefore,k1�k/2.
Case2. If n is odd, then each maximal matching hasn− 1/2 edges. It can be seen that

M1 = {(v1, v2), (v3, v4), . . . , (vn−2, vn−1)} is a maximal matching andM2 = {(v2, v3),
(v4, v5), . . . , (vn−1, vn)} is a maximal matching, too. SupposeMM containsk1 edges with
weight 1. Then with similar reasoning, bothM1 andM2 will have less than or equal tok1
edgeswithweight1.Again,k1 < k/2 implies that thepath{(v1, v2), (v2, v3), . . . , (vn−1, vn)}
contains fewer thankedgeswithweight 1. This also causesa contradiction because its subset
E∗2 already containsk edges with weight 1. Therefore,k1�k/2.
In either case, our algorithmfinds at leastk/2 edgeswithweight 1 in theminimum-weight

maximal matching MM.

Theorem 4.1. The performance ratio of Algorithm 1 is32.

Proof. The augmentE2 obtained by our algorithm contains�n/2� + �n/2� − 2 = n − 2
edges, just the same as the optimal augment. Suppose the optimal solutionE∗2 containsk
edges with weight 1, andh edges with weight 2 (i.e.,k+ h = n− 2). According to Lemma
4.2, our approximation algorithm which performs minimum-weight maximal matching to
get a partial result will choose at leastk/2 edges with weight 1. Even in the worst case that
all the other edges added later are with weight 2, the performance ratio of our approximate
solution will be

k
2 + 2( k2 + h)
k + 2h

=
3k
2 + 2h

k + 2h
� 3

2
.

Remarks. Precisely, by Lemma4.2, the above formula should be written as

� k2� + 2(k + h− � k2�)
k + 2h

.

Whenk is odd, it becomes

k+1
2 + 2(k + h− k+1

2 )

k + 2h
=

3k−1
2 + 2h

k + 2h
<

3k
2 + 2h

k + 2h
� 3

2
. �
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v0

v1 v2 v3 v4

Fig. 6. An example showing that ratio 1.5 is tight.

The time complexity of Algorithm 1 is analyzed as follows. Letn + 1 be the number
of vertices inG. The minimum-weight maximal matching in Step 2 takes O(n3) time,
as mentioned in the beginning of this section. Therefore, we obtain a 1.5-approximation
algorithm to solve the (1,2)-Hamiltonian path completion problem on 1-star that runs in
O(n3) time.
To show that the analysis for the performance ratio of this algorithm is tight, let us see

the example in Fig.6, where the edge weights are

w(e) =
{
1 if e ∈ {(v1, v2), (v1, v3)},
2 otherwise.

Our approximation algorithm will find a minimum-weight maximal matching first, say
{(v1, v2), (v3, v4)}, and adopts this as the approximate solution. Its weight will be 3. How-
ever, the optimal augment is{(v1, v2), (v1, v3)}, whose weight is 2. The performance ratio
then is32 = 1.5.

5. A 1.5-approximation algorithm for (1,2)-Hamiltonian path completion problem
on k-star

A tree withk internal vertices is called ak-star. In this section, we are going to show that
the approximation algorithm developed in the previous section can be extended to obtain
similar results onk-stars. Let us introduce some notation first.

Definition 5.1. Suppose thatG = (V ,E) is a weighted graph with weight functionw(e)
defined on all edges e in E and letP = (u1, u2, · · · , uk) be a path in G. Then the new
weighted graphG′ = (V ′, E′) obtained fromG by shrinkingP into a single vertex is
defined as follows, whered(u, v) = w(e) for an edgee = (u, v).
• V ′ = V \ {u2, u3, . . . , uk}.
• E′ = E \⋃

v∈V,u∈{u2,u3,...,uk}{(u, v)}.
• w′(e) =

{
min{d(u1, v), d(uk, v)} if e = (u1, v) for somev ∈ V ′,
w(e) otherwise.
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Fig. 7. The path(v1, v2, v3) of G is going to be shrunk to a vertexv1.

Fig. 8. The resulting graphG{P }, whereP is the path(v1, v2, v3) of Fig. 7.

Let G{P } denote the graph obtained fromG by shrinking the pathP. For two vertex-
disjoint pathsP1 andP2, the result of shrinking will be the same no matterP1 is shrunk
first orP2 is shrunk first, because themin operation satisfies the associative law. That is,
(G{P1}){P2} = (G{P2}){P1}. Therefore, it is sound to simply write it asG{P1,P2}. For example,
consider the complete graphGas shown in Fig.7, whose distances between any two vertices
are specified in the table aside. After shrinking the pathP = (v1, v2, v3) ofG, the resulting
graphG{P } is shown in Fig. 8.
In the rest of this section, we suppose thatG = (V ,E) andE0 are the instance of the

(1,2)-HPCT problem, whereG is a weighted complete graph andE0 constitutes ak-tree of
G. In G, we call the edges in the given subsetE0 thee0-edges, and edges inE \ E0 with
weight 1 thee1-edges, and edges inE \ E0 with weight 2 thee2-edges.

Observation 5.1. Suppose that H is a Hamiltonian path in G andP1, P2, . . . , Pi are the
vertex-disjoint paths inH ∩ E0. If we focus on edges in H, it can be observed that during
the process of shrinkingP1, P2, . . . , Pi , only e0-edges will be deleted, and somee2-edges
may be turned toe1-edges. Therefore,H{P1,P2,...,Pi } contains at leastn1 edges with weight
1 if H containsn1 e1-edges.

Lemma 5.1. If a Hamiltonian path H in graph G containsn1 e1-edges, then a minimum-
weight maximal matching in G contains at leastn1/2 e1-edges.

Proof. The proof is similar to that of Lemma4.2. �

Theorem 5.1. If a Hamiltonian path H containsn1 e1-edges andH ∩ E0 consists of
some vertex-disjoint pathsP1, P2, . . . , Pi , then a minimum-weight maximal matching on
G{P1,P2,...,Pi } contains at least

n1
2 e1-edges.
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Proof. By Observation5.1 and Lemma 5.1.�

Informally speaking, our approximation algorithmwill first find aminimum-weightmax-
imal matching on the shrunk complete graphG{P1,P2,...,Pi }, and then map these matching
edges back toG. By our construction ofG{P1,P2,...,Pi }, each edge inG{P1,P2,...,Pi } corre-
sponds to an edge inG, and each vertex inG{P1,P2,...,Pi } corresponds to either a single vertex
or a path inG. Therefore, each path inG{P1,P2,...,Pi } will be mapped to a path (containing
one or more edges) inG. These paths are then concatenated serially to form a Hamiltonian
path. Note that ifu andv are the terminals of pathPj for 1�j� i, the mapping of the
matching edgee′ = (x, u) inG{P1,P2,...,Pi } back to the edgee inG is done according to the
following equation.

e =
{
(x, u) if d(x, u) in G is equal tod(x, u) in G{P1,P2,...,Pi },
(x, v) otherwise.

Therefore, ifH containsn0 e0-edges,n1 e1-edges,n2 e2-edges, then the result obtained
by our approximation algorithm will also contain the samen0 e0-edges, and at leastn1/2
edges with weight 1 (contributed by the minimum-weight maximal matching) according
to Theorem5.1. As we have seen in the previous section, the weight of this approximate
result will be less than or equal ton1/2+ 2× (n1+ n2− n1/2) = 3

2n1+ 2n2. Therefore,
the performance ratio is

3
2n1+ 2n2
n1+ 2n2

� 3

2
.

Now we have a natural question: How does our approximation algorithm know what
paths inE0 must be chosen to shrink? If we could choose the ones exactly as an optimal
pathH ∗ contains, then the cost of the solution obtained by our approximation algorithm is
guaranteed to be within32 times the one of the optimal solution. However, we do not know
what edges may be contained inH ∗ and what may not. If we have to try each possibility,
since there are O(n) e0-edges, trying all the O(2n) combinations will lead to an exponential
algorithm. Fortunately, we have the following lemma:

Lemma 5.2. If H is a Hamiltonian path in G, then H contains at most2k e0-edges.

Proof. SinceE0 constitutes ak-star inG, all e0-edges must be incident to thek internal
vertices of thisk-star. However, in Hamiltonian pathH, at most two edges are incident to
each internal vertex, so at most 2k e0-edges are contained in this path.�

Therefore, we only have to test all combinations that contain 0e0-edges, 1e0-edges, 2
e0-edges,. . ., 2k e0-edges. For each combination, we apply the shrink operation and find
an approximate solution of it. The minimum of these solutions will be chosen as our final
approximate solution to be reported. Therefore, let us state our algorithm formally below.

Algorithm 2
1.W ←∞, AUG← ∅.
2. for all subsets ofE0 with no more than 2k edgesdo
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2.1. if the subset has 3 or more edges incident to the same vertexthen
/* Not vertex-disjoint paths. Do nothing. */

2.2. else
Suppose the subset consists of vertex-disjoint pathsP1, P2, . . . , Pi .

2.2.1. Shrink pathsP1, P2, . . . , Pi to obtainG{P1,P2,...,Pi };
2.2.2. Find a minimum-weight maximal matching MM onG{P1,P2,...,Pi };
2.2.3. Map these matching edges to paths inG;

/* Let MM be mapped to MM′. */
2.2.4. Add edges (denoted byS) to concatenate these paths serially to form a Hamiltonian

path;

2.2.5. if the weight ofS ∪MM ′ is smaller thanW then
W ← w(S ∪MM ′), AUG← S ∪MM ′;

3. Report AUG as the solution and stop;

There are O(n2k) iterations in Step 2 of Algorithm 2, and each iteration takes O(n3) time
as we have seen in the previous section. Hence, we obtain a 1.5-approximation algorithm
to solve the (1,2)-Hamiltonian path completion problem onk-stars that runs in O(n2k+3)
time.

6. Conclusions

In this paper, we introduced the weighted Hamiltonian path completion problem and
showed that this problem is hard to approximate, even if the given edge set is a tree.We also
showed that the weighted Hamiltonian path completion problem remains NP-hard when the
edgeweights are restricted to be either 1 or 2.We then observed that this problem is strongly
NP-hard, so it is unlikely to have any FPTAS. When the given tree hask internal vertices,
we gave an approximation algorithm with performance ratio3

2 whose time complexity is
polynomial whenk is fixed.
Some version of Hamiltonian completion problems finds the augment to make the

given graph having a Hamiltonian circuit instead of a Hamiltonian path. It can be checked
that our results can be applied to obtain the same results on Hamiltonian cycle completion
problems.
Although (1,2)-HPCT is unlikely to have any FPTAS, it is still unknown whether it

has a PTAS. Another variation which deserves further study is for general trees. In[23],
an approximation algorithm for (1,2)-HPCT with performance ratio 2 was proposed for
general trees. However, whether there exists a PTAS or an approximation algorithm with
performance ratio less than 2 as we derived fork-stars is still unknown.
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