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Abstract

Given a graph, the Hamiltonian path completion problem is to find an augmenting edge set such
that the augmented graph has a Hamiltonian path. In this paper, we show that the Hamiltonian path
completion problem will unlikely have any constant ratio approximation algorithm unless-IPP
This problem remains hard to approximate even when the given subgraph is a tree. Moreover, if the
edge weights are restricted to be either 1 or 2, the Hamiltonian path completion problem on a tree is
still NP-hard. Then it is observed that this problem is strongly NP-hard, so it does not have any fully
polynomial-time approximation scheme (FPTAS) unless=NP. When the given tree iskatree, we
give an approximation algorithm with performance ratio 1.5.
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1. Introduction

Given a graplG, a Hamiltonian path is a simple path @which traverses each vertex
exactly once. Finding a Hamiltonian path is often required in problems involving routing
and the periodic updating of data structures. In the past, the Hamiltonian path completion
problem was defined on unweighted graphs. For a given unweighted GraphiV, Ep),
the Hamiltonian path completion problem is to find an augmenting edgéssatich that
G' = (V, Eg U E3) has a Hamiltonian path. Such an edgeBgfs called amaugmentIt
was shown that to find an edge getwith minimum cardinality is an NP-hard proble®y
p. 198]. If the given graple is a tree [6,10,11,13,16], a forest [20], an interval graph [1],

a circular-arc graph [7], a bipartite permutation graph [21], a block graph [21,22,24], or a
cograph [15], it was shown that there exist polynomial-time algorithms for this problem
by computing thgpath covering numbemhich is the minimum number of vertex-disjoint
paths covering all vertices. In general, for a complete bipartite gkaph the path covering
number isn — 1, and at least — 2 edges must be added to make it have a Hamiltonian
path. In other words, foK1 , to have a Hamiltonian path, any optimal augment must have
exactlyn — 2 edges [6]. For example, in Fig. 1, the graph can be covered by three paths
{(4,1,5), (2), (3)}, so two edges, say (2,3) and (3,4), may be added to make the original
graph have a Hamiltonian path.

In this paper, we shall discuss the weighted Hamiltonian path completion problem, whose
formal definition is given below.

Weighted Hamiltonian Path Completion Problem (WHPCP). Givenacomplete graph
G = (V, E) with edge weights : E — R™, and an edge subsédi, € E, find an aug-
mentE; C E such thatG’ = (V, Eg U E>») has a Hamiltonian path anEeeE2 w(e) is
minimized

For example, in Fig. 2, giveltg = {(1, 2), (3, 4), (5, 6)} and the weight of each edge
assigned as in the table aside, the optimal augmenbis= {(1,7), (2,5), (3, 6)} with
weight 10. However, this problem is hard to solvé&jf is arbitrary. Throughout this paper,
we shall assume thdiy constitutes a tree. The formal definition of the problem is given
below.

Voo \
2 3 4 5 L2, .3, "4 1 N5

Fig. 1. A bipartite graplK1 4 which can be covered by 3 paths.



Q. Wu et al. / Theoretical Computer Science 341 (2005) 385—-397 387

23|45 |67
0)10]10]|10(10]| 2
co 1010 3 |10 10
10110 | o0 | 0 |10 5 | 10
1010 0 oo | 10| 10| 10
10 3 |10|10|oc| O |10
10110 5 |10 0 |co| 10
2110(10|10|10|10| 0

N
/
/
/
/
/
/
/
[
\‘

S
=
=
o
o
S|
=

o g~

’
-~ O Ut = Wb~

Fig. 2. An example for the weighted Hamiltonian path completion problem, where the given edfg set
represented by solid lines and augmgntby dashed lines, and the weights of all the edges are shown in the table
aside.

Weighted Hamiltonian Path Completion Problem on a Tree (WHPCT). Givenacom-
plete graphG = (V, E) with edge weights : E — R*, and an edge subsé, consti-
tuting a spanning tree on Gind an augmenE, C E such thatG’' = (V, EqU E») has a
Hamiltonian path and the WeingeeEzw(e) is minimized

In this paper, we shall first show that the weighted Hamiltonian path completion problem
on atree (WHPCT) will unlikely have any constant ratio approximation algorithm and it is
still NP-hard even when the edge weights are restricted to be either 1 or 2. We then observe
that this problem is strongly NP-hard, so it has no fully polynomial-time approximation
scheme (FPTAS) unless NP =P. Furthermore, when the given tree has only one internal
node, we give an approximation algorithm with performance rabahd then extend this
algorithm to trees witlk internal nodes.

2. Non-approximability of WHPCT

To prove that WHPCT is hard to approximate, we adopt a technique which is similar
to the one applied to prove that the traveling salesperson problem will unlikely have any
a-approximation algorithm as if19]. In our proof, we shall reduce the Hamiltonian path
problem, which is a well-known NP-complete problem [9, pp. 199-200], to the WHPCT
problem. Let us define the problem first.

Hamiltonian Path Problem (HPP). Given G = (V, E), where |V| = n, determine
whether G has a path of length— 1.

An approximation algorithr is said to be:-approximationf for any problem instance,
the weight of the approximate solution obtainedbys bounded by times the weight of
the optimal solution. We then have the following theorem:

Theorem 2.1. For anya > 1, if there exists a polynomial-timeapproximation algorithm
for WHPCT, thenNP =P.
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Fig. 3. Reduction fronG in HPP toG’ in WHPCT. InG’, the dashed edges have weight 1 and other edges have
weight 24.

Proof. Suppose there exists an approximation algorithrof WHPCT that will find an
approximation solution of ratia in polynomial time. We then reduce HPP to WHPCT
as follows: Given an instance of HPP, s@y= (V, E) with V = {v1, v2, ..., v,}, we
construct an instance of WHPCT, s@y = (V’, E’) and Ey, as follows.
e G’ isthe complete graph with vertex sét = V U {vo, v,+1}.

1 if ec E,
o Foreache € £, w(e) = { o|E|(n — 1) otherwise
e Eog={(vo,v;) | 1<i<n + 1}
Let us see Fig3 for an example of the reduction.

First, we claim thats has a Hamiltonian path if and only @’ has an optimal augment
with weightn — 1. It is easy to see that@ has a Hamiltonian path, then by the construction
of G’, G’ has an augment with— 1 edges, and each of these edges has weight 1. Conversely,
SUpposeEy has an optimal augmerft; of weightn — 1. According to the discussion in
the previous section, since the giv&g constitutes a tre&; , 11, E2 must have exactly
n — 1 edges. Sinc&; is of weightn — 1, each of thex — 1 edges inE; must have
weight exactly equal to 1 and henés C E. Let P € Eg U E> be a Hamiltonian path
in G” = (V’, Eg U E»). SinceV’ hasn + 2 vertices,|P| = n + 1. Because the path is
Hamiltonian, the vertex, 11 must be covered by the path. Since venigx; is of degree
1 and adjacent teg in G”, P must pass throughg to visit v, 1 and then stop. In other
words, if we deletayg andv, 1 from P, we can obtain a patl®’ € E, which visits all

vertices in{v1, v2, ..., v,} exactly once. Sinc&, C E, P’ is a Hamiltonian path for
G. Therefore,G has a Hamiltonian path if and only &’ has an optimal augment with
weightn — 1.

Second, we claim that there is an optimal augment@omwith weightn — 1 if and
only if A cannot generate a solution containing any edge with weight(n — 1). If the
approximate solution contains any such edge, the weight of the augment would be at least
ol E|(n — 1). Since(a|E|(n — 1))/(n — 1) = a|E| > «, this violates the assumption that
A is ana-approximation algorithm. Conversely,  generates an augment with weight
less than or equal tiE |, then we know this augment does not contain any ed@g inith
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weighta| E|(n — 1). In other words, all the edges in this augment are contain&cbirthe
original graphG. Since such a subset Eiconstitutes a Hamiltonian path @, it leads to
the conclusion that the graghhas a Hamiltonian path.

By the above discussiof has a Hamiltonian path if and only.f generates an augment
with weight less than or equal t&| for G’. Hence we can usél to solve the HPP in
polynomial time, by examining the weight of the solution returnedbyrhus, if WHPCT
has a polynomial-time-approximation algorithm, then NP = P[]

3. Hardness results of (1,2)-HPCT

In this section, we shall discuss the (1,2)-HPCT problem, which is the WHPCT problem
whose edge weights are restricted to be either 1 or 2.

(1,2)-Hamiltonian Path Completion Problem on a Tree ((1,2)-HPCT).Given a com-
plete graphG = (V, E) with edge weightsv : £ — {1, 2}, and an edge subseiy
constituting a spanning tree on,®nd an augmenk, C E such thatG’ = (V, Eq U E>)
has a Hamiltonian path and the weight, . ., w(e) is minimized

In [3], an NP-hard problem is defined to beongly NP-hardif it remains to be NP-
hard even when the value of the maximum number occurring in the input is bounded by
some polynomial in the length of the input. That is, for any inpumax(x) < p(|x|).
Since the edge weights in any instancef (1,2)-HPCT are either 1 or 2, max =
2, which is a constant and certainly bounded by any polynomial. It can also be shown
that (1,2)-HPCT is NP-hard with a similar technique applied in the first part of Theorem
2.1. The only difference is that in the construction@®f the weight of those edges not
in E is set to 2, instead of|E|(n — 1). Therefore, we have the following observation
immediately.

Observation 3.1. (1,2)HPCT is stronglyNP-hard.

A polynomial-time approximation scherffeTAS) is a family of algorithms such that for
any rational value > 0, there is a corresponding approximation algorithm whose solution
is within ratio 14 ¢, and the time complexity of this approximation algorithm is polynomial
in the size of its input. Furthermore, when the running time of a PTAS is polynomial both in
the size of the input and in/z, the scheme is calledfally polynomial-time approximation
scheméFPTAS)[3]. Some problems, like the maximum independent set problem on planar
graphs and the Euclidean traveling salesperson problem are found to have PTASs [2,4], while
the 0—1 knapsack problem admits an FPTAS [12]. On the contrary, some problems, such
as the maximum 3-satisfiability problem, the maximum leaves spanning tree problem, the
superstring problem, and the traveling salesperson problem with distances one and two, are
proven by a reduction from the MAX SNP-complete class that they do not have any PTAS
unless NP =P [5,8,17,18].

The following lemma states the relationship between strongly NP-hard problems and
FPTAS solutions.
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Lemma 3.1([3], Corollary 3.19. Let P be a strongly NP-hard problem that admits a
polynomial p such that*(x) < p(|x|, max(x)) for any input X wherem*(x) denotes the
value of any optimal solution of x and| denotes the length of x. ¥4 NP, thenP does
not have any FPTAS

Theorem 3.1. If (1,2)HPCT has an FPTAShenNP =P.

Proof. Given any instance of (1,2)-HPCT withG = (V, E), the optimal augmenk*
will not contain all edges i, which implies thain*(x) < 2|E|. Since it is bounded by
a polynomial, by ObservatioB8.1 and Lemma 3.1, if (1,2)-HPCT has an FPTAS, then
NP=P. [

4. A 1.5-approximation algorithm for (1,2)-hamiltonian path completion problem
on l-star

Thel1-staris a complete bipartite grapk ,, which is a tree witin leaf vertices and 1
non-leaf vertex. In this section, we shall give a 1.5-approximation algorithm for the (1,2)-
Hamiltonian path completion problem on a 1-star. Before that, we would like to mention
here that the minimum-weight maximal matching problem in a weighted complete graph,
by which we adopt to design the approximation algorithms throughout the rest of this paper,
can be solved in polynomial time, in contrast to the fact that the minimum-weight maximal
matching problem is NP-hard for general graphs [9].

Lemma 4.1. The minimum-weight maximal matching problem in a weighted complete
graph can be solved in polynomial time.

Proof. Suppose thatthe minimum-weight maximal matching problemis givenin aweighted
complete graptG = (V, E), with w(e) denoting the weight on each edge= E. Let 4

be a positive real number greater than the weight of any ed@e irhis problem can be
reduced to the maximum-weight maximal matching problem in a weighted complete graph
G' = (V,E)withV' =V, E' = E anduw’ = 4 — w(e). Clearly, a maximal matching in

G is also a maximal matching i@’, and vice versa. Moreover, all the maximal matchings

in G andG’ contain exactlyin/2] edges, where = |V|. Letw(M) = Y_ ., w(e) for

a maximal matchingl. For any two maximum matching¥1 and M> in G, we useM;

and M, to denote their corresponding maximal matchinggsin respectively. Then for

i€ (1,2}, wM]) = [n/2] x 4 —w(M;). Consequentlyw(M;) >w (M) if and only

if w(M1)<w(M>2). In other words, the maximal matching with maximum weighiGh
corresponds to a maximal matching with minimum weigh®jrand vice versa. Note that

the maximum-weight maximal matching problem for general graphs can be solveefin O
time [14, Chapter 6]. Hence, as discussed above, the minimum-weight maximal matching
problem in a weighted complete graph is solvable p®time.l O

L1tis worth noticing that if the considered graph is not complete, then the above reduction does not work since
not all the maximal matchings have the same cardinalities.
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Fig. 4. Finding the minimum-weight maximal matching on a 1-star.

Vo

Vl VS Vt Vn
Fig. 5. A Hamiltonian path iG’ = (V, Eq U E3).

Now, we describe our approximation algorithm for solving the (1,2)-Hamiltonian path
completion problem on a 1-star. Suppose that (V, E) is the given graph of the problem,
whereV = {vg, v1, v2, ..., v,} andug is the root of the given 1-star. Our approximation
algorithm will first find a minimum-weight maximal matching in the induced complete
graph byV’ = Vv \ {vg}, and then add edges to concatenate these matching pairs into a
Hamiltonian path. For example, in Fig, the matching may fin¢(vy, v2), (v3, v4)}, then
in the second stefu4, vs) is added to form a Hamiltonian path. The formal description of
our algorithm is as follows.

Algorithm 1

1. if n<2,thenreturnE, = ¢;

2. Perform a minimum-weight maximal matching algorithm in the induced graph’py
Suppose the matching fsv;;, vj,), (Viy, vj,), ..., Wil2)s Vi) and denote byiwm
the unmatched vertex ifis odd,

3. Returnk, = ( /2l v‘,k)}) U ( 22, v,m)});

Lemma 4.2. If the optimal augmenk’ contains k edges with weightthen our algorithm
finds at leask /2 of edges with weight 1 in the solution

Proof. It can be seen that foky ,, any optimal augmenk; always has exactly — 2
edges. Moreover, iG' = (V, Eg U E3), there exist two edge@o, vs) and(vo, vy) in Eg
such that they together with these— 2 edges inE; constitute a Hamiltonian path, as
illustrated in Fig.5. By deleting the vertexg from the path, we obtain two vertex-disjoint
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paths to coveV’ = {v1, vo, ..., v,}. (Please note that a single vertex is also regarded as a
degenerated path here.) Connecting these two paths with “head to head” and “tail to tail” by
adding the two corresponding edges, we obtain a @@c@bviouslyE; C C. Without loss
of generality, let us label this cycle &&1, v2), (v2, v3), ..., (Vy—1, Vu), (Vs, v1)}, Where
(vs, v;) and(v,, v1) are the two added edges. Let MM be the minimum-weight maximal
matching obtained in our algorithm.

Casel. If nis even, then each maximal matching ha® edges since the given graph
is complete. It can be seen that; = {(v1, v2), (v3, v4), ..., (Vy—1, vy)} IS @ maximal
matching and2 = {(vz, v3), (v4, vs), ..., (v, v1)} IS also a maximal matching. Suppose
MM containsk; edges with weight 1. Then boif1; and M> contain at most; edges with
weight 1; otherwise, MM cannot be minimum. ThUs= M1 U M> contains at mostid
edges with weight 1. Ik; < k/2, then Z; < k andC contains fewer thak edges with
weight 1. This contradicts the assumption that the sub$eif C already hak edges with
weight 1. Thereforek; >k/2.

Case2. If nis odd, then each maximal matching has 1/2 edges. It can be seen that
My = {(v1, v2), (v3,v4), ..., (V,—2, vy,—1)} IS @ maximal matching angif, = {(v2, v3),
(v4, v5), ..., (V,—1, vy)} is @ maximal matching, too. Suppagid/ containsk; edges with
weight 1. Then with similar reasoning, boiti; and M> will have less than or equal tq
edgeswithweight 1. Agaik; < k/2impliesthatthe patf(vy, v2), (v2, v3), ..., (Vy—1, Vy)}
contains fewer thakedges with weight 1. This also causes a contradiction because its subset
E3 already containk edges with weight 1. Therefore, > k/2.

In either case, our algorithm finds at leag2 edges with weight 1 in the minimum-weight
maximal matching MM.

Theorem 4.1. The performance ratio of Algorithm 1 gs

Proof. The augment, obtained by our algorithm containg/2| + [n/2] —2=n — 2
edges, just the same as the optimal augment. Suppose the optimal salfibontainsk

edges with weight 1, andedges with weight 2 (i.ek,+ h = n — 2). According to Lemma

4.2, our approximation algorithm which performs minimum-weight maximal matching to
get a partial result will choose at least? edges with weight 1. Even in the worst case that

all the other edges added later are with weight 2, the performance ratio of our approximate
solution will be

5+25+h  F+2n 3
k+2n  k+2n 2

Remarks. Precisely, by Lemm4.2, the above formula should be written as

5142k +h — 150
k+2h

Whenk is odd, it becomes

t2k+h-th ¥ 42 ) 3 1 2n
k + 2h k+2h  k+2n

< o
2
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Vo

vy Vv, V3 vy

Fig. 6. An example showing that ratio 1.5 is tight.

The time complexity of Algorithm 1 is analyzed as follows. et 1 be the number
of vertices inG. The minimum-weight maximal matching in Step 2 take@?) time,
as mentioned in the beginning of this section. Therefore, we obtain a 1.5-approximation
algorithm to solve the (1,2)-Hamiltonian path completion problem on 1-star that runs in
On®) time.

To show that the analysis for the performance ratio of this algorithm is tight, let us see
the example in Fig6, where the edge weights are

1 if e €{(v1,v2), (v1,v3)},
w(e) = { 2 otherwise.

Our approximation algorithm will find a minimum-weight maximal matching first, say
{(v1, v2), (v3, va)}, and adopts this as the approximate solution. Its weight will be 3. How-

ever, the optimal augment {$v1, v2), (v1, v3)}, whose weight is 2. The performance ratio
thenis3 = 1.5.

5. A 1.5-approximation algorithm for (1,2)-Hamiltonian path completion problem
on k-star

Atree withk internal vertices is calledlastar. In this section, we are going to show that
the approximation algorithm developed in the previous section can be extended to obtain
similar results ork-stars. Let us introduce some notation first.

Definition 5.1. Suppose tha; = (V, E) is a weighted graph with weight functian(e)
defined on all edges e in E and 1Bt = (u1, u2, ---, u;) be a path in G. Then the new
weighted graphG’ = (V’, E) obtained fromG by shrinkingP into a single vertex is
defined as follows, wheré(u, v) = w(e) for an edgee = (u, v).
o V' =V \{uz,us,...,u}.
o E'=FE\ UveV,ue{uz,u3,...,uk}{(u’ v)}.

, { min{d (u1, v), d(ug, v)} if e = (u1, v) for somev € V/,
o wi(e) = .
w(e) otherwise.
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w((vi,vg)) |01 | v2 | Vs | va | Us
U1 co|l 1 2| 1] 2
Uy 1 oo ]| 1 1 1
U3 21100 2|1
N 1|12 |0 2
vy 2111 2|

Fig. 7. The pativ1, vy, v3) of G is going to be shrunk to a vertex.

o w((vs,v5)) | v1 | va | Vs
0 oo | 1 1
V4 1 0.9) 2
Vs 1 2 o0
V4 (%

Fig. 8. The resulting grapt py, whereP is the path(vy, vp, v3) of Fig. 7.

Let G{py denote the graph obtained fro@ by shrinking the patfP. For two vertex-
disjoint pathsP; and Py, the result of shrinking will be the same no matfaris shrunk
first or P» is shrunk first, because tmein operation satisfies the associative law. That is,
(G(r))(pP) = (G(p,))(py}- Therefore, itis sound to simply write it &5 p, p,). For example,
consider the complete gragas shown in Fig7, whose distances between any two vertices
are specified in the table aside. After shrinking the pata (v1, v2, v3) of G, the resulting
graphGpy is shown in Fig. 8.

In the rest of this section, we suppose tliat= (V, E) and Eg are the instance of the
(1,2)-HPCT problem, wher& is a weighted complete graph afd constitutes &-tree of
G. In G, we call the edges in the given subg®ithe eg-edgesand edges itk \ Eg with
weight 1 thee1-edgesand edges ik \ Eg with weight 2 theep-edges

Observation 5.1. Suppose that H is a Hamiltonian path in G aRg, P», ..., P; are the
vertex-disjoint paths i N Ep. If we focus on edges in,ht can be observed that during
the process of shrinkingy, Po, ..., P;, only eg-edges will be delete@nd somes»-edges
may be turned te;-edgesTherefore Hip, p, .. p) contains at least; edges with weight
1if H containsnj e1-edges

.....

Lemma 5.1. If a Hamiltonian path H in graph G contains; e1-edgesthen a minimum-
weight maximal matching in G contains at leasy2 e1-edges

Proof. The proof is similar to that of Lemm&2. [
Theorem 5.1. If a Hamiltonian path H contains1 e1-edges andH N Eg consists of

some vertex-disjoint path®y, Po, ..., P;, then a minimum-weight maximal matching on
G{p,,p,,...,p;) CONtains at Ieasf?—1 e1-edges
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Proof. By Observatiorb.1 and Lemma 5.1. (]

Informally speaking, our approximation algorithm will first find a minimum-weight max-
imal matching on the shrunk complete gra@he, p,, ... p,}, and then map these matching
edges back t@. By our construction ofz(p, p, .., €ach edge itGp, p,, . p, COITE-
sponds to an edge (B, and each vertex i6p, p,,... p;y COrresponds to either a single vertex
or a path inG. Therefore, each path i p, p,, ..., p;} Will be mapped to a path (containing
one or more edges) iB. These paths are then concatenated serially to form a Hamiltonian
path. Note that ifu andv are the terminals of patl; for 1< j <i, the mapping of the
matching edge’ = (x, u) in G{p,, p,,... p,} back to the edgein G is done according to the
following equation.

.....

.....

(x,u) ifd(x,u)inGisequal tad(x, u) in Gipy, p,... Pl
(x,v) otherwise

Therefore, ifH containsng ep-edgesyi1 e1-edgesno ez-edges, then the result obtained
by our approximation algorithm will also contain the samerg-edges, and at least /2
edges with weight 1 (contributed by the minimum-weight maximal matching) according
to Theoremb.1. As we have seen in the previous section, the weight of this approximate
result will be less than orequaltQ/2 + 2 x (n1 + n2 — n1/2) = gnl + 2n». Therefore,

the performance ratio is

%n1+2n2<3
ni1+ 2n» v

Now we have a natural question: How does our approximation algorithm know what
paths inEg must be chosen to shrink? If we could choose the ones exactly as an optimal
path H* contains, then the cost of the solution obtained by our approximation algorithm is
guaranteed to be Withi% times the one of the optimal solution. However, we do not know
what edges may be containedir and what may not. If we have to try each possibility,
since there are @) ep-edges, trying all the @") combinations will lead to an exponential
algorithm. Fortunately, we have the following lemma:

Lemma 5.2. If H is a Hamiltonian path in Gthen H contains at mogk ep-edges

Proof. Since Eg constitutes &-star inG, all eg-edges must be incident to thenternal
vertices of thisk-star. However, in Hamiltonian patH, at most two edges are incident to
each internal vertex, so at most &-edges are contained in this path[J

Therefore, we only have to test all combinations that contaig-@dges, lg-edges, 2
eo-edges, . ., 2k ep-edges. For each combination, we apply the shrink operation and find
an approximate solution of it. The minimum of these solutions will be chosen as our final
approximate solution to be reported. Therefore, let us state our algorithm formally below.

Algorithm 2
1. W <00, AUG < 0.
2. for all subsets ofy with no more than 2 edgesdo



396 Q. Wu et al. / Theoretical Computer Science 341 (2005) 385—-397

2.1.if the subset has 3 or more edges incident to the same \theex
/* Not vertex-disjoint paths. Do nothing. */
2.2.else
Suppose the subset consists of vertex-disjoint path#», ..., P;.
2.2.1. Shrink path®y, P, ..., P; to obtainGyp, p,.... p};
2.2.2. Find a minimum-weight maximal matching MM 6hp,, p,
2.2.3. Map these matching edges to pathG;in
/* Let MM be mapped to MM. */
2.2.4. Add edges (denoted Byto concatenate these paths serially to form a Hamiltonian
path;
2.2.5. if the weight ofS U MM’ is smaller thartw then
W <« w(SUMM’), AUG < SUMM’;
3. Report AUG as the solution and stop;

P;}s

yeees

There are @%) iterations in Step 2 of Algorithm 2, and each iteration takés*®time
as we have seen in the previous section. Hence, we obtain a 1.5-approximation algorithm
to solve the (1,2)-Hamiltonian path completion problemkestars that runs in @2+3)
time.

6. Conclusions

In this paper, we introduced the weighted Hamiltonian path completion problem and
showed that this problem is hard to approximate, even if the given edge setis a tree. We also
showed that the weighted Hamiltonian path completion problem remains NP-hard when the
edge weights are restricted to be either 1 or 2. We then observed that this problem is strongly
NP-hard, so it is unlikely to have any FPTAS. When the given trekliaternal vertices,
we gave an approximation algorithm with performance rét'whose time complexity is
polynomial wherk is fixed.

Some version of Hamiltonian completion problems finds the augment to make the
given graph having a Hamiltonian circuit instead of a Hamiltonian path. It can be checked
that our results can be applied to obtain the same results on Hamiltonian cycle completion
problems.

Although (1,2)-HPCT is unlikely to have any FPTAS, it is still unknown whether it
has a PTAS. Another variation which deserves further study is for general trg@8],In
an approximation algorithm for (1,2)-HPCT with performance ratio 2 was proposed for
general trees. However, whether there exists a PTAS or an approximation algorithm with
performance ratio less than 2 as we derivedkfstars is still unknown.
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