
Machine Learning by Imitating Human Learning

KUO-CHIN CHANG
Department of Computer and information Science, National Chiao Tung University, Hsmchu,
Taiwan, 30050, R.O.C.

TZUNG-PEI HONG
Department of Information Management, Kaohsiung Polytechnic Insmute, Kaohsiung County,
Taiwan, 84008, R.O.C. (e-mail: tphong@nas05.kpi.edu.tw)

SHIAN-SHYONG TSENG
Department of Computer and Information Science, National Chino Tung University, Hsinchu,
Taiwan, 30050, R.O. C. (e-mail: sstseng@cis.nctu.edu.tw)

Abstract. Learning general concepts in imperfect environments is difficult since training instances
often include noisy data, inconclusive data, incomplete data, unknown attributes, unknown attribute
values and other barriers to effective learning. It is well known that people can learn effectively in
imperfect environments, and can manage to process very large amounts of data. Imitating human
learning behavior therefore provides a useful model for machine learning in real-world applications.
This paper proposes a new, more effective way to represent imperfect training instances and rules, and
based on the new representation, a Human-Like Learning (HULL) algorithm for incrementally
learning concepts well in imperfect training environments. Several examples are given to make the
algorithm clearer. Finally, experimental results are presented that show the proposed learning
algorithm works well in imperfect learning environments.

Key words. Machine learning, human learning, rule, training instance, specialize, generalize.

1. Introduction

One of the most active research areas of machine learning in recent years has
continued to be symbolic empirical learning. This area is concerned with learning
through symbolic usage and without much prior domain knowledge. The most
common topic in symbolic empirical learning is learning from examples. The
question of how general concepts are learned from a set of training instances has
become increasingly important to artificial intelligence researchers constructing
knowledge-based systems [13,16,17]. Given a set of examples and counterexam-
ples of a concept, the learning program tries to induce general concept descrip-
tions that describe the positive training instances and exclude the counterexam-
ples [19]. In real learning environments, training sets provided by experts,
teachers, or users are usually large and imperfect. Different training instances
may have different degrees of importance and precision. Inconclusive data
[22,24], incorrect data [2,9,14], incomplete data [ll], unknown attributes, or
unknown attribute-values [20] may also exist.

Machine learning is especially useful for knowledge acquisition in expert
systems. Expert systems are designed to represent and apply knowledge of
specific areas of expertise to solve problems. Expert systems are usually know-

Minds and Machines 96: 203-228, 1996.
0 1996 Kluwer Academic Publishers. Printed in the Netherlands

204 KUO-CHIN CHANG ET AL

ledge-intensive; the process of acquiring the necessary knowledge by interviewing
domain specialists is then tedious and difficult since the experts are usually
unaware of how to effectively express their knowledge. This often causes
knowledge acquired to be incomplete, inconsistent, or irrelevant. As an alter-
native, methods for inducing concept descriptions from examples have been
proven useful in easing the bottleneck of knowledge acquisition for constructing-
expert systems. In addition to learning from examples, there are still many other
learning methods, such as learning from explanation, learning by discovery,
learning by analogy, in the field of machine learning.

In particular, researchers are studying ways of building efficient and reliable
learning models and algorithms for improving the performance of knowledge
acquisition and ensuring the accuracy of obtained knowledge [1,10,12,15,18].
Among the strategies for learning from examples, ID3 and PRISM are two of the
most famous. ID3 tries to form decision trees from a set of training instances by
applying Information Theory. ID3 uses the heuristics of minimising the entropy in
determining which attribute should be selected next in a decision tree. The
decision tree can also be easily transformed into rules by tracing a path from the
root to a leaf. The PRISM learning algorithm applies the idea of information gain
instead of entropy in ID3 for inducing rules which are modular. PRISM
concentrates on finding only relevant attribute-value pairs; while ID3 is concerned
with finding only the attribute which is the most relevant overall, even though
some values of that attribute may be irrelevant. These two algorithms, however,
lack the capability of incremental learning, and all the training instances must be
kept. Also, their power to manage incomplete or inconclusive data is weak.

It is well known that people can effectively learn in imperfect environments,
and can process very large amounts of data. The power of machine learning is
currently still far weaker than that of human being. However, studying human
learning models can provide some interesting insight on machine learning.
Imitating the intelligent human learning behavior provides a useful model for
machine learning in real-world applications [12,15,23,25]. In this paper, we utilize
some characteristics of human learning models to design a new learning-from-
example algorithm. This new algorithm is not expected to compete the human
power (currently, this is impossible); instead, it is expected to overweigh the
existing learning algorithms, such as ID3 and PRISM, in some aspects through the
study of human learning models.

This paper is organized as follows. The characteristics of human learning
behavior are first reviewed. A new, more effective way to represent imperfect
training instances and rules is proposed. Based on the new representation and the
characteristics of human learning behavior, a Human-Like Learning algorithm
(HULL) is then proposed to solve complex learning problems. This learning
algorithm can incrementally learn concepts well and simulate the action of human
memory (using small amount of memory space but keeping a large body of
learned knowledge). It can also successfully manage noisy data, inconclusive data,

IMITATiNG HUMAN LEARNING 205

incomplete data, unknown attributes and unknown attribute values. Several
examples are also given to make the algorithm clearer. Finally, experimental
results are presented that show the proposed learning algorithm works well in
imperfect learning environments.

2. Characteristics of Human Learning

For convenience, the behavior of human learning is discussed in two parts
[3,5,7,gl:

(i) learning behavior, and

(ii) memory behavior.

Since they are very complex, not all characteristics of human learning will be
discussed here; instead, only those considered in the HULL algorithm will be
stated.

2.1. CHARACTERISTICS OF LEARNING BEHAVIOR

Learning behavior generally consists of the following characteristics:
1. Thinking: The main difference between human learning and machine

learning is that humans can think in a general way to reorganize learned
knowledge and to solve problems they have never encountered before
[5,6,26,28,29].

2. Incremental learning: Human knowledge and intelligence grows through
steady, life-long learning [3,7].

3. Transfer of learning: Learning behavior is deeply affected by the past
experience. There are three kinds of influence [3,7]:

a. positive transfer: past experiences have a positive effect on new learning;
6. negative transfer: past experiences have a negative effect on new learning;
c. zero transfer: past experiences have little or no effect on new learning.

4. Recognition: Recognition means people can judge whether a particular
event was experienced on an earlier occasion [3,7,8].

5. Recall: Recall is the reproduction of the learned knowledge. For example, if
an examination question asks you to give the causes of the Civil War, you
must dredge them up out of your memory and formulate a response that
convinces your instructor you know them [28,29].

6. Learning order: The order in which training data is presented is important to

206 KUO-CHIN CHANG ET AL

the final learned results. Different orders of presentation of the same set of
training instances may cause different learning results [3,7].

2.2. CHARACTERISTICS OF MEMORY BEHAVIOR

In addition to the characteristics of learning behavior, learning usually entails
memory behavior. Two kinds of memories exist [3,7,8]:

(i) short-term memory (STM), and

(ii) long-term memory (LTM).

Short-term memory can be thought of as a buffer, keeping only a few of the latest
training instances by FIFO (first-in first-out strategy). The capacity of STM is
about 5 to 9 storage units. Long-term memory, on the other hand, can be thought
of as a nearly unlimited capacity for storage. Items held in LTM are rarely lost
(forgotten) unless they are interfered with by contradictory concepts. Generally
speaking, memory behavior consists of the following characteristics:

1. Meaning of data: More meaningful or important training data is more easily
remembered in LTM [3,7]. For example, the string “human-like-learning-
algorithm” is easier to memorize than the string “mhtirogla-gninrael-ekil-
namuh” .

2. Overlearning: Overlearning means that when the same thing has been
repeated many times, it is strongly impressed on the memory. When an item
is overlearned beyond a certain threshold number of training times, more
training on the same item has no significant effect [7,29].

3. Retention interference: Forgetting may take place since new learning ac-
tivities could cause retention interference with old related experiences [7].
Two kinds of retention interference exist:
a. proactive inhibition (PI): the newly learned concepts are inhibited by

past experiences;
b. retroactive inhibition (RI): past experiences are inhibited by newly

learned concepts.

3. Representation

Some researchers believe that symbolic systems will likely continue to play a
preeminent role in the field of machine learning. In symbolic systems, facts and
knowledge are represented by high-level symbols, with the details to derive the
symbols being omitted. The symbols may be derived by some preprocessing steps,
such as the techniques in image processing, or may be given by users (these are

IMITATING HUMAN LEARNING 207

beyond our discussion here). In this section, a new representation of training
instances and rules is proposed to effectively manage imperfect training data and
learned knowledge.

3.1. REPRESENTATION OF TRAINING INSTANCES

Each training instance is represented as:

(class type SC 3 attribute-value pair,, attribute-value pair,, attribute-

value pair,, certainty-weight).

Here use of the symbol “ 3 ” to connect the class type and the attribute-value
pairs is very natural. For example, it is true to say that a monkey has 2 legs;
however, we can not say that any animal with 2 legs is a monkey since many
animals have 2 legs. In the representation, m is a variable representing the
number of attributes of the given training instance. Different training instances
may have different numbers of attributes-value pairs (problem of unknown
attributes). Besides, the certainty-weight denotes the reliability degree of this
description. The value of the certainty-weight is 1 if the data are completely
reliable, and is zero if the data are completely unreliable. The certainty-weight of
a training instance may be assigned in the following ways:

1. If the given training data is only a small subset of a very large potential data
base, the certainty-weight of each training instance may then be obtained by
probability calculation;

2. The certainty-weight can be obtained if accurate statistical information is
available;

3. The certainty-weight can be subjectively assigned by experts, teachers or
experienced users.

EXAMPLE 1. Assume there are two training instances involving chairs. One
describes a chair as having four legs and a back. It has a certainty-weight of 1
because in that person’s experience, all chairs have these characteristics. The
second training instance describes a chair as having four legs and no back. It has a
certainty-weight of 0.70 because in the second person’s experience, seven out of
ten chairs have these characteristics. These training instances are represented as
follows:

1. (class type = chair + legs = 4, chair-back = yes, certainty-weight = 1.0).

2. (class type = chair =$ legs = 4, chair-back = no, certainty-weight =

0.70).

208 KUO-CHIN CHANG ET AL.

3.2. REPRESENTATION OF RULES

As is common in studies of human learning, rules are used here to represent the
learned knowledge. Since the HULL algorithm learns concepts from imperfect
environments, a learned rule will not necessarily conclude to only one class.
Instead, rules with the same descriptions may conclude to multiple classes with
different possibilities. The representation of rules is defined as follows:

(attribute-value pairs+ class type S,, certainty-weight, experience-count,

fuzzy-probability).

Here “not” is allowed in the attribute-value pairs. As an example, “not
legs = 4” is allowed. Besides, the certainty-weight denotes the certainty or
reliability of the attribute-value pairs when the class is known to be 6, (estimated
from the certainty-weights of positive training instances covered by this rule). The
experience-count denotes the number of positive training instances covered by
this rule. Finally, the fuzzy-probability denotes the importance of the rule in the
conflict rule set (where all rules with the same attribute-value pairs conclude to
different class types). If the fuzzy-probability is 1, this rule does not contradict
any other rule; otherwise, more than one rule with the same attribute-value pairs
and different class types exist.

EXAMPLE 2. Assume only those two training instances given in Example 1 are
available. The learned rule (the learning algorithm will be introduced later) is:

(legs = 4 -3 class type = chair, certainty-weight = 0.86, experience-

count = 2, fuzzy-probability = 1).

This rule means that if a piece of furniture has 4 legs, it is then a chair since its
fuzzy-probability is 1 (which means no other furniture has four legs), and that a
chair with four legs has possibility of 0.86 (a chair may then have other
descriptions) as learned from 2 positive training instances (experience-count = 2).

4. Notation

In order to clearly describe the HULL algorithm, symbols used in this algorithm
are defined as :

IV: (I: Instance, V: Valid) A threshold used to judge whether a given training
instance is valid. If the certainty-weight of a training instance is smaller
than IV, this instance is not worth considering and is then judged invalid.

IT: (I: Instance, T: Typical) A threshold used to judge whether a training
instance is typical. If the certainty-weight of a training instance is larger

IMITATING HUMAN LEARNING 209

than or equal to IT, this instance is not only valid but also typical
(ITBIV).

Data-memory: A storage space used to memorize training instances worthy of
retention. Data-memory is composed of two parts: short-term-memory
(DSTM) and long-term memory (DLTM). DSTM is used as a memory
buffer, keeping the latest m valid but not typical training instances; DLTM
on the other hand keeps all the typical training instances.

RO: (R: Rule, 0: Overlearning) A threshold used to judge whether a rule is
overlearned or not. If the number of positive training instances included in
this rule is more than or equal to RO, then it is overlearned and is
regarded as a typical rule.

RT: (R: Rule, T: Typical) A threshold used to judge whether a rule is typical
by its certainty-weight. A rule is typical if its certainty-weight is larger than
or equal to RT or its experience-count is larger than or equal to RO.

RR: (R: Rule, R: Retention) It is a threshold to judge whether a rule
remembered in memory (both RLTM and RSTM) will be forgotten when
this rule is interfered with by another rule; restated, if the fuzzy-probabili-
ty of a rule is smaller than RR, this rule will then be forgotten.

Rule-memory: A storage space used to memorize learned rules which are
worthy of retention. Rule-memory is composed of two parts: short-term
memory (RSTM) and long-term memory (RLTM). RSTM, with a limited
space, keeps the rules which are not typical; RLTM keeps the typical rules
with a limitless space.

Rule-memory(c): A rule set where every rule has as its conclusion the class type
“c” (in both RSTM and RLTM).

Rulememory(- c): A rule set where every rule does not have as its conclusion
the class type “c” (in both RSTM and RLTM).

Inconclusive-rule-set(r): A rule set where all rules have the same attribute-value
pairs as r, but with different class types.

W(x): The certainty-weight of an instance x or a rule x.
Count(r): The experience-count of a rule r.
Fp(r): The fuzzy-probability of a rule r.

5. Heuristic Functions

The HULL algorithm is designed for learning concepts in imperfect environ-
ments. It uses the following heuristic functions in estimating the values of
certainty-weight and fuzzy-probability of each learned rule.

1. Certainty-Weight-Generating Function: CWG(r) is defined to estimate the
certainty-weight of a new rule r when r is generated from several training
instances:

210 KUO-CHIN CHANG ET AL.

where Ik represents the k-th training instance deriving the rule r.

2. Certainty-Weight-Reestimating Function: CWR(r, i) is defined to estimate
the new certainty-weight of an old rule Y when a new instance i is included in
r:

CWR(r, i) =
Count(r) X W(r)’ + W(i)*

Count(r) + 1

3. Certainty-Weight-Excluding Function: CWE(r, i) is defined to estimate the
new certainty-weight of an old rule r when a new negative training instance i
is excluded out of r as an exception by conjuncting the negation of the
instance to the rule:

CWE(r, i) =
Count(r) X W(r)’ + (1 - W(i))’

Count(r)

4. Fuzzy-Probability-Estimating Function: FPE(r,) is defined to estimate the
fuzzy-probability of a rule r, in the inconclusive-rule-set(ri):

Count(r,) X W(r,)
FPE(rj) = n

C Count(r,) X W(r,) ’
i=l

where the inconclusive-rule-set(~j) includes rl , r2, . . . , rn.

6. The Human-Like Learning Algorithm

The Human-Like Learning (HULL) algorithm, taking the characteristics of
human learning into consideration, is described here. Note that in the rest of this
section, Data-memory contains both DSTM and DLTM, and Rule-memory
contains both RSTM and RLTM. The flowchart is shown in Figure 1.

The Hull algorithm first judges a new training instance by its certainty-weight in
order to put it in the appropriate data memory. The algorithm then matches the
rules in the rule memory with the instance to decide whether the rules are
consistent with the new instance. Hull then adopts a corresponding operation
(among the four possible operations) to maintain its consistency. Finally, the rule
memory is reorganized to take away unimportant rules. The same procedure then
repeats for another new training instance until all the instances are processed. The
detailed algorithm is described below:

HULL ALGORITHM

IMITATING HUMAN LEARNING 211

ut a new trainin ___- --.--

Neglect it and stop

INPUT: Old Rule-memory, old Data-memory, and a new training instance I, of
class c.

OUTPUT: New Rule-memory and new Data-memory through learning from I,.
STEP 1: Classify I, as an invalid, valid, or typical training instance by its

certainty-weight, with three cases possibly existing:
CASE I: If W(1,) 2 IT (typical), keep I, in DLTM;
CASE 2: If IT > W(1,) 2 IV (valid), keep I, in DSTM (which keeps a

fixed number of training instances using the FIFO strategy);
CASE 3: Otherwise (invalid), neglect I, and stop the learning process.

I ‘STEP 1 corresponds to the meaning of data * /
STEP 2: Learn from I,, with four cases possibly existing (Figure 2):

Fig. 1. The system flowchart.

212 KUO-CHIN CHANG ET AL

CASE 1: If exists a rule including I, in Rule-memory(c) and exists no
rule including I, in Rulqmemory(- c), call PROCEDURE
Already-done-operation to reestimate the related information
of each rule including I,.

CASE 2: If exists no rule including I, in Rule-memory(c) and in
Rule-memory(- c), call PROCEDURE Including-operation
to include I, in Rule-memory(c).

CASE 3: If exist some rules in Rule-memory(c) including I, and also
exist some rules in Rule-memory(- c) including I,, call
PROCEDURE Excluding-operation to exclude I, out of
Rule-memory(- c).

CASE 4: If exists a rule in Rule-memory(- c) including I,, and exists no
rule in Rule-memory(c) including I,, call PROCEDURE
Excluding-operation to exclude I, out of Rule-memory(- c),
and then call PROCEDURE Including-operation to include I,
in Rule-memory(c).
I* STEP 2 corresponds to thinking, incrementally learning
knowledge, and transfer of learning *I

STEP 3: For each altered or newly generated rule r in Rule-memory, use the
heuristic function FPE to reestimate the fuzzy-probability of each rule in
the inconclusive-rule-set(r); if the reestimated fuzzy-probability of a rule
is smaller than RR, remove it out of Rule-memory (this rule is then
treated as a noisy rule and is forgotten).

I* STEP 3 corresponds to retention interference *I
STEP 4: Reallocate each altered or newly generated rule to its appropriate

position in Rule-memory (RSTM or RLTM) according to its new
certainty-weight and experience-count (the older rules in RSTM will be
forgotten if the number of rules in RSTM is larger than the queue
length of RSTM).

I* STEP 4 corresponds to memory organization *I
END ALGORITHM.

Procedures Already-done-operation, Including-operation, and Excluding-operation
appearing in STEP 2 are presented here, each taking some characteristics of
human learning into consideration. Procedure Already-done-operation
is adopted when the rule-memory is consistent with the training instance. This
procedure only updates the experience-count and certainty-weight of the rules
which cover the new instance. The procedure is described below:

(1) PROCEDURE Already-done-operation
I* The Rule-memory has been consistent with I, */
STEP 1: For each rule r, including I,, add 1 to its experience-count.

IMITATING HUMAN LEARNING 213

I ---+ Class 1

(CASE I) fzJ@@

(CASE 2) Ifzj@@

(CASE 3) @@@

(CASE 4)

Fig. 2. Four possible cases in STEP 2.

I * STEP 1 corresponds to overlearning *I
STEP 2: Use the heuristic function CWR(r,, I,) to reestimate its new

certainty-weight. If the new certainty-weight is larger than old
W(r,), then update the certainty-weight of r, as the new certainty-
weight; otherwise, old W(rJ remains as the new certainty-weight.

/ * STEP 2 corresponds to learning order *I
END PROCEDURE

Procedure Including-operation (Figure 3) is adopted when the new training
instance is not included by a rule of the same class. Old rules are then first tried to
cover this new instance by the generalization process since this method will cause
no increase of the rule number. If the above method cannot work, then a new
general rule based on this instance is generated.

The procedure is described below:

(2) PROCEDURE Including-operation
I * Rule-memory(c) must be altered to include I, *I
STEP 1: If a rule rc in Rule-memory(c) can be minimally generalized to

include I, and no training instance of class - c in Data-memory,
and to contradict no rule in Rule-memory(- c), then minimally
generalize r,; call SUBPROCEDURE Reestimating-information to
reestimate the related information of rc, and stop this procedure;
otherwise, do STEP 2.
I* STEP 1 uses the generalization strategy to include I, *I

STEP 2: Call SUBPROCEDURE Generating-new-rule to generate a new
rule Tr covering I,.

214 KUO-CHIN CHANG ET AL

Generate a new de

Reestimate the
related information

Fig. 3. The flowchart for the procedure Including_Operation.

STEP 3: If Rule Tr can be minimally generalized to include some other
positive training instances and no negative training instances in
Data-memory, and to contradict no rule in Rule-memory(- c), then
do the following substeps:
SUBSTEP 1: Minimally generalize the rule Tr with as many other

positive training instances in Data-memory as possible
(to avoid causing any contradiction).

SUBSTEP 2: Call SUBPROCEDURE Reestimating-information to
reestimate the related information of Tr.
I * STEPS 1, 2, 3 correspond to transfer of learning *I

STEP 4: Add the new rule Tr into Rule-memory (if Tr is typical, keep it in
RLTM; else, keep it in RSTM).
/ * STEP 4 corresponds to memory organization *I

END PROCEDURE

Procedure Excluding-operation (Figure 4) is adopted when the new training

IMITATING HUMAN LEARNING 215

Minimally
specialize the old

dC5

r- b

(es

Yes A

negated attribute

the certainty-weights

Fig. 4. The flowchart for the procedure Excluding-Operation

instance is included by a rule of another class, thus causing inconsistency. Old
inconsistent rules are then first tried to exclude this new instance by the
specialization process. If the above method cannot work, Hull checks whether the
rules and the instance have the same attribute-value pairs. If they have the same
attribute-value pairs, specializing the rules to exclude the instance is impossible.
Some alternatives are thus taken according to the certainty-weights and the
typical property of the rules and the instance. If the rules and the instance have
different attribute-value pairs, then the instance is negated and conjuncted to the
rules as an exception.

The procedure is described below:

(3) PROCEDURE Excluding-operation

216 KUO-CHIN CHANG ET AL.

/* Rule-memory(c) has been consistent, but Rule-memory(- c) must be altered
to exclude I, *I
STEP 1: If I, is not typical, then recall in Data-memory an instance I-, with

the highest certainty-weight (among those with the same attribute-
value pairs as I, but with different class types). If W(I-,) > W(I,),
then ignore I, (regarded as a noisy instance), and stop the whole
learning process; else, do STEP 2.
I* STEP 1 corresponds to proactive inhibition, negative transfer,

recall, and meaning of data *I
STEP 2: Process in Rule-memory(- c) each rule rwc including I, in the order

of decreasing certainty-weights, with three cases possibly existing:
CASE 1: If rue can be minimally specialized to exclude I, and to contradict no

rule in Rule-memory(c), then minimally specialize r-, and call SUB-
PROCEDURE Reestimating-information to reestimate the related
information of the specialized rules.
I * CASE 1 corresponds to retroactive inhibition *I

CASE 2: If r-, and I, are described by the same attribute-value pairs, four
subcases possibly exist:
SUBCASE 1: If W(1,) < W(r-,) and I, is not a typical instance,

then ignore the training instance I, (regarded as a
noisy instance), and stop the whole learning process.

SUBCASE 2: If W(1,) < W(r-,) and I, is a typical instance, mark
r-, as an inconclusive rule.

SUBCASE 3: If W(1,) L W(r-,), and r-, is not a typical rule, then
forget rsc;

SUBCASE 4: If W(1,) 2 W(r-,), and r-, is a typical rule, mark rvc
as an inconclusive rule.

I* CASE 2 corresponds to meaning of data and retroactive inhibi-
tion *I

CASE 3: Otherwise, alter r-, according to the certainty-weight of I,, with
two subcases possibly existing:
SUBCASE 1: if W(1,) 2 W(r-,), then do the following substeps:
SUBSTEP 1: Conjunct r-, with negated attribute value pairs of I,

into a new rule r-,.
SUBSTEP 2: Use the heuristic function CWE(r-,, I,) to reestimate

the certainty-weight of the new rule r-,.
I * I, is considered as an exception of r-, *I
SUBCASE 2: if W(Q) < W(r-,), then ignore the training instance

I, (regarded as a noisy instance).
I* CASE 3 corresponds to meaning of data and retroactive inhibi-

tion *I
END PROCEDURE

Subprocedures Generating-new-rule and Reestimating-information used above are

IMITATING HUMAN LEARNING 217

defined here. Subprocedure Generating-new-rule generates a new rule to include
the new instance and calculates its experience-count and certainty-weight (when
the existing old rules cannot be generalized to cover the instance). The subproce-
dure is described below:

(i) SUBPROCEDURE Generating-new-rule
I* A new rule Tr is generated to include I, *I
STEP 1: Recall in Data-memory all training instances with the same attribute-

value pairs and class type as I,.
I* STEP 1 corresponds to recall *I

STEP 2: Generate a new rule Tr, with its attribute-value pairs the same as
those of I,, and its experience-count equal to the number of recalled
training instances (including I,).
I* STEP 2 corresponds to positive transfer *I

STEP 3: Use the heuristic function CWG(Tr) to estimate the certainty-weight
of Tr; set its fuzzy-probability to be 1.

END SUBPROCEDURE

Subprocedure Reestimating-information is used to recalculate the experience-
count, certainty-weight, and fuzzy-probability of a rule when the rule memory is
altered. The subprocedure is described below:

(ii) SUBPROCEDURE Reestimating-information(r)
I * The values of experience-count, certainty-weight, and fuzzy-probability of
Rule r is reestimated by this procedure *I
STEP 1: Set the experience-count of Rule r to be the number of training

instances in Data-memory covered by this rule.
I * STEP 1 corresponds to recognition and overlearning *I

STEP 2: Use the heuristic function CWG(r) to estimate the new certainty-
weight of r.

STEP 3: If the Inconclusive-rule-set(r) is not empty, then use the heuristic
function FPE to estimate the new fuzzy-probability of each rule in
Inconclusive-rule-set(r); otherwise, set the fuzzy-probability of r to
be 1.

END SUBPROCEDURE

By the above procedures and subprocedures, the Hull algorithm can successfully
process each new training instance and manage the data memory and the rule
memory. The performance of the Hull algorithm is shown by experiments in
Section 8. Below, an example is given to clearly illustrate the Hull algorithm.

7. Example

The data in Table I will be taken as the training set to show the reliability and the
superiority of the HULL algorithm. Much uncertainty and noise exist in the

218

Table I. The training set

KUO-CHIN CHANG ET AL.

Value of Certainty Value of Certainty
attribute Class weight attribute Class weight

No. a, b, c, d 6, W No. a, b, c, d, e S, W

1. 1, 1, 1, 1 1 0.85 16. 4, 2, 2, 1 3 0.75
2. 2, 1, 2, 1 1 0.75 17. 1, 3, 2, 1 3 0.70
3. 1, 2, 1, 1 1 0.80 18. 1, 2, 2, 1 3 0.75
4 3, 1, 1, 2 1 0.60 19. 3, 2, 1, 1 1 0.70
5. 2, 3, 3, 1 1 0.60 20. 4, 4, 3 2 2 0.45
6. 2, 2, 1, 2 2 0.60 21. 1. 4, 2, 1 3 0.60
7. 4. 2, 2, 1 2 0.76 22. 1, 2, 2, 1 1 0.80
8. 2, 2, 3, 2 2 0.60 23. 4, 2, 2, 1 2 0.72
9. 3, 4, 1, 1 2 0.70 24. 1, 2, 2, 1 3 0.72

10. 3, 4, 3, 2 2 0.90 25. 4, 2, 2, 1 3 0.78
11. 1, 3, 3, 2 3 0.65 26. 4, 2, 2, 1, 2 2 0.74
12. 3, I, 1, 2 3 0.70 27. 1, 4, 2, 1 1 0.75
13. 1, 3, 3, 2 3 0.70 28. 1, 2, 2, 1, 1 1 0.75
14. 3, 3, 3, 3 3 0.70 29. 3, 4. 3, 1 2 0.72
15. 3, 3, 2, 1 3 0.80 30. 1, 3, 2, 2 3 0.70

training set. For example, training instances 7, 16, 23, and 2.5 are inconclusive and
uncertain; training instances 26 and 28 consist of attribute e (the others don’t);
training instance 20 may be noisy since its certainty-weight is quite low. Assume
the values of IT, IV, RO, RT and RR in the HULL algorithm are set respectively
at 0.85, 0.5, 2, 0.8 and 0.1, the queue length in both DSTM and RSTM is set at 7,
and the initial memory is empty. Assume also the HULL algorithm processes the
training instances in Table I in the original order. The following examples
illustrate execution of the HULL algorithm.

EXAMPLE 3. Assume the 20th training instance (8, + a4 fl b, rl cg II d,, w =
0.45) occurs. This training instance will be neglected since its weight is lower than
IV (0.5), and therefore the rule base is not changed.

EXAMPLE 4. Assume after the HULL algorithm processes the first 21 training
instances the memory is as follows:

Data-memory.LTM:
1. &+a1 nb, nc, nd,, w=O.85
2. S,+ a4 n b, n c3 n dZ, w = 0.90

Data-memory.STM:
1. a,+a,nb,rlc,nd,, ~=0.70
2. 6,+a,nb,nc,nd,, ~=0.80
3. 8, + a4 n b, n c2 n d,, w = 0.75
4. 6,Ja, nb,nc,nd,, ~=0.70
5. ?&+a, nb2nc,nd,, w=o.75

IMITATING HUMAN LEARNING 219

6. 6, 3 a3 fl b, fl c1 n d,, w = 0.70
7. &I$a,nb,nc,nd,, w=O.60

Rule-memory.LTM:
1. a, nb, nd,+6,, w = 0.82, c = 1, Fp = 1
2. a2 n b, n d,+6,, w=O.60, c=2, Fp = 1
3. a,nd,-+6,, w=O.76, c=2, Fp=l
4. a3 fl b4-+$, w = 0.81, c = 2, Fp = 1
5. b,+S,, w=O.71, c=4, Fp=l
6. a,nc,nd,-+6,, w=O.72, c=3, Fp= 1
7. c,nd,+6,, w=O.78, c=2, Fp=l

Rule-memory.STM:
1. a, nb, nc,+$, w=O.78, c=l, Fp=l
2. a,nb,nc,nd,+6,, ~=0.76,~=1, Fp=l
3. a3 n b, n cl n d,+6,, w = 0.70, c = 1, Fp = 1

When Hull processes training instances 22 to 28, the memory is altered as
shown in Figure 5. Explanation is given as follows.

(a) Assume the 22nd training instance (6,+ a, fl b, n c2 n d,, w = 0.80) occurs.
Since it is a valid training instance according to its certainty-weight, it is put into
the Data-Memory.STM. Since the queue length of Data-Memory.STM is limited
to 7, the first training instance in the original Data-Memory.STM is then
removed. Also, this training instance is inconsistent with the sixth rule (a, fl c2 fl
d, -+ S,, w = 0.72, c = 3, Fp = 1) in Rule memory.LTM, and is not included in any
rule concluding to 6,. It is then processed by the Case 4 of STEP 2 in HULL
learning algorithm. For excluding the instance (6, + a, fl b, fl c2 n d,, w = 0.80),
this rule is specialized into three rules containing (by the procedure of
Excluding-Operation):

(i) a,nb,nc,nd,-+S,, w=O.75, c=l, Fp=l,
(contradicting the first rule in Rule-memory.LTM)

(ii) a, n b, rl c2 rl d, + a,, w = 0.70, c = 1, Fp = 1,
(not a minimally-specialized rule)

(iii) a, n b, rl c2 fl d, + a,, w = 0.60, c = 1, Fp = 1.

The rule (a, n b, n c2 n d, + 6, w = 0.70, c = 1, Fp = 1) is covered by the fifth
rule (b3+$, w = 0.71, c = 4, Fp = 1) in Rule memory.LTM, so it is neglected
(not a minimally specialized rule). After the execution of the
Excluding-Operation procedure, only rule (iii) is kept in Rule_memory.STM.
Then the Including-Operation procedure is executed to include the new training
instance. In STEP 2 of the Including-Operation procedure, a new rule (a, n b2 fl

220 K U O - C H I N C H A N G E T A L .

Coming [DLTM I

I
22 No

change

23 No
change

No
2 4 change

25 No
change

o s + M II 1,2 .3 ,4 .5 .6 ,7

Delete 1 :
53 =,a 3 c~b3 ~c~ c-xb,w'=0.70

Add 8:
& =.a t ~b2~c2c-,d L'w--~.80

2 ,3 ,4 ,5 ,6 ,7 ,8 , ,11

Delete 2
83=~a3t'~b3ncTr~d t ,w=:0.80

Add 9
<52=a4~b2~cT~d Lw--0.72

Del~e 3

53=a4~b2c-~c~dLw---0.75
Add 10

63,~atc~blt-',~dl,w---0.72

Delete 4
53=,a i t'~b3t-,~r~d Lw--~.70

Add 11
~3::~a4t-',b 2 c"~2.'--zh ,w"~).78

N o D e l e t e 5

2 6 change 53=at r~b2c~c2c~t,w---O.75
Add 12

&=~a+r~b~c~c'ad~c'~,~.74

[" ~ 1 6,7,8,9,10,11,12 I

No Delete 6
2 7 change & =,a 3~b2r-az w-~d Lw=0.70

Add 13
~ 1 =~a 1 r 4 t---~ r ,w---O.75

RLTM

1 ,2 ,3 ,4 ,5 ,6 ,7

I
Delete 6:

at r~c~d~ -~3,w---~.72,e=3,Fp= 1
Add 8 (From RLTM 6):

a~b2~t-xtt-.-.~,w--0.80,e=l,Fp=l

1 ,2 ,3 ,4 ,5 ,7 ,8
I

Add 9 (From RSTM 2)
a,w'~b2c',e~dt --..~52,w=O.76,e=2,Fp = I

1 ,2 ,3 ,4 ,5 ,7 ,8 ,9

Add 4(From RLTM6):
aw~b4c'~-2t-xtt --~3,
w=0.60,e=l,Fp=l

Delete 2

w---0.76,c= l,Fp= 1

i i
Delete 8

at r-,b2c-.,c2c'.,dl --~t ,w-~.80,c= 1 ,Fp= 1
Add 10 and 11

al~b2~r . ,d l -.~t ,w=0.$0,c= I,Fp=0.35
aic~b2~e-zr-xh -~3,w=0.74,e=2,Fp=0.65

Delete 9
a4cab2r-~c'~dl--+~,w=0.76,e=2,Fp = I

Add 12
a4r~b2c"~cxll -~3,~.76,e=2,Fp=0.66

] 1, 2, 3, 4, 5, 7,10,11,12 i l

Delete 12
a,c%2c~e~r~t --~SLw-~.76,c=2,Fp=0.66

Add 13
a4r~b:racTr-~ t-->~,w---0.76,e=3 ,Fp =0.75

No change

tl 1,3,4 I
No change

1,3,4 I

Add 5
a4t-',b2.,-'.c2t-xl i --~3,

w--0.78,c=l,Fp=~0.34

1 ,3 ,4 ,5 I

Ddete5
a4~bar~ezc'd~---~53,

w=0.78,e=l,Fp=O.34
Add 6

a4c~b2c~elr -->53,
,,,---0.TS,~l,Fp=O 25

[1 , 3 , 4 , 6 I

Delete4
at~b4r'v~c~dl --~53,
w--0.60,e=l,Fp= 1

Add 7
a i t"xb4t'~clt-'~l i ---~51,
w--~.75,e=l,Fp=l

~ - - . ~ [7, 8, 9.1o, II,12.13 I] 1,2,3,4,5,7,1o,11,13 I] 1 ,3 ,6 .7]

Delete 10,11
Delete 7 a i c'-,b2~e-2r 1 -.~l , ~ . 8 0 , e = 1 ,Fp='O.35

28 No 53 =,a i c~b4r~c2c',dl ,w=0.60 a t r~b2,.-,~c-~h -t.53,~.74,c'=2,Fp=0.65 No change
change Add 14 Add 14,15

& =m ~b2 ~c2c-xiw-~l .w=0.75 a, ~b2c~cgr~t --~51,w--~.g0,c=2,Fp=0.52
a 1 c~b2r',e2r~dt r'~""el --~3,

w---~.74,e=2,Fp=0.48

~ 2 2 2 2 ~ 1 8.9,10,| 1,12,13,14 I I 1,2,3,4,5,7,13,14,15 I I 1 ,3 ,6 ,7 I

c2fqdt--->61, w=0 .80 , c = 1 , F p = l) is then generated and put into the
Rule memory.LTM (its certainty weight is larger than RT).

(b) Assume the 23rd training instance (~ = a 4 fq b 2 f') C 2 (q d r , w = 0.72) occurs.
The rule (a4fqb4(qCzfqdl--->62, w = 0 . 7 6 , c = 2 , F p = l) is reallocated from
RSTM to RLTM (overlearning) and DTSM is altered.

IMITATING HUMAN LEARNING 221

(c) Assume the 24th training instance ($3 a, fl b, fl c2 fl d,, w = 0.72) occurs.
This training instance is inconsistent with the rule (a, fl b, fl c2 fl d, + a,, w =
0.80, c = 1, Fp = 1) in RLTM and the previous instance ($3 a, n b, n c2 n d,,
w = 0.80) in DSTM. In STEP 1 of the Excluding-Operation procedure, the
HULL algorithm will recall the previous training instance (a,+ a, fl b, fl c2 fl d,,
w = 0.75) kept in DSTM to construct a new rule (a, n b, fl c2 17 d, + S,, w = 0.80,
c = 2, Fp = 1). The new rule is important enough to be remembered in RLTM
(due to overlearning), such that even if the rule base is not consistent, the new
rule is not considered as a noisy rule but rather an inconclusive rule. The
algorithm will then keep both these rules at the same time, with their fuzzy-
probability being recalculated (since their fuzzy-probabilities are larger than RR).

If this Rule-memory is used to classify an object with attribute-value pairs
(a, n b, n c2 n d,), two possible classes (S, and S,) may be concluded. There is
about 65% evidence for supporting the unknown object to be class S, and about
35% evidence for supporting to be the class S,. These rules also show that a
training instance belonging to class S, has the descriptions (a, fl b, fl c2 fl d,) with
the probability 0.74, and belonging to class 6, has the descriptions (a, n b, n c2 n
d,) with the probability 0.80.

(d) Assume the 25th training instance (6, + a4 fl b, fl c2 fl d,, w = 0.78) occurs
as the next input instance. This instance is improperly included by the inconsistent
rule (a, n b, n c2 n d, -+ S,, w = 0.76, c = 2, Fp = 1). Since the certainty-weight of
the new instance (6, j a4 fl b, n c, n d,, w = 0.78) is larger than the previous
training instance (6, + a4 fl b, fl c2 fl d,, w = 0.72) in DSTM, this new instance
can’t be regarded as noise. Instead, it is used to generate a new rule (a4 n b, n
c2 fl d, --+s3, w = 0.78, c = 1, Fp = 0.34) to put in RSTM. Also, since the rule
(a, n b, n c2 n d, + a,, w = 0.76, c = 2, Fp = 1) is in RLTM, it is thought of as an
inconclusive rule instead of a noisy rule (SUBCASE 4 within CASE 2 in STEP 3
of the Excluding-Operation Procedure).

(e) Assume the 26th training instance (6, + a4 n b, fl c2 n d, fl e2, W = 0.74)
occurs as the next input instance. This instance is simultaneously included by two
inconclusive rules (a, fl b, fl c2 n d, -+ S,, w= 0.76, c=2, Fp=O.66) and (a, n
b, n c2 n d, + &, w = 0.78, c = 1, Fp = 0.34). The new instance can not be used
to discriminate between these two inconclusive rules since its certainty-weight is
lower than the rule (a4 fl b, fl c2 n d, + a,, w = 0.78, c= 1, Fp = 0.34) (SUB-
CASE 2 within CASE 3 in STEP 3 of the Excluding-Operation Procedure). It
can, however, increase the reliability of class S, (PROCEDURE
Already-done-operation).

(f) Assume the 27th training instance (6, =$ a, rl b, fl c2 fl d,, w = 0.75) occurs
as the next input instance. This instance is included by the inconsistent rule
(a,nb,nc,nd,+6,, w = 0.60, c = 1, Fp = 1) and satisfies CASE 4 of STEP 2
in the HULL learning algorithm. Since this rule is not a typical rule and its weight
is lower than the new instance, it is regarded as a noisy rule and is forgotten
(SUBCASE 3 within CASE 2 of STEP 3 of the Excluding-Operation Procedure).

222 KUO-CHIN CHANG ET AL

Also, a new rule is constructed to include the new training instance
(Including-Operation Procedure).

(g) Assume the 28th training instance (6, + a, fl b, fl c, fl d, n e,, w = 0.75)
occurs as the next input instance. As in (e), this instance is simultaneously
included by two inconclusive rules (a, n b, n c2 rl d, + 6,) w = 0.80, c = 1, Fp =
0.35) and (a,nb,nc,fld,+6,, w=O.74, c=2, Fp=0.65). The certainty-
weight of this training instance is, however, important enough to interfere with
the inconclusive rule (a, fl b, fl c2 n d, +a?, w = 0,74, c = 2, Fp = 0.65) (SUB-
CASE 1 within CASE 3 in STEP 3 of the Excluding-Operation Procedure).

The fifteenth rule remembered in RLTM shows the flexibility of the proposed
learning algorithm for allowing negated notations. It means that if an object with
attribute-value pairs is equal to (a, n b, n c2 fl d,) and not equal to (a, n b, fl
c2 n d, n e,), it will be classified as class 6, with a 48% probability.

EXAMPLE 5. After processing all 30 training instances in Table I, the final
learned result is:

Data-memory.LTM:
1. $+a, nb, nc, nd,, w=O.85
2. a,+ a4 n b, n cj n d,, w = 0.90

Data-memory.STM:
1. 6,+a,nb,nc,nd,, ~=0.72
2. a,+ a4 n b, n c2 n d,, w = 0.78
3. a,+ a4 n b, n c2 n d, n e2, w = 0.74
4. 6,3a,nb,nc,nd,, w=O.75
5. 6,~a,nb,nc,nd,ne,, w=O.75
6. S,+ a3 n b, n c3 n d,, w = 0.72
7. 6,$a,nb,nc,nd,, w=O.70

Rule-memory.LTM:
1. a, n b, n d,-+6,, w = 0.82, c = 1, Fp = 1
2. a,nb,nd,+6,, w=O.60, c=2, Fp=l
3. a,nd,+6,, w=O.76, c=2, Fp=l
4. a,nb,nc,nd,-+S,, w=O.76, c=3, Fp=0.75
5. a,nb,+6,, w-0.81, c=3, Fp=l
6. b3+$, w=O.71, c=6, Fp=l
7. cl nd,+6,, w=O.78, c=2, Fp= 1
8. a,nb,nc,nd,-+6,, w = 0.80, c = 2, Fp = 0.52
9. a, n b, n c2 n d, n -(ai n b, n c2 n d, n e,)-+6,, w = 0.74, c = 2, Fp =

0.48

Rule-memory.STM:
1. a,nb,nc,+tY,, w=O.78, c=l, Fp=l

I M I T A T I N G H U M A N L E A R N I N G 223

2. a3 f - / b l f - / c l f-ld2----->63, w = 0 . 7 0 , c = l , F p = l
3. a4 fqb2 f-/c2 ndl-- - -~63, w = 0 . 7 8 , c = l , F p = 0 . 2 5
4. a 1 rqb4 f) c2 f3 d]---->6a, w = 0 . 7 5 , c = l , F p = l

If the result learned is used to recognize the data in Table I, the accuracy rate is
93% although two inconclusive rule sets may exist:

Set 1. (a 4 f-'l

(a 4 f-)
Set 2. (a~ n

(a~ n

b2 f-] c2 n dl -----> 62, w = 0.76 c = 3 F = 0.75, and
b2 (-'1c2 (-] dl---->~3, w = 0 . 7 8 , c = 1, Fp = 0.25).
b 2 0 c2 f"ldl"->61, W=0.80 , C--2, Fp = 0.52), and
b 2 n c a n d 1 O ~ e I --> (33, W = 0.74, c = 2, Fp = 0.48).

The above examples clearly show the H U L L algorithm is a powerful incremental
learning method suitable for imperfect environments.

8. Experiments

Experiments were conducted in Turbo-C on an IBM P C / A T to explore the
consequence resulting from the parameters in the H U L L learning algorithm.
Every experiment was executed at least 500 times for various random orders of
the data in Table I.

Figure 6 shows that the result learned is related to the order of training data
(i.e., the characteristic of learning order), with the values of IT, IV, RO, RT, and
R R being respectively set at 0.85, 0.5, 2, 0.8, and 0.1.

Figure 7 shows the consequence resulting from the parameter IT when the

100

90 -

8O

70

60

50

4O

30

20

tO

0

Note thai:

:7"/~".4

F ,.. F

f-/J/., ...,,k

F.c'f/

1 2 3

I denotes the hightest recognition accuracy amorlg 5(X) experiments.
2 denotes the average recognition accuracy of 5(X) cxperimcms.
3 denotes tile lowest rceogintion accuracy among 500 experiments.

Fig. 6. comparison of random combinations of training instances.

[] Rule No.

[] Accuracy (%)

[] Attribute No.

[] Time(x0.01 sec)

224 KUO-CHIN CHANG ET AL.

""""""--.~-........ [7 ._._..__..____. ~ _... __._ ~

0, . , . I . , . I . I.
0 70 0.75 0.80 o 85 0.90 0.95 1 00

Values of IT

Fig. 7. Consequence of various values of IT.

_....... p Rule No.
Attribute No.
fkXll~Cy(%)
Memory

Required(%)

values of IV, RO, RT, RR, and capacity of STM are set at 0.5, 2, 0.8, 0.1, and 7
respectively. Clearly, the memory capacity required for saving the training
instances can be greatly reduced, and almost the same accuracy achieved, by
increasing the value of IT.

Figure 8 shows the consequence resulting from the various lengths of DSTM
when the values of IT, IV, RO, RT, and RR are set at 0.85, 0.5, 2, 0.8, and 0.1
respectively. When DSTM is larger than 8, increasing it will not have a signifcant
effect. Therefore, using a suitable length of DSTM (instead of the number of the
whole set of training instances) is sufficient for real applications.

Figure 9 shows the consequence resulting from the various values of RO when
the values of IT, IV, RT, RR, and capacity of STM are set at 0.85, 0.5, 0.8, 0.1,
and 7 respectively. If the threshold of overlearning is set larger, the number of

0.9 -

OE-

07-

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 i

”

I

0.01
o 2 4 6 8 10 12 14 16 18 20

Length of DSTM

Fig. 8. Consequence of various lengths of DSTM.

Accuracy

memory Required

W)

IMITATING HUMAN LEARNING 225

90

80 -

70 -

60 -

50 -

40 -

30 I - I * I ’ I . 1
0 1 2 3 4 5 6

Value of RO

Fig. 9. Consequence of various values of RO.

u

Rule No.(xb)

A~~r~bu~c No.

ACClllXy(4b)

rules will decrease, which also decreases accuracy (the learning algorithm with a
small threshold of overlearning corresponds to a smart man).

Finally, Figure 10 shows the consequence resulting from the various values of
RT when the values of IT, IV, RO, RR, and capacity of STM are set at 0.85, 0.5,
2, 0.1 and 7 respectively. The same as the consequence resulting from RO, if the
value of RT is set larger, the number of rules will decrease, which also reduces
the accuracy a little. The consequence, however, is quite minor.

Next, the data for fitting contact lenses [4] is used to compare the HULL
algorithm with the ID3 [21] and the PRISM [4] algorithms in a noise-free
environment. The results are in Tables II and III.

Finally, the domain for brain tumor diagnosis is used [27] as a noisy learning
environment. The results are in Table IV

90

70 -

60; ---l-o- --o- Rule No.(d)

3-l Alrrilwc No
50 -

Y Y
- Accmcy(W)

40 I a I
0.6 0.7 0.8 0.9 10

values of RT

Fig. 10. Consequence of various values of RT.

226 KUO-CHIN CHANG ET AL.

Table II. Comparison of the HULL, PRISM and ID3 algorithms with no testing data

Rule Learning Time Memory
Number Accuracy (0.01 Sec.) Required

HULL’ 9.53 100% 10.48 1.00
HULL’ 6.75 96% 8.95 0.29
ID3 9.00 100% 7.60 1.00
PRISM 9.00 100% 94.83 1.00

Testing
Data

No
No
No
No

Note that: (i) Hull’ denotes the length of DSTM being limitless. HULL’ denotes DSTM length of
only 7; (ii) RO = 2.

Table III. Comparison of the HULL, PRISM and ID3 algorithms with testing data

Rule Learning Time Memory
Number Accuracy (0.01 Sec.) Required

HULL’ 6.27 77% 6.18 1.00
HULL* 5.03 67% 5.19 0.44
ID3 6.86 67% 4.67 1.00
PRISM 6.53 63% 83.93 1.00

Testing
Data

33%
33%
33%
33%

Table IV. Comparison of the HULL, PRISM and ID3 algorithms for brain tumor diagnosis

Rule Learning Time Memory Testing
Number Accuracy (0.01 Sec.) Required Data

HULL’ 91.28 83.56% 12.63 1 .oo 25%
HULL” 78.76 81.96% 9.24 0.15 25%
ID3 87.06 74.89% 10.52 1.00 25%
PRISM 94.98 82.31% 76.08 1.00 25%

Note that: (i) Hull’ denotes the length of DSTM being hmitless. HULL” denotes DSTM length of
only 12; (ii) RO = 2.

The above experiments show the HULL algorithm can not only solve some
problems in imperfect environments, but can also do well in noise-free environ-
ments. From the experiments, the following points can be noted:

1. Currently, only a few learning algorithms can simultaneously manage noisy
data, inconclusive data, incomplete data, unknown attributes, and unknown
attribute values. The HULL learning algorithm can simultaneously manage
all these cases.

2. Unlike ID3 and PRISM, the HULL learning algorithm can incrementally
develop the knowledge base without the whole training instances kept. Also,
the accuracy of the HULL learning algorithrn (HULL) is better than ID3
and PRISM, especially in noisy domains.

3. The HULL algorithm can easily make a trade-off between the memory
space required and the accuracy. Larger memory space will cause higher
accuracy, but will also take more learning time. The parameters of the
HULL algorithm could be appropriately tuned to achieve this trade off.

IMITATING HUMAN LEARNING 227

4. Only a few strategies of learning from examples are connected to the human
information processing models. This paper identifies the connection between
the human cognitive behavior and machine learning models, and serves as a
good example of experimental work in A.I. Especially, the HULL learning
algorithm separates the knowledge base as short-term data, long-term data,
short-term rules and long-term rules. HULL thus provides a new perspective
on the management of the knowledge base.

The HULL learning algorithm is then suitable for deriving concept descriptions in
imperfect learning environments.

Conclusions

In building a reliable and efficient learning model, it is very important that the
representation is able to reasonably and effectively describe the meaning of the
training data and the learned knowledge. In this paper, we have proposed a new
representation of training instances and learned rules. This new representation
has been shown to effectively describe the training instances and learned rules.
Based on this representation and human learning behavior, we have also
proposed the Human-Like Learning (HULL) algorithm in an attempt to solve the
complex learning problems encountered in imperfect learning environments.
Experimental results show the consequences resulting from the parameters in the
HULL learning algorithm. In summary, imitating intelligent human learning
behavior provides a good model for building an efficient and reliable learning
system.

As mentioned, before, several other types of learning strategies, such as
learning by analogy, learning by explanation, and learning by discovery, are also
widely studied in the feld of machine learning. In the future, we will attempt to
connect these strategies to the human learning models and propose new effcient
learning algorithms. There is still much work to be done in this important area.

Acknowledgements

The authors would like to thank the anonymous referees for their very construc-
tive comments. This research was supported by the National Science Council of
the Republic of China under NSCSl-040%E009-16.

References

1. D.W. Aha and D. Kibler (1989), ‘Noise-tolerant mstance-based learning algorithm’, Infernatronal
Joint Conference on Artificial Intelhgence, pp. 794-799, Detroit, Michigan, USA.

2. D. Angluin (1988), ‘Learning from noisy examples’, Machine Learning 2, pp. 343-370.
3. A. Baddeley (1990), Human Memory Theory and Practice, Allyn and Bacon, Boston, USA.

228 KUO-CHIN CHANG ET AL.

4. J. Cendrowska (1987), PRISM : An algorithm for inducing modular rules’, Interrrational Journal
of Man-Machine Studies 27. pp. 349-370.

5. M. Cole and B. Means (1981), Comparative Studies of How People Think: An Zntroductton,
Harvard University Press, Cambridge.

6. R. Dreistadt (1968), ‘An analysis of the use of analogies and metaphors in science’, The Journal
of Psychology, pp. 97-116.

7. J.F. Hall (1989), Learning and Memory, Ed. 2nd, Allyn and Bacon, Boston, USA.
8. E.R. Hilgard and G.H. Bower (1975), Theories of Lenming, Ed. 4th, Stanford Press, CA.
9. T.P. Hong (1992), A Study of Parallel Processing and Noise Management on Machine Learning,

Ph.D. Thesis, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
10. T.P. Hong and S.S. Tseng (1994), ‘Learning concepts in parallel based upon the strategy of

version space’, IEEE Transactions on Knowledge and Data Engineering 6-6, pp. 857-867.
11. G.J. Hwang and S.S. Tseng (1990), ‘Building a multi-purpose medical system under uncertam and

incomplete environment’, The Thud IEEE Symposium on Computer-Based Medical Systems, pp.
321-328, Chapel Hill, N.C.

12. R. Jones (1989), ‘Learning to retrieve useful information for problem solving’, Proceedings of the
Sixth International Workshop on Machine Learning, Ithaca, New York, pp. 188-190.

13. Y. Kodratoff and R.S. Michalski (1990), Muchme Learning: An Artificial Zntelltgence Approach,
Vol. 3, Toiga, Palo Alto, CA.

14. Y. Kodratoff, M. Manago, and J. Blythe (1987), ‘Generalization and noise’, ZnternationaZ Journal
of Man-Machine Studies 27, pp. 181-204.

15. S. Markovitch and P.D. Scott (1988), ‘The Role of Forgetting in Learning’, Proceedings of the
Ftfth International Conference on Machine Learning, Ann Arbor, MI, pp. 459-465.

16. R.S. Michalski, J.G. Carbonell and T.M. Mitchell (1983), Machine Learning: An ArtiJicial
Intelligence Approach, Vol. 1, Toiga, Palo Alto, CA.

17. R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (1984), Machine Learning: An Artificial
Intelligence Approach, Vol. 2, Toiga, Palo Alto, CA.

18. D.A. Norman (1991), ‘Approaches to the study of intelligence’, Arttjicial Intelligence 49, pp.
327-346.

19. A.L. Ralescu and J.F. Baldwin (1989), ‘Concept learning from examples and counter examples’,
International Journal of Man-Machine Studies, 30, pp. 329-354.

20. J.R. Quinlan (1989), ‘Unknown attribute values in induction’, Proceedings of the Sixth Znterna-
tional Workshop on Machine Learning, pp. 164-168, Ithaca, New York.

21. J.R. Quinlan (1983), ‘Learning efficient classification procedures and their application to chess
end games’, Machine Learning: An ArtiJicial Intelligence Approach, Vol. 1. Toiga, Palo Alto, CA,
pp. 463-482.

22. P.D. Scott and S. Markovitch (1989). ‘Uncertainty based selection of learning experiences’,
Proceedings of the Sixth International Workshop on Machine Learning, Ithaca, New York, pp.
358-361.

23. J.C. Schlimmer, R.H. Granger, JR. (1986), ‘Incremental learning from noisy data’, Machine
Learning 1, pp. 317-354.

24. S. Spangler, U.M. Fayyad and Ramasamy Uthurusamy (1989), ‘Inductton of decision trees from
inconclusive data’, Proceedings of the Sixth International Workshop on Machine Learning, Ithaca,
New York, pp. 146-150.

25. M. Tambe and A. Newell (1988), ‘Some chunks are expensive’, Proceedings of the Fifth
International Conference on Machme Learning, Ann Arbor, MI. pp. 451-458.

26. K. VanLehn (1989), ‘Discovering problem solving strategies: What humans do and machines don’t
(yet)‘, Proceedings of the Stxth International Workshop on Machine Learning, Ithaca, New York,
pp. 215-217.

27. C.H. Wang and S.S. Tseng (1990), ‘A brain tumor diagnostic system with automatic learning
abilities’, Proceedings of the Third IEEE Symposium on Computer-Based Medtcal Systems, pp.
313-320, Chapel Hill, N.C.

28. P.G. Zimbardo (1980), Essentials of PsychoZogy and Life, Ed. lOth, Scott, Foresman and
Company Press, Dallas, Tex.

29. P.G. Zimbardo (1990) Psychology and Life, Ed. 12th, Scott, Foresman and Company Press,
Dallas. Tex.

