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High-temperature ratchets with sawtooth potentials
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The concept of the effective potential is suggested as an efficient instrument to get a uniform analytical
description of stochastic high-temperature on-off flashing and rocking ratchets. The analytical representation for
the average particle velocity, obtained within this technique, allows description of ratchets with sharp potentials
(and potentials with jumps in particular). For sawtooth potentials, the explicit analytical expressions for the
average velocity of on-off flashing and rocking ratchets valid for arbitrary frequencies of potential energy
fluctuations are derived; the difference in their high-frequency asymptotics is explored for the smooth and cusped
profiles, and profiles with jumps. The origin of the difference as well as the appearance of the jump behavior
in ratchet characteristics are interpreted in terms of self-similar universal solutions which give the continuous
description of the effect. It is shown how the jump behavior in motor characteristics arises from the competition
between the characteristic times of the system.
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I. INTRODUCTION

In Brownian ratchet theory, the chief and most commonly
discussed dependencies are those of an average particle
velocity on the frequency of potential energy fluctuations [1].
They usually contain a particular point with a different type of
curve behavior to the left and right of it (for rocking ratchets)
or a point of maximum (for flashing ratchets), at frequency
values in the neighborhood of an inverse characteristic time
of the system [2]. These frequency dependencies are very
informative for both optimization of ratchet characteristics
and understanding physical processes which occur at fluctua-
tions [3–16]. It is evident that cases when such dependencies
can be interpreted analytically are very uncommon and,
for this reason, of great value. In the present paper, using
the high-temperature approach developed in Ref. [17], we
derive the explicit uniform analytical expressions for the
average velocity of on-off flashing and rocking ratchets which
are valid for arbitrary frequencies of potential energy fluc-
tuations. We also explore the effect of large gradients in
a potential profile on motion characteristics of a Brownian
particle dichotomically driven by a fluctuating sawtooth
potential, with a special emphasis on the limiting case of
its extremely asymmetric shape, arising with jumps in the
potential profile. The analysis of this situation is of particular
relevance because the dynamics of a Brownian particle differs
essentially in sharp and smooth potentials (with and without
jumps, respectively) [10,12,18,19].

It is important to note that a sawtooth potential, though
quite simple, plays a prominent role in ratchet theory (see, e.g.,
Refs. [1–5,7,10,12,18,19]) due to several circumstances. First,
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only two parameters are enough to characterize its shape: the
energy barrier V and the asymmetry coefficient κ = 1 − 2l/L

(where l is the sawtooth length, 0 < l < L, and L is the spatial
period of the potential). These parameters determine the two
main ratchet features: its ability to overcome potential barrier
depending on the thermal energy kBT (kB is the Boltzmann
constant and T is the absolute temperature) and to distinguish
right and left directions. Second, with a certain degree of
accuracy, a real potential can be approximated by a sawtooth
one (see, e.g., Ref. [18]) so that characteristics of any arbitrary
Brownian motor can be estimated by means of V/kBT and
κ . Third, a sawtooth potential is described by a piecewise
linear function, that leads to a significant simplification of
numerical calculations (reducing initial differential equations
to the system of linear algebraic equations [2] or using the
transfer matrix method [10,12]) or allows to get the resulting
analytical expressions if some approximations are applied (as,
e.g., the above-mentioned high-temperature one, [17]). And
lastly, at present, a sawtooth potential, being “responsible”
for ratchet effect, is not only a theoretical idealization, but
can be realized experimentally. Here we exemplify, following
Ref. [15], such a realization by the experimental scheme of a
Brownian ratchet that manipulates charged components within
supported lipid bilayers. One side of the patterned bilayers was
of a sawtooth shape (a planar surface was the opposite side),
the asymmetry of which controlled the amount of the effect.
Particularly, the maximum effect was reached for the extremely
asymmetric shape of the sawtooth side of the pattern. The same
regularity is analyzed in detail in the present paper.

With this insight in mind, we must realize the subtleties
in ratchet behavior arising from peculiarities of the potential
energy profile, notably from the presence of cusp points in a
sawtooth one and of jumps in an extremely asymmetric variant
of it. Referring to Refs. [10,12] for more details, note that these
subtleties come from the competition between the character-
istic times of the system, and the most effective regimes of

2470-0045/2016/94(5)/052140(8) 052140-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.052140


ROZENBAUM, SHAPOCHKINA, SHEU, YANG, AND LIN PHYSICAL REVIEW E 94, 052140 (2016)

ratchet operation can be reached just as a result of it. It is
noteworthy that the instantaneous potential switching, used in
the majority of two-state ratchet models, also exemplifies the
situation when such a peculiarity, but of the time dependence
of the potential energy, leads to the most effective regimes
of ratchet operation [13]. So, there is considerable generality
in ratchets’ behavior arising just from jumps, in coordinate
or time dependence of the potential energy. From this point
of view, the self-similar functions, obtained in the present
paper, which give the continuous description of the effects
resulting from the jumplike changes of the potential energy,
are particularly important.

The structure of the paper is as follows. In Sec. II we
formulate the stochastic model for the overdamped Brownian
motion of a particle suitable for uniform description of
ratchets of different types (on-off flashing and rocking).
Then we introduce the basic quantities of interest as well as
the chief mathematical tool, namely, the effective potential
depending on the fluctuation frequency of the initial potential.
This concept makes possible an analytical calculation of the
particle current and average velocity for the high-temperature
stochastic (symmetric and dichotomic fluctuations) Brownian
motors, applicable for any potential profile and fluctuation
frequencies. The expressions for the particle average velocity,
containing the effective potential, are the first main result of
the paper. Thus we have an instrument, especially effective for
potentials with large gradients, for analysis of what happens
at competition between characteristic times of the system. In
Sec. III we make some points concerning the high-frequency
behavior of ratchet systems with smooth potentials, pursuing
the aim to indicate the difference between the rocking and
flashing ratchet types in frequency asymptotics of the average
velocity, and to be prepared to consider sharp (sawtooth)
potentials.

Section IV is devoted to the exploration of ratchets with
a sawtooth potential of arbitrary asymmetry, based on the
technique developed in Sec. II. The increasing of the degree of
smoothness of the functions being responsible for the ratchet
effect, in terms of the effective potential, is very essential at this
point. The main result of this section is the explicit analytical
expressions for the average particle velocity of both on-off
flashing and rocking ratchet. The frequency dependence of the
average velocity as well as its dependence on the asymmetry
coefficient is discussed, for both ratchet models, emphasizing
the different sensitivity of ratchets to these essential parameters
and to the presence of cusp points in the potential profile. The
discussion in Sec. V gives, analytically and graphically, the
physical interpretation of the origin of jumps in parameters
of ratchets with sharp potentials and the continuous analytical
description, in terms of self-similar functions, of competition
of space and frequency limits. The results are summarized in
Sec. VI.

II. MAIN EQUATIONS

Let us consider the overdamped motion of a Brownian
particle in a one-dimensional fluctuating potential, U (x,t) =
u(x) + σ (t)w(x), where x and t denote coordinate and time,
respectively, and the function σ (t) takes only two values ±1
and describes a dichotomic process with the rate constants γ+

and γ− for direct and reverse transitions. The particle dynamics
is determined by the Langevin equation:

ζ ẋ = −U ′(x,t) + ξ (t). (1)

Here we denote the time and coordinate derivative by the dotted
and primed symbol, respectively; ζ is the friction coefficient;
and ξ (t) is the random force (zero-mean Gaussian white noise
with the correlation function 〈ξ (t)ξ (s)〉 = 2ζkBT δ(t − s),
where kB is the Boltzmann constant, T is the absolute
temperature, and δ(t) is the delta function).

As the particle can stay only in two states, with the
potential profiles U±(x) = u(x) ± w(x), its dynamics can be
also described in terms of the distribution functions ρ±(x,t)
[the probability densities to find the particle with the potential
energy U±(x) at a point x in a time t] which obey the
Smoluchowski equation with an additional term accounting
for the particle random interstate transitions [10,20,21]:

∂

∂t
ρ±(x,t) = − ∂

∂x
J±(x,t) ∓ [γ+ρ+(x,t) − γ−ρ−(x,t)],

(2)

J±(x,t) = −D
∂

∂x
ρ±(x,t) − βDU ′±(x)ρ±(x,t),

where D = kBT /ζ is the diffusion coefficient and β =
(kBT )−1 is the inverse temperature in energy units. In order
to get universal results for both on-off flashing and rocking
ratchets, we take w(x) = u(x) ≡ V (x)/2 for the former ratchet
type and u(x) = V (x) , w(x) = Fx for the latter one, where
V (x) is a spatially periodic function [V (x + L) = V (x); L is
the period] and F is the amplitude of the fluctuating force. Thus
in our model both ratchet types operate in the same potential
profile V (x): It switches on and off for the on-off flashing
ratchets and is modified by ±Fx for the rocking ratchets. With
U ′

±(x) being spatially periodic functions for both ratchet types,
the functions ρ±(x,t) are the so-called reduced probability
densities, introduced in Ref. [1], which obey the normalization
condition

∫ L

0 [ρ+(x,t) + ρ−(x,t)]dx = 1, and J±(x,t) are the
corresponding reduced probability currents.

For stationary processes [∂ρ±(x,t)/∂t = 0], as follows
from Eq. (2), the sum of the fluxes J±(x) is x independent,
and the average velocity of the particle directed motion is
given by the relation

〈v〉 = L[J+(x) + J−(x)]. (3)

Within the model defined by Eq. (2), the explicit analytical
expressions of the average velocity for both ratchet types were
derived in Ref. [17], for the case of asymmetric dichotomic
processes, using the perturbation theory on small βV0 [V0

is the difference between the highest maximum and the
lowest minimum of V (x)] and βFL (for rocking ratchets).
In the present paper, we consider the symmetric dichotomic
processes for which the rate constants γ+ and γ− are equal
to each other, so that the average period of the process (the
inverse fluctuation frequency) is τ = 2/γ+ = 4/�, where �

is the inverse correlation time entering into the exponential
correlation function of dichotomic processes, 〈σ (t)σ (t ′)〉 =
exp(−�|t − t ′|). The mentioned high-temperature expressions
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of Ref. [17], adapted for this case, take the form

〈v〉f = L

τ
f , f = i

2L
β3D2

×
∑
qq′(�=0)

(q+q′ �=0)

kq ′kqkq+q ′Vq ′VqV−q−q ′(
� + Dk2

q

)(
� + Dk2

q+q ′
) , (4)

〈v〉r = −βLζ−1F 2r, r = 2f + �r,

�r = 2i

L
β3D

∑
qq′(�=0)

(q+q′ �=0)

kq ′Vq ′VqV−q−q ′

� + Dk2
q+q ′

. (5)

Here and hereafter, the indices f and r label the velocities and
auxiliary quantities corresponding to the flashing and rocking
ratchets, and Vq are the Fourier components of V (x),

V (x) =
∑

q

Vq exp(ikqx), Vq= 1

L

∫ L

0
dxV (x) exp(−ikqx),

kq = 2π

L
q, q = 0,±1,±2, . . . . (6)

Therefore, the average particle velocity for both ratchet types
is expressed in a uniform manner via the introduction of the
two auxiliary quantities f and r . The meaning of f is the
integrated current, which has been widely studied in the theory
of flashing ratchets [22], and the quantity r determines the
average velocity of rocking ratchets.

The Fourier representation given by Eqs. (4) and (5) is
convenient for obtaining the explicit expressions for the aver-
age velocity of ratchets with relatively uncomplicated smooth
potentials, such as, for instance, two-sinusoidal potential,
commonly used in ratchet theory, since the summation over q

and q ′ in this case is limited to the values ±1,±2 [17]. For the
general case of arbitrary potentials, especially for sharp ones
with Fourier components slowly decreasing with increasing
q values, it is reasonable to take advantage of the coordinate
representation (which simplifies the calculation procedure by
means of replacing summation by integration).

We now come to one of the main points of our consideration:
The structure of expressions (4) and (5) suggests the idea of
introducing the so-called effective potential which we will
define by the following relation:

Ṽ (x) = �
∑

q

Vq

� + Dk2
q

exp(ikqx)

= �

L

∫ L

0
dyV (y)

∑
q

exp[ikq(x − y)]

� + Dk2
q

= �

L

∫ L

0
dyG(x − y)V (y). (7)

In ratchet theory, the term “effective potential” was used in
different meanings: as equivalent of a tilted potential [1]; as a
tool to describe particle interactions in ratchet effects [23] or
to reduce the two-dimensional problem of coupled Brownian
motors to a one-dimensional one [24]; as equivalent of
the multistate potentials in the general multistate fluctuation
model [25], etc. Unlike the other authors, we use the term
“effective potential” for the function Ṽ (x), which is in

fact a result of a certain averaging of the initial potential
V (x), because this formally introduced quantity describes
transformation of the initial potential profile into one that
depends on the frequency of fluctuations of V (x); that is,
it “includes” a source of driving force, namely, fluctuations
of a potential profile. The effective potential coincides with
the initial one if this frequency tends to infinity. The Fourier
components of the effective and initial potentials are simply
related: Ṽq = [�/(� + Dk2

q)]Vq .
The function G(x − y) entering in Eq. (7) is the Green’s

function of the equation

(
−D

∂2

∂x2
+ �

)
G(x − y) = Lδ(x − y), (8)

satisfying the periodic boundary conditions

G(L − y) = G(−y),
∂G(x − y)

∂x

∣∣∣∣
x=0

= ∂G(x − y)

∂x

∣∣∣∣
x=L

.

(9)

This function can be written in the form

G(x − y) =
∑

q

exp[ikq(x − y)]

� + Dk2
q

= z cosh[z(1 − 2|x − y|/L)]

� sinh z
, (10)

z = L√
Dτ

,

where x and y are assumed to belong to the interval [0, L].
One can also say that G(x − y) is the Laplace representa-
tion G̃(x − y,s) = ∫ ∞

0 dtG(x − y,t) exp(−st) of the Green’s
function for free diffusion in the interval [0, L], with the
periodic boundary conditions, at s = �, since the process
considered is characterized by the exponential correlation
function 〈σ (t)σ (t ′)〉 = exp(−�|t − t ′|). The Green’s function
G(x − y) satisfies the obvious properties

∫ L

0
dxG(x − y) = L/�, �G(x − y) →

�→∞
Lδ(x − y), (11)

which follow from Eqs. (8)–(10) and will be used below in
Sec. III.

Further, using the definition of the effective potential given
by Eq. (7) and the auxiliary identities following from it,

d

dx
Ṽ (x) = �

L

∫ L

0
dyV (y)

d

dx
G(x − y)

= −�

L

∫ L

0
dyV (y)

d

dy
G(x − y)

= �

L

∫ L

0
dyG(x − y)

d

dy
V (y) (12)

= Ṽ ′(x)

2
∫ L

0
dxṼ (x)V (x)V ′(x) = −

∫ L

0
dx[V (x)]2Ṽ ′(x),
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we can write the expressions for f and �r in Eqs. (4)
and (5) in the following integral form:

f = β3D2

2L2�2

∫ L

0
dxV ′(x)[Ṽ ′(x)]

2
,

(13)

�r = −β3D

L2�

∫ L

0
dxV 2(x)Ṽ ′(x).

Thus, while in Eqs. (4) and (5) the frequency � “sits” inside
the sum, in Eq. (13) the main frequency “load” is carried by
the function Ṽ ′(x). The latter means that just the effective
potential takes fluctuations into account: The fluctuations of
initial potential or tilting force renormalize the initial potential
to the effective one. So, we can describe this renormalization,
and the quantities of interest are determined by the effective
potential. The advantages of this representation will become
evident from further consideration.

III. HIGH-FREQUENCY BEHAVIOR
FOR A SMOOTH POTENTIAL

The approximation of the high frequency of potential
energy fluctuations has been successfully applied in ratchet
theory many times [1,26–29], yielding analytical expressions
of ratchet characteristics and elucidating the laws under which
the frequency dependencies of the average velocity of directed
motion drop to zero. The results argue that if the residence
time (the inverse frequency) is the smallest time parameter of
the system, the velocity tends to zero as the frequency tends
to infinity [1]. The presence of sharp links in the potential
profile exemplifies a quite unconventional situation when the
smallest time parameter is the sliding time tending to zero
for jumplike links of the potential. Owing to this fact, the
nonzero asymptotics of the flashing ratchet average velocity
appears [10]. In the present section, using Eq. (13), we
rederive and reanalyze the known high-frequency expressions
for average velocity of on-off flashing and rocking ratchets
for the case of a smooth potential to lay the groundwork for
comparison with the results obtained in this paper for sharp
potentials (see Sec. IV).

For a smooth potential V (x) with Fourier components Vq

decreasing sufficiently rapidly with increasing q, the product
Dk2

q in the equations of Sec. II can be neglected in comparison
with the quantity � if the latter is large enough (high-frequency
case). Then, in accordance with Eqs. (7) and (11), we have
Ṽ (x) ≈ V (x), and f in Eq. (13) behaves as �−2, so that in the
high-frequency limit the average velocity of the on-off flashing
ratchet with a smooth potential is determined by the expression

〈v〉f =
τ→0

τ
D2β3

32L

∫ L

0
dx[V ′(x)]3

, (14)

coinciding with the known one [26,27] [see also Eq. (4.10) in
Ref. [1]] in the high-temperature case and tending to zero as τ

at τ → 0.

Further, using two first terms of expansion for the first
derivative of the effective potential,

Ṽ ′(x) = V ′(x) + (D/�)V ′′′(x) + O(�−2) (15)

[where O(z) designates the terms of order z], we have, after
integration by parts, the average velocity of the rocking ratchet
with a smooth potential:

〈v〉r =
τ→0

−τ 3 D4β5F 2

64L

∫ L

0
dxV ′(x)[V ′′(x)]2

, (16)

which is, as it should be, in agreement with known formulas
(see Refs. [28,29] and Eq. (5.18) in Ref. [1]) rewritten for
the high-temperature case. Unlike the result (14), the average
velocity (16) tends to zero as τ 3 at τ → 0 and depends on
the second derivative V ′′(x) of the initial potential. Thus the
high-frequency limit for rocking ratchets is more sensitive to
the peculiarities of the potential profile than that for flashing
ratchets. As we will demonstrate in Sec. IV, a sawtooth
potential is a particularly telling illustration of this sensitivity.

Note that the use of the low-frequency limit in its turn
does not require any restrictions on the smoothness of
the potential. Moreover, we can write the uniform explicit
analytical formulas for the average velocity of on-off flashing
and rocking ratchets applicable to any temperatures (keeping
βFL small for rocking ratchets) [18],

〈v〉f = L

τ
f , 〈v〉r = −βLF 2μf + O[(βFL)4],

f =
∫ L

0
dx[ρ+(x) − L−1]

∫ x

0
dy[ρ−(y) − L−1],

(17)

ρ±(x) = exp[±βV (x)]/
∫ L

0
dx exp[±βV (x)],

μ = ζ−1L2

{∫ L

0
dx exp[βV (x)]

∫ L

0
dx exp[−βV (x)]

}−1

.

One makes sure that Eqs. (4), (5), and (13) can be reduced
to the high-temperature limit of Eq. (17) since �r → −f

and r → f at � → 0. It is noteworthy that the uniform
representation given by the first line of Eq. (17) remains true
even with allowance for small inertial corrections [18,19].

IV. SAWTOOTH POTENTIAL

Now we come to the next main point of our consideration,
namely, the application of the concept of the effective potential
to the special case of a sawtooth potential which is the best
object to exemplify the advantages of this technique.

Let us define a periodic sawtooth potential and its first
derivative by the following functions in the interval [0, L] (L
is the period):

V (x) =
{

V0x/l, 0 < x < l

V0(L − x)/(L − l), l < x < L
, V ′(x) =

{
V0/l, 0 < x < l

−V0/(L − l), l < x < L
. (18)
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The first derivative of the corresponding effective potential can be easily calculated in accordance with Eqs. (7) and (10):

Ṽ ′(x) =
{

V0
l

− V0L

l(L−l) sinh z
sinh [z(L − l)/L] cosh [z(l − 2x)/L], 0 < x < l

− V0
L−l

+ V0L

l(L−l) sinh z
sinh (zl/L) cosh [z(L + l − 2x)/L], l < x < L

. (19)

The function Ṽ ′(x) is depicted in Fig. 1. One can make
sure that at l �= 0 , L and z → ∞ this function tends to the
stepwise one V ′(x) given by Eq. (18). And on the contrary,
with the decrease of z, the derivative Ṽ ′(x) becomes smoother
and at z → 0 takes the uniform form:

L

V0z2
Ṽ ′(x) =

{
1
3

(
1 − l

2L

) − 2
lL

(
x − l

2

)2
, 0 < x < l

− 1
6

(
1 + l

L

) + 2
lL

(
x − L+l

2

)2
, l < x < L

(20)

(see the frame in Fig. 1). Thus, while the function V ′(x)
itself undergoes discontinuities at the points x = 0, l, L,
the “effective” function Ṽ ′(x) has a discontinuous second
derivative at the same points (the degree of smoothness
becomes higher), so, we understand how the effective potential
changes relative to the initial one.

The explicit representation of the first derivative of the
effective potential allows integration in Eq. (13), so we obtain
the following final results:

〈v〉f = L

τ
f , 〈v〉r = −βLζ−1F 2r, r = 2f + �r,

f = (ξ ′ − ξ )(βV0)3

128(ξ ′ξz2)2 [6f1(z,ξ )−3f2(z,ξ )+f1(z,ξ )f2(z,ξ )],

(21)

�r = − (ξ ′ − ξ )(βV0)3

16(ξ ′ξz2)2 [2f1(z,ξ ) − f2(z,ξ )], ξ = l

L
,

ξ ′ = 1 − ξ,

-2

-1

0

1

2

3

4

5

6

-0.2 0 0.2 0.4 0.6 0.8 1

/x L

z → ∞ 50z = 10z = 5z = 3z =

0

'LV

V -0.3

-0.1

0.1

0.3

-0.2 0 0.2 0.4 0.6 0.8 1

0

2

'LV

V z

/x L

/l L

0z →

FIG. 1. The coordinate dependences of the first derivative of
the effective potential, Eq. (19), corresponding to the sawtooth
potential (18) at l = 0.2 L, for different values of dimensionless
frequency parameter z = L/

√
Dτ (the main plot) and for z → 0 [the

uniform normalized representation, Eq. (20), depicted in the inset].

where

f1(z,ξ ) = 1 − sinh zξ sinh zξ ′

ξξ ′z sinh z
,

(22)

f2(z,ξ ) = 1 − sinh z(ξ − ξ ′)
(ξ − ξ ′) sinh z

are the auxiliary functions.
Note that Eqs. (21) and (22) are valid for arbitrary values

of the frequency parameter z and the asymmetry coefficient
κ = ξ ′ − ξ = 1 − 2ξ . Furthermore, they are very informative
in point of frequency dependence of the average velocities
for both ratchet models as well as of the dependence of these
quantities on the asymmetry of the potential. The analysis
below provides this information.

The adiabatic regime or low-frequency limit (z → 0) [we
noticed its “smooth analog” in connection with Eq. (17)]. This
regime of slow periodic driving, introduced by Parrondo in
his pioneering work [22], is the simplest one, and moreover,
the limit in which both ratchets behave in the same way
(its additional advantages are invariance with respect to
character of time variations, deterministic or stochastic, of
the potential energy [17] and high efficiency of energy
conversion [10,13,14]). In order to show the mentioned similar
behavior of the ratchets, it will be enough to use the smallness
of the z parameter and to expand the functions f1(z,ξ ) and
f2(z,ξ ) into series,

f1(z,ξ ) = 1
3ξξ ′z2 − 1

45ξξ ′(1 + 2ξξ ′)z4 + O(z6),
(23)

f2(z,ξ ) = 2
3ξξ ′z2 − 2

45ξξ ′(1 + 3ξξ ′)z4 + O(z6).

Then the substitution of these expansions into Eqs. (21) gives
us the result of an extremely simple form,

f = r = −�r = (βV0)3

360
κ. (24)

Thus the average velocities 〈v〉f and 〈v〉r of flashing and
rocking ratchets are determined by the same factor f and
are proportional to the same (first) degree of the asymmetry
coefficient κ . However, though the velocities behave similarly
in the sense of sensitivity to the two main parameters of
the potential, βV0 and κ , 〈v〉f , unlike 〈v〉r , contains an
additional time factor. So, the differences between the ratchets
are in the opposite motion directions at the same potential
asymmetry and in the adiabatic limits: 〈v〉f → 0 as τ−1

and 〈v〉r → const �= 0 at τ → ∞ (z → 0). Note that for
asymmetric dichotomic processes, such motion reversal can
be broken down [17].

The extremely asymmetric potential (ξ = 0 , κ = 1). It is
the most important limit considered in the present paper, as
it shows the jump behavior of the ratchets’ characteristics
(see discussions in Sec. V). In this case, the expansion of the
functions f1(z,ξ ) and f2(z,ξ ) should be made over the small
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parameter ξ keeping z finite,

f1(z,ξ ) = −(1 − z coth z)ξ − (1 + 2z2/3 − z coth z)ξ 2

+O(ξ 3),
(25)

f2(z,ξ ) = −2(1 − z coth z)ξ − 2(2 + z2 − 2z coth z)ξ 2

+O(ξ 3).

Substitution of Eq. (25) into Eq. (21) gives, in the limit ξ → 0,

f = (βV0)3

16z2

(
cosh 2z

4sinh2z
− 5

4z
coth z + 1

z2

)
,

(26)

r = (βV0)3

16z2

(
cosh 2z

2sinh2z
− 2

3
− 1

2z
coth z

)
.

One can check that these expressions at z → 0 come to
the frequency-independent result of Eq. (24) at κ = 1. In the
opposite particular case, z → ∞, the quantities f and r

have the same power-law frequency dependence, z−2, but with
different proportionality factors:

f = (βV0)3

32z2
, r = (βV0)3

48z2
. (27)

Since z2 = L2/Dτ , it follows from Eq. (21) that 〈v〉f →
(D/32L)(βV0)3 �= 0 and 〈v〉r ∝ r ∝ τ at τ → 0. Note that
such a behavior differs essentially from the results 〈v〉f ∝
τ and 〈v〉r ∝ τ 3 of Eqs. (14) and (16) obtained for smooth
potentials; that is, the average velocity decreases faster with
τ → 0 (i.e., the motor effect is less) for smooth potentials than
it does for those with cusps and of extremely asymmetric form.

High-frequency limit (z → ∞ , κ �= 1). This describes a
regime which is very sensitive to all ratchet parameters:
potential features, type of fluctuations (stochastic or determin-
istic), etc., and moreover has a number of known asymptotics
[1,26–29]. Therefore, this regime can serve as some sort of
probe allowing understanding of the specificity of a problem.

At z → ∞ and keeping the potential far from extremely
asymmetric (ξ, ξ ′ �= 0), we have approximately f1(z,ξ ) ≈
1 − (2zξξ ′)−1, f2(z,ξ ) ≈ 1 so that the expressions for f

and r take the form

f = κ
(βV0)3

32(ξξ ′)2z4

(
1 − 7

8ξξ ′z

)
, r = κ

(βV0)3

128(ξξ ′)3z5
.

(28)

As follows from Eqs. (28) and (21), f ∝ τ 2 and 〈v〉f ∝ τ

which coincides with the result of Eq. (14) obtained for a
smooth potential. In its turn, the asymptotic behavior of the
average velocity for rocking ratchets differs for a smooth and
a sawtooth potential: 〈v〉r ∝ τ 3 for the former and 〈v〉r ∝ τ 5/2

for the latter (due to the presence of cusp points which play
an appreciable role, just for rocking ratchets not for flashing,
and this is what the sensitivity of ratchets to the potential
means). Therefore, the closer the potential is to a sawtooth
one with jumps, the more slowly the average velocity of a
rocking ratchet tends to zero with τ → 0 (compare, in addition,
the result 〈v〉r ∝ τ 5/2, obtained here, with 〈v〉r ∝ τ from the
previous subsection). Note that the law 〈v〉r ∝ τ 5/2 was also
revealed by the numerical procedure in Ref. [29].

V. DISCUSSION

We start discussion of our results with the graphic analysis
of frequency dependences of the average velocities and the
auxiliary quantities f and r for flashing and rocking
ratchets with a sawtooth potential relief (see Fig. 2). At small
values of the dimensionless frequency parameter z, we have
the adiabatic regime of motors operation and the coincidence
of f and r values (see also the formulas in the previous
sections). It is noteworthy that for larger z values the difference
between f and r does not become very large and tends
to zero at z → ∞ since both quantities tend to zero at this
limit (but with different laws of decreasing). That is why one
can say that the deep mechanisms governing the operation
of both on-off flashing and rocking ratchets are quite similar
(showing themselves just by means of the functions f,r , since
the velocities 〈v〉f,r differ only in the additional frequency
factor). At the same time, at high frequencies and not extremely
asymmetric profiles, rocking ratchets sense the peculiarities
in shape (cusps) of a potential profile while on-off flashing
ratchets do not (see the end of Sec. IV). On the other hand, all
high-frequency peculiarities in ratchet characteristics become
more intensive just for extremely asymmetric profiles. Further,
we will come to the causes of this intensification.

To clarify the physical mechanism behind this effect,
let us introduce the characteristic diffusion time τl = l2/D

over the characteristic distance l. For a smooth L-periodic
potential, we can set l ∼ L, so that the average period τ

of its time fluctuations begins to compete with τL if τ �
τL. At high frequencies, the average velocity of rocking
ratchets is defined by the higher order of derivative of the
potential than the velocity of on-off flashing ratchets [compare
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FIG. 2. The frequency dependences of the quantities f (the
solid curves) and r (the dotted curves) which determine the average
velocities of flashing and rocking ratchets, Eq. (21), with a sawtooth
potential relief for several values of the parameter ξ : ξ = 0 (squares),
ξ = 0.1 (rhombs), and ξ = 0.3 (triangles). The frequency dependence
of the normalized average velocity for flashing ratchets is in the inset.
The curves, from top to bottom, are in the order of increasing the
parameter ξ from ξ = 0 (the curve with markers) to ξ = 0.001, 0.005,
0.01, and 0.03.
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Eqs. (14) and (16)]. That is, as one can see, the difference
appears just in the region of this competition. For a sharp
L-periodic potential with the small characteristic length l

(the length of its sharp link), the characteristic time τl can
be also small enough so that, addressing small τ � τL, we
expect a different kind of behavior passing from the case
τl < τ to the case τ < τl . Moreover, at l → 0 the whole
time region τ < τl deforms continuously to a point and a
jump behavior appears (see below). Returning to a sawtooth
potential for which l is the sawtooth length and the parameters
z = L/

√
Dτ and ξ = l/L determine the time and coordinate

scale, respectively, we can state that the different behavior
at τl < τ and τ < τl is governed by a single dimensionless
control parameter equal to the product zξ = √

τl/τ . This
reduction in number of independent variables results in a
universal self-similar description which is known to be of
particular use in consideration of many problems [30] as it
gives a significant simplification of the analysis, obtaining
asymptotics and identifying universality classes ([31]; see also
references cited therein). We next focus on application of such
a description to our study.

The different high-frequency asymptotic behavior of the
average velocities at ξ = 0 and ξ �= 0 (at extremely and not
extremely asymmetric cases) means that the result depends
on the sequence of the limits ξ → 0 and z → ∞. In such a
situation, a reasonable way is to analyze the limits ξ → 0,
z → ∞ keeping the zξ value fixed (finite and arbitrary). This
problem definition will give us both limits in the framework of
a unified continuous description. Indeed, the functions f1(z,ξ )
and f2(z,ξ ) of two variables, defined by Eq. (22), and their
limiting behavior can be expressed via the following functions
of the single self-similar variable λ = zξ :

f1(λ) = 1 − 1 − e−2λ

2λ
≈

{
λ − 2λ2/3 + λ3/3, λ � 1

1 − (2λ)−1, λ � 1
,

f2(λ) = 1 − e−2λ ≈
{

2λ − 2λ2 + 4λ3/3, λ � 1

1, λ � 1
. (29)

One can say that the functions f1,2(λ) give the
self-similar description of the problem. Indeed, in this
case, the expressions (21) for quantities f and
r are rewritten in a form of self-similar solutions
(scaling laws) [30] f,r = [(βV0)3/(128z2)]Ff,r (λ) where
Ff (λ) = λ−2[6f1(λ) − 3f2(λ) + f1(λ)f2(λ)] and Fr (λ) =
2λ−2[−2f1(λ) + f2(λ) + f1(λ)f2(λ)] are dimensionless uni-
versal scaling functions of the self-similar variable λ. The
functions f1(λ) and f2(λ) change from 0 to 1 when λ changes
from 0 to ∞ (see the frame in Fig. 3). It is important that
this region of λ changes encloses two characteristic regions:
of small and large λ values. So the value λ ≈ 1 delimits the
regions of different behavior, quite fast increase at λ < 1 and
saturation at λ > 1 [the functions Ff,r (λ) also demonstrate
the same different behavior, like ξ dependencies of Fig. 3].
For us, the former one is of interest: If z is large enough,
the ξ region of the functions’ change must be very narrow
(Fig. 3) and deforms continuously to a point at z → ∞. The
latter means that, at z → ∞, the functions (and, hence, motor
characteristics) experience jump discontinuities at the point

0
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Φ
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Φ
r

z=10

z=100
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z=100

0
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1

0 5 10
λ

f1
, f

2

f 1

f 2

FIG. 3. The behavior of self-similar functions (29) (the inset) and
the demonstration of the onset of jump behavior (the main plot): the
ξ dependences of the quantities f and r (the solid and dotted
curves, respectively) for different values of the parameter z: z = 10
(squares), z = 100 (triangles).

ξ = 0, and the maximum motor effect is reached for the
extremely asymmetric case.

It is noteworthy that a strong inertial regime with the
velocity relaxation time τv = m/ζ exceeding τL is another one
in which a jump behavior in ξ dependences of the diffusion
transport characteristics arises at ξ → 0 [19]. The analysis of
small inertial corrections of the order of τv/τs (τs = ζ l2/V is
the sliding time on the l link [18]) shows that this jump behavior
is a consequence of the competition between parameters τv and
τs (so, it is in certain analogy to the jump one considered in the
present paper) and hence could be expected from the general
point of view. The latter means that the interplay of two or
more characteristic parameters is needed for observing effects
such as these.

VI. CONCLUSIONS

In the theory of Brownian ratchets, the high-temperature
approximation allows to represent ratchet average velocities
in the form of the double Fourier series over the components
of the fluctuating potential [Eqs. (4) and (5)]. Although such
a representation is applicable for an arbitrary potential, it
cannot be considered as an optimal and illustrative solution.
The reason is that it is a useful one for smooth potentials,
described by the two first harmonics [17], but is utterly
complicated for the analysis of ratchets with sharp potentials.
Since such potentials inevitably have links of large gradients,
a lot of harmonics should be taken into account, and the series
cannot be truncated for potentials with jumps. That is why
this technique did not allow analyzing of manifestation of
peculiarities of the potential shape in ratchet operation (no
universal results were accessible). In this paper, the suggested
concept of the effective potential [Eq. (7)] has turned out
to be very effective in description of the influence of the
fluctuation frequency on its shape; the change of the latter, in its
turn, entails changes in ratchet characteristics with frequency.
This has allowed avoiding the complexity mentioned above
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due to the transition from series to integrals: The effective
potential is readily calculated and can be substituted into the
integral formulas [Eq. (13)] for the quantities which determine
average velocities of both on-off flashing and rocking ratchets.
The advantage of the approach is in the possibility of
analytical calculations for any potential shape and arbitrary
fluctuation frequency, especially for the high frequencies
where the ratchets’ behavior is very sensitive to the potential
shape.

Using the approach developed, we have derived the explicit
analytical expressions for the average particle velocity for
on-off flashing and rocking ratchets with a sawtooth potential
having jumps at its extremely asymmetric case. From these
expressions, a similar mode of operation of the ratchets
follows, in the sense of their basic frequency behavior. The
essential difference appears only at high frequencies τ−1: For
on-off flashing ratchets, the average velocity behaves as τ at
any smooth potential as well as at a not extremely asymmetric
sawtooth one, whereas it takes a constant nonzero value for
potentials with jumps; for rocking ratchets, it behaves as τ 3 at
any smooth potential and as τ and τ 5/2 for sawtooth ones with
and without jumps, respectively. Thus the presence of cusp
points changes the high-frequency asymptotics for rocking

ratchets. There is no such sensitivity to the cusp points for
on-off flashing ratchets.

The origin of the changes in asymptotic behavior is
elaborated analytically in terms of self-similar functions so
that, along with the dependence of the results on the sequence
of limits, we have the continuous description of the effect (via
the introduction of the self-similar parameter). This description
shows that the discussed asymptotic behavior ensues from the
competition between the characteristic times of the system:
the diffusion time on the width of the sharp link (with
large gradient) of the potential and its average fluctuation
period.
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