
IEEE INTERNET COMPUTING 1089-7801/05/$20.00 © 2005 IEEE Published by the IEEE Computer Society SEPTEMBER • OCTOBER 2005 47

O
nl

in
e

G
am

in
g

Tsun-Yu Hsiao
and Shyan-Ming Yuan
National Chiao Tung University

Practical Middleware for
Massively Multiplayer
Online Games
A massively multiplayer online game (MMOG) lets thousands of players interact

simultaneously within a virtual world via the Internet. Middleware plays an

important role in the development of next-generation MMOGs, which must be

built on platforms that address not only the service aspect, but also code

maintainability and development for programmers. The authors’ compact, high-

performance message-oriented middleware has a code-generation programming

model that is designed to address many of these problems.

Massively multiplayer online games
(MMOGs) let thousands of players
(between 6,000 and 10,000,

according to general reports from game
companies) simultaneously interact in
persistent, online, multiplayer-only
worlds. The most popular examples are
Sony’s EverQuest, NC Soft’s Lineage, and
Blizzard’s World of Warcraft (see www.
mmogchart.com for the analysis of sub-
scription growth). The MMOG sector gen-
erates the majority of online gaming
revenue, especially in the Asia/Pacific
region, which has the largest market
worldwide. According to IDC’s Asia/
Pacific Online Gaming report, the market
has grown over the past several years,
commanding US$1 billion in subscrip-
tion revenue in 2004, and will more than
double by 2009 (www.idc.com/getdoc.
jsp?containerId=pr2005_08_04_110417).

This rapidly growing MMOG market
signifies entertainment computing tech-
nologies’ importance, and has forced
game makers to step up competitively.
However, several challenges exist for
vendors with regard to development, ser-
vice, and security. Given that these com-
panies’ ultimate goal is to increase profits,
they need a low-cost, robust, scalable,
secure, attractive MMOG service to
improve development and decrease time
to market.

Middleware helps programmers man-
age the complexity and heterogeneity of
distributed computing environments.1,2 To
address the challenges that vendors (and
even players) face when developing and
maintaining MMOGs, we’ve developed the
Distributed-organized Information Terra
(DoIT) middleware platform. We began
this project in 2002 at National Chiao

Tung University’s (NCTU) Department of Computer
and Information Science. This article explains our
experience and outlines the components essential
to crafting a practical MMOG middleware.

MMOG Development Challenges
Creating a MMOG typically takes two to three times
as long as creating and launching a traditional sin-
gle-player game (two to three years versus 9 to 12
months). A MMOG project from a major PC games
studio can require a five-year timetable and hun-
dreds of people’s efforts prior to release. (For exam-
ple, Electronic Arts/Westwood Studio’s Earth &
Beyond MMOG didn’t appear until 2003, even
though its blueprint stage began in 1998 — and EA
shut it down in September 2004 to focus resources
on new games.) Westwood and other game vendors
produced single-player or matching games (net-
work games involving between 16 and 64 players,
usually implemented via peer-to-peer technology)
throughout the nineties, but competing in today’s
MMOG market requires such vendors to utilize dis-
tributed technologies and concepts and familiarize
themselves with network issues. (Korean vendors’
efforts in this arena have led the country to its cur-
rent position as the preeminent exporter of MMOGs
worldwide [www.idc.com/getdoc.jsp?container
Id=IDC_P6396].)

Once a MMOG becomes available to gamers,
vendors often encounter problems with versioning
(fixing bugs, adding content, and so on). Further-
more, most MMOGs are client-server programs;
game companies generally host their virtual worlds
on dedicated servers or ISPs’ Internet data centers
in chosen collocations (in which they rent a secure
space with reliable high-speed network connectiv-
ity in data centers while maintaining their own
equipment and services). Once a game begins
online operation, service providers must make its
content attractive enough to induce users to stick
with it. Thus, developing the content is only the
beginning — continuity and profit depend on qual-
ity of service (QoS) and attractiveness to end users
over time. Service reliability, availability, restora-
bility, and scalability are vital issues for success.

Security is also critical because MMOGs are just
as vulnerable to hackers as any other Internet ser-
vices. Fortunately, industry-standard firewall and
intrusion-detection technologies can reduce the
effects of most attacks. In-game (application-level)
cheating and attacks on content protocols (the
players’ command formats and their contents) are
troubling issues, however, because fake and illegal

protocols affect QoS and the games’ fairness. In the
Asia/Pacific region, the most common security
problem comes from users’ running illegal plug-
ins or cheat programs (such as artificial intelli-
gence robot programs) to play MMOGs for easy
money or experience points. This is both unfair to
other gamers and degrades QoS for vendors, who
must do more server-side checks to prevent cheat-
ing. Yet, counterattacking these programs is no
simple task, given that attackers have the client
program, and can thus access the execution code
and restore and analyze the protocol’s format.
Widespread culprits in China have become such a
significant nuisance that vendors can’t simply
ignore them because MMOG players are likely to
quit rather than continue with an unfair or vul-
nerable MMOG service.

MMOG Platform Architecture
By using middleware to build MMOGs, program-
mers can manage the complexity and heterogene-
ity of distributed computing environments, and
possibly address the development, service, and
security issues we’ve outlined here. A virtual-world
platform solution based on distributed technolo-
gies can help vendors build MMOGs quickly, with-
out having to worry about network-transmission
issues or collaboration between servers or clients.

Using middleware to support a MMOG isn’t a
new idea. Researchers have devoted much effort to
building frameworks to support MMOG develop-
ment,3–5 generally as distributed systems with n-tier
architectures. Figure 1 shows an example of such a
system with a 4-tier architecture comprising a
client, proxy/gateway, cell server, and database:

• Gamers control the client applications, which
deploy and run graphics, the user interface, and
network communication.

• The proxy/gateway is important not only in
forwarding packets but also in providing secu-
rity functionalities (as it can work like a fire-
wall or run the protocol-checking procedure)
for cell servers and cooperating with portals or
billing systems.

• The cell server houses, maintains, and executes
the virtual world. It also receives players’ con-
trol commands and verifies, computes, updates,
and then forwards new player states to all
gamers who will be affected by these
commands (for example, a successful move
command will generate a player’s new position —
player state — on the virtual-world map.

48 SEPTEMBER • OCTOBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Online Gaming

• The database stores periodically updated play-
er states to ensure that players continue to exist
in the virtual world.

Most commercial products use this generic archi-
tecture because the proxy’s security functionalities
facilitate antihacking efforts in both MMOG and
enterprise-computing environments and because it
provides a suitable mechanism for billing players.

Other research and open-source middleware
projects for MMOGs have proposed similar archi-
tectures. Mauve and colleagues’ work indicates
that the proxy can take over certain server func-
tions to help distribute the processing load, pre-
vent cheating,4 and — using a hardware solution
to speed up processing — improve scalability.5 We
can also view the proxy as an extension of the
server that can provide flexibility during game
design and deployment. Moreover, proxies can
help assure cell servers that they can trust infor-
mation coming from the proxy. (For more infor-
mation on other MMOG middleware technologies,
see the “Related Work in MMOG Middleware Proj-
ects” sidebar.)

Practical Next-Generation
MMOG Middleware
Current MMOG technologies focus on providing a
scalable, reliable, fault-tolerant, low-cost, load-
balancing, single-sign-on, secure framework for
building seamless virtual worlds — no shards (iden-
tical copies of online games on different server
clusters), specific servers, or zones, so that all play-
ers essentially exist in the same game world. How-
ever, only a few new MMOGs have been based on
such frameworks, and fewer are currently in oper-
ation. For this reason, rather than developing solu-
tions themselves, game vendors who are unfamiliar
with distributed technologies would benefit from
easy-to-use MMOG middleware that addresses QoS
and helps provide code that’s easy to develop and
maintain. A MMOG platform should satisfy four
essential “ease of” requirements, in addition to the
aforementioned gateway, functionality, perfor-
mance, and security needs.

Ease of Development
The MMOG platform should

• provide easier and faster ways to develop con-
tent,

• hide the underlying network programming
from the content programmer (which simplifies

actual game programming), and
• provide an API that’s simple and flexible

enough to let developers focus on content and
presentation.

Interface definition language-based programming
paradigms with automatic code-generation mech-
anisms would be a good choice to satisfy these
requirements.

Ease of Deployment
Most MMOG vendors frequently update their game
content because doing so provides better, more
attractive service. The middleware platform’s
architecture should provide both servers and
clients with straightforward ways to deploy con-
tent, especially in collocation environments, in
which all content must be updated remotely.

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2005 49

Middleware for MMOGs

Internet

User User
User User User User

Database

Firewall

Switch fabric

Gateway Gateway Gateway Gateway

Cell server

Database server

Cell server Cell server Cell server

Gateway

Cell server

Switch fabric

Switch fabric

Figure 1.Generic 4-tiered MMOG architecture.Gamers (users)
control the client,which runs graphics and the user interface. The
proxy/gateway acts as security for the cell servers,which house,
maintain, and execute the virtual world. The database periodically
stores player states.

Ease of Maintenance
Placing a MMOG online is only the beginning of
the service challenge: easy maintenance and mon-
itoring are subsequent requirements that vendors
must heed to support and retain customers at low
cost. For example, to ensure fairness in the virtual
world, a tracker program that could automatical-
ly report uncommon changes in players’ states
would benefit game vendors.

Ease of Change
Many popular games encounter security problems
on one hand and service issues (such as server
overload) on the other. Making changes to the
content protocol to fix bugs or update content is
common, but even if no new content is added,
changing protocols can make hacking them more
difficult. A MMOG middleware should make it easy
for vendors to make changes to content protocol.

Performance and Load Balancing
Building a seamless game world requires a tight,
dynamic collaboration between cell servers. Game-
interaction processing — boundary updates and
user-state migration, for example — is spread

across a network of server farms. Most current
models are built on shards, but a middleware that
can support a seamless game world is very impor-
tant for next-generation MMOGs to help maintain
QoS whenever the number of online players
increases. It also facilitates scalability by allowing
vendors to add more servers to a cluster. Given
that the geography of player states is essential in
an online world, a good dynamic load-balancing
scheme is also desirable.

The Distributed-organized
Information Terra Platform
We began developing the DoIT platform at NCTU’s
distributed computing system laboratory in Octo-
ber 2002 in an attempt to build a practical, effi-
cient middleware for MMOGs that meets most of
the requirements outlined in the previous section.
We implemented it in Java, using a 4-tier middle-
ware architecture like the one in Figure 1, and the
code-generation engine supports both Java and
C++. We further chose to use message-oriented
middleware (MOM) technology rather than an
RPC-based architecture.

The first reason for this decision is that MMOG

50 SEPTEMBER • OCTOBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Online Gaming

Related Work in MMOG Middleware Projects

Several significant middleware technolo-
gies aim to support MMOG application;

most of them are commercial products.

The Butterfly Grid
Unlike traditional MMOGs,which rely on a
rigid centralized-server approach, Butter-
fly.net (www.butterfly.net) is a self-man-
aged, fully meshed network that shifts
processing to idle resources as needed. To
better compete in the MMOG market,But-
terfly.net built the Butterfly Grid — based
on the grid computing model — which
consists of two clusters of roughly 50 IBM
eServer xSeries servers.The grid uses the
DB2 universal database, the WebSphere
application server, and IBM’s global services
for implementation and hosting. At a high
level, Butterfly.net uses the Globus Toolkit
to integrate these components into the
grid’s fabric.

BigWorld Technology
Microforté spent more than three years and

US$8 million to research and develop a
complete MMOG middleware solution. Its
BigWorld Technology (www.bigworldtech.
com) includes a scalable, reliable, customiz-
able, and fault-tolerant server infrastructure
that can handle millions of players; a client
3D engine; and a set of tools, such as a
model viewer and particle system editor, for
building and managing MMOG worlds.The
BigWorld server has adaptive load manage-
ment, on-the-fly reconfiguration, and an
optimized RPC mechanism. General con-
sensus seems to be that BigWorld is the
only vendor to cover everything from client
3D to server back-end development, pro-
viding a complete solution.

The Internet
Communications Engine
ZeroC Internet Communications Engine
(ICE; www.zeroc.com)1 is a highly efficient
middleware platform that’s as powerful as
Corba, but without its flaws. In addition to
avoiding Corba’s complicated core, ICE

supports more features that aid MMOG
development and maintenance, such as
object-state versioning, the distribution of
software updates, efficiency protocols, def-
initions of the persistent support setting in
the Slice interface definition language, and
multilanguage support.

Massiv
Massiv is an open-source distributed game
middleware that aims to simplify the devel-
opment of distributed persistent MMOGs
(http://massiv.objectweb.org/). Like ICE, its
programming paradigms are IDL-based.
Moreover, Massiv is designed to run on
multiple servers located throughout the
world. Therefore, to keep a consistent sta-
tus between servers worldwide, it address-
es issues of security, latency, and time
synchronization.

Reference
1. M. Henning,“Massively Multiplayer Middleware,”

ACM Queue, vol. 1, no. 10, 2004, pp. 40–45.

behavior is generally event-driven — real players
send commands to control virtual players, and the
changes one virtual player makes affect what other
players view on their monitors. MOM works well
with event-driven models, and can therefore sup-
port this scenario directly. Second, in most cases,
the client can execute multiple codes in parallel.
For example, when sending commands to the serv-
er, clients can execute appropriate prediction algo-
rithms to give MMOG players a smoother gaming
experience rather than blocking and waiting for
the corresponding updates from the server. Fur-
thermore, MOM technology lets the gaming plat-
form decouple the versioning relationship for both
clients and servers, in contrast with RPC, in which
any interface change requires recompiling the
whole program. The MOM-based architecture
makes it easy for clients following the protocol
definition to connect to a MMOGs built on it.

DoIT has two main features that differentiate
it from other frameworks or solutions. First, its
customizable, message-based network engine
reduces complexity for MMOG application pro-
grammers. We tried to stick to the idea that “sim-
ple is better.” Our network engine helps developers
focus on creating simple, high-impact protocol
descriptions without worrying about network pro-
gramming.

We also introduced a code-generator model to
help generate corresponding content protocols. The
content developer begins by describing the mes-
sage format in an XML file. Our code-generation
engine then parses the protocol description and
generates corresponding message-factory and han-
dler codes for both clients and servers. Next, the
developer implements the detailed content code
within these pregenerated handler classes — defin-
ing how to handle a client’s PLAYER_MOVE mes-
sage, for example. Finally, both the client and the
server can deploy the codes.

Figure 2 (next page) shows an example of a
protocol defined in this platform. In Figure 2a, the
content protocol (number 1) is LoginMessage, and
the parameters include a long type id and a string-
type password. Figure 2b shows the protocol that
our code generator outputs. We believe that defin-
ing the protocol precisely makes the generated pro-
tocol handlers more compact, thus increasing
network-transmission performance without as
much overhead as we’d encounter in Corba.

To address security and content-updating issues,
our platform models the content-oriented protocols
as sets of message fields; the code-generator engine

randomly shuffles the fields, thus increasing pro-
tection against hacking message-oriented protocols
and faking messages. Game vendors undergo this
automatic updating process periodically and easily,
and it shouldn’t give them, or players, too much
trouble. Although this won’t provide total protec-
tion from hacking, it makes attacks more difficult.
Moreover, including both messaging protocol and
encryption algorithms, such as Secure Sockets Layer
(SSL), can help prevent attacks.

The second unique feature DoIT includes is a
lightweight, real-time virtual-world logic (VWLog-
ic) adapter, which simplifies content development,
deployment, and revision. The network engine
receives control messages from the game’s client
program and then asynchronously puts the messages
into the VWLogic adapter, which demultiplexes the
messages for each corresponding VWLogic compo-
nent. For example, gamer A sends a move control
message through the client program’s network
engine to the server’s network engine, which then
asynchronously puts this message into the VWLog-
ic adapter. The adapter will find move-related
VWLogic (that is, handler classes) to process the con-
trol message. After running the computation, the
VWLogic sends an update request, such as “move
player A to new location (x,y)” to the virtual-world
container. Finally, the container sends the update to
the clients through the network engine.

The MMOG developer creates the VWLogic,
which can be plugged into or removed from the
adapter at runtime. Developers can change the
class, for instance, by replacing bug-containing
VWLogic with a bug-free class, even when the
entire MMOG application is running. Asynchro-
nous-adapter design makes such “hot swaps” pos-
sible on the DoIT platform and more maintainable
once the service is online.

Simulation Results
We conducted simulation testing in June 2003 and
June 2004, using the 39 nodes of Pentium-III-level
computers in the department’s computer room. All
computers were in the same subnet with Fast Eth-
ernet (100 Mbps), and were isolated to the Internet.

It’s difficult to quantitatively evaluate metrics
such as ease of development or change, so we focus
primarily on evaluating scalability issues. To do
this, we use a robot program that simulates real
player action. The virtual player’s movement action
in the virtual world is quite basic and important to
evaluate because it involves state updates, the
replacement of states in a map, and inter-server

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2005 51

Middleware for MMOGs

state migration. The program’s robots thus send
movement commands in random directions and
receive updates from the virtual-world server,
which uses the corresponding movement VWLog-
ic.

The frequency of control commands that play-
ers send depends on a given MMOG’s design, but
many current models let players send only one
command within a one-to-three-second period.
This prevents players from flooding the server with
commands and allows enough time for the server
to reply. Thus, we designed the robots to send one
control command per second. Additionally, the pri-
mary variable for evaluating the server’s scalabili-
ty is the total number of players online and issuing
commands simultaneously. To measure this, we use
the response times for the control messages.

Figure 3 shows our evaluation environment:

• all the computers (including clients, proxies,

52 SEPTEMBER • OCTOBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Online Gaming

Figure 3. Performance evaluation environment for DoIT.Our testbed
used three Pentium III, 1.8 GHz machines as the server cluster, and
36 P-III, 800 MHz machines as proxies and clients. All clients (virtual
player creators) were connected to the virtual-world server by a proxy.

Server cluster

........

P-4 1.8 Ghz
512 Mbytes

RAM machine

P-III 800 MHz
512 Mbytes

RAM machine

P-III 800 MHz
256 Mbytes

RAM machine

VW
server A

VW
server B

VW
server C

Proxy

VP
creator

VP
creator

...

Proxy

VP
creator

VP
creator

...

Figure 2. Code-generator model showing (a) the content protocol and (b) the code generator’s output. The content
programmer (1) writes the message description file that gamers and servers will use to communicate. The Distributed-
organized Information Terra system development kit (DoIT SDK) can parse this XML file and (2) generate the skeleton
code content programmers use to (3) and (5) implement the game rules. After (4) deploying the server game rules , the
MMOG service is ready to start up.

Deploy to DOIT
4

Server side

Define game objects

Write game logic

NPC AI logic

3

Generate message/message factory
2

<Message>
 <MessageName>LoginMessage</MessageName>
 <MessageType>0x01</MessageType>
 <Params>
 <Param>
 <ParamName>id</ParamName>
 <ParamType>long </ParamType>
 </Param>
 <Param>
 <ParamName>pass </ParamName>
 <ParamType>String </ParamType>
 </Param>
 </Params>
</Message>

Login message

0x01 Total
length

Avatar id CT id Custom
length

Player id password

Long String

(b)

(a)

Code-
generation

engine

Define protocol
1

Client side

Presentation logic

Interactive logic

Networking logic

5

Generate message/message factory
2

and the server) are in the same subnet;
• a single server’s map size is 1,000 � 1,000, with

all objects on the map falling at coordinates
within this range;

• virtual players’ (VPs) initial map locations are
randomly assigned by the server; and

• each VP’s nimbus (area of interest) is 5 � 5 —
meaning that any update to a virtual-world
object will affect the view of objects within
those coordinates.

Our three goals in evaluating servers are to find
the maximum number of VPs that:

• a proxy can support without inducing too
much delay (which would inhibit a smooth
gaming experience);

• a single VW server can support; and
• multiple VW servers can support.

We determine the maximum number using the aver-
age response time that is acceptable for most real-
time MMOGs (generally below 150 milliseconds).

Table 1 shows the test results for the number of
proxies used in three instances. Increasing this
number dramatically decreases the average
response time. After the first test, we adjusted the
allocation of machines to 25 machines running
120 VP creators (that is, robot programs) each and
10 machines with proxies. In this condition, the
maximum number of VPs evaluated in a single
server was 3,000; the average response time was
38.6 ms and the jitter was between 0 and approx-
imately 3,645 ms.

Figure 4 shows the scalability test results. As
we mentioned earlier, one MMOG server cluster
(comprising roughly 20 computers, including the
proxy/gateway and server) can support between
6,000 and 10,000 players simultaneously. There-
fore, the results for our platform’s scalability (3,000
players on a single server) were good.

One particularly interesting result emerged
from our gateway performance evaluation: After
examining the experimental results and the gate-
way’s CPU and I/O usage, we discovered that gate-
ways are the performance bottleneck in generic
4-tier architectures. The first row of Table 1 shows
a large I/O load, with connections exceeding 600,
which results in poor response time. We can gen-
erally state that if a server cluster must simultane-
ously handle 10,000 players successfully, it needs a
total of 18 nodes (15 gateways and 3 cell servers).
In 2004, we did the same experiment by deploying

a gateway program on a Pentium-4, 2.4 GHz
machine with 512 MBytes of RAM. Our testing
results showed that gateway performance drops
dramatically when the gateway needs to process
more than 6,000 messages per second (a single
gateway handles 1,500 clients). If we improved
gateway performance, we could greatly decrease
the number of gateways necessary, and lower
hardware costs.

Middleware will play an important role in the
development of next-generation MMOGs, but

building such a middleware is a great challenge.
MMOG middleware should serve the varying
needs of game developers. Some middleware pro-
vides PC client libraries for interacting with
servers, whereas other middleware is aimed at
game-console (PlayStation 2, Xbox, and so on) or
mobile-device clients. Even when client libraries
exist, they can’t always meet development
demands (for instance, at least two next-
generation game consoles will ship within the
next year). A practical middleware should also
give developers a variety of API layers, such as a
server-level API for use with a system timer or a

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2005 53

Middleware for MMOGs

Table 1. Evaluation results
for various numbers of proxies

with 1,800 virtual players.

Proxies Average response time
2 5,512 ms
3 57 ms

10 6 ms

Figure 4. Scalability test results. We found that a single server node
can support 3,000 players simultaneously with good average
response time (38.6 milliseconds).

Virtual players

A
ve

ra
ge

 r
ou

nd
 t

rip
 t

im
e

(m
s) 50

40

30

20

10

1,200 1,500 3,0000

thread pool, or a virtual-world level API for cre-
ating game objects in the virtual world. Further-
more, it must provide a good plug-in framework
to support future content.

In addition to the functionalities we discuss in
this article, we’ve built a persistent object-relation
mapping library to help content programmers store
virtual worlds’ object states without having to pro-
gram using SQL-commands. To make DoIT more
practical, we’ve formed a student team to craft a
real MMOG based on our DoIT platform. Once the
MMOG client program is released, we will evalu-
ate the results. Moreover, we intend to build facil-
ities to make mobile devices compatible with more
traditional clients such as PCs and Sony’s Playsta-
tion 2, so that all gamers can play in the same
seamless virtual world.

Acknowledgments
The Ministry of Education of the Republic of China partially

supported this work under grant nos. NSC93-2752-E001-004-

PAE (Advanced Technologies and Applications for Next-Gen-

eration Information Networks (II)) and NSC93-2213-E009-079

(A Research on Next-Generation Massive Multiplayer Virtual

Environment Platform). We thank the anonymous reviewers

and editors for many useful comments.

References

1. A.T. Campbell, G. Coulson, and M.E. Kounavis, “Managing

Complexity: Middleware Explained,” IT Professional, vol.

1, no. 5, 1999, pp. 22–28.

2. K. Geihs, “Middleware Challenges Ahead,” Computer, vol.

34, no. 6, 2001, pp. 24–31.

3. B. Knutsson et al., “Peer-to-Peer Support for Massively

Multiplayer Games,” Proc. Infocom, vol. 1, IEEE Press,

2004, pp. 96–107.

4. M. Mauve, S. Fischer, and J. Widmer, “A Generic Proxy

System for Networked Computer Games,” Proc. 1st Work-

shop Network and System Support for Games (NetGames

2002), ACM Press, 2002, pp. 25–28.

5. D. Bauer, S. Rooney, and P. Scotton, “Network Infrastruc-

ture for Massively Distributed Games,” Proc. 1st Workshop

Network and System Support for Games (NetGames 2002),

ACM Press, 2002, pp. 36–43.

Tsun-Yu Hsiao is a PhD candidate in computer and information

science at National Chiao-Tung University, Taiwan. His

research interests are in distributed systems, Internet tech-

nologies, and middleware. He has a BS and an MS in infor-

mation engineering and computer science, respectively,

from Feng-Chia University. Contact him at tyhsiao@cis.

nctu.edu.tw.

Shyan-Ming Yuan is a professor in the Department of Comput-

er and Information Science at National Chiao-Tung Uni-

versity. His research interests include distributed objects,

Internet technologies, middleware, and e-learning. Yuan

has a BSEE from National Taiwan University and an MS

and a PhD from the University of Maryland, all in com-

puter science. Contact him at smyuan@cis.nctu.edu.tw.

54 SEPTEMBER • OCTOBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Online Gaming

Architectures
Support Services

Algorithm/Protocol Design and Analysis
Mobile Environment

Mobile Communication Systems
Applications

Emerging Technologies

IEEE Transactions on
Mobile Computing

 revolutionary new quarterly journal that seeks out and delivers the very
 best peer-reviewed research results on mobility of users, systems, data,
 computing information organization and access, services, management,
and applications. IEEE Transactions on Mobile Computing gives you
remarkable breadth and depth of coverage …

A
To subscribe:

http://
computer.org/tmc

or call
USA and CANADA:

+1 800 678 4333
WORLDWIDE:

+1 732 981 0060

Subscribe
NOW!

