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1 Introduction

It has long been believed that there exist huge hidden spacetime symmetries of string

theory. As a consistent theory of quantum gravity, string theory contains no free parameter

and an infinite number of higher spin string states. On the other hand, the very soft

exponential fall-off behavior of string scattering amplitudes (SSA) in the hard scattering

limit, in contrast to the power law behavior of hard field theory scattering amplitudes,

strongly suggests the existence of infinite number of relations among SSA of different

string states. These relations or symmetries soften the UV structure of quantum string

theory. Indeed, this kind of infinite relations were first conjectured by Gross [1–5] and later

corrected and explicitly proved in [6–12] by using decoupling of zero-norm states (ZNS) [13–

15], and can be used to reduce the number of independent hard SSA from ∞ down to 1.

It was important to note that the linear relations obtained by decoupling of ZNS in the

hard scattering limit corrected [6–9] the saddle point calculations of Gross [3, 4], Gross and

Mende [1, 2] and Gross and Manes [5]. The results of the former authors were consistent

with the decoupling of high energy ZNS or unitarity of the theory while those of the latter

were not. See one simple example to be presented in eq. (4.3) in section 4. Independently,

the inconsistency of the saddle point calculations of the above authors was also pointed

out by the authors of [16] using the group theoretic approach of string amplitudes [17].

On the other hand, inspired by Witten’s seminal paper [18], there have been tremen-

dous developments on calculations of higher point and higher loop Yang-Mills and gravity

field theory amplitudes [19]. Many interesting relations among these field theory ampli-

tudes have also been proposed and suggested. In addition, connections between field theory

and string theory amplitudes are currently under many investigations.

Historically, there were at least three approaches to probe stringy symmetries or re-

lations among scattering amplitudes of higher spin string states. These include the gauge

symmetry of Witten string field theory, the conjecture of Gross [3, 4] on symmetries or lin-

ear relations among SSA of different string states in the hard scattering limit by the saddle
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point method [1–5] and Moore’s bracket algebra approach [20–22] of stringy symmetries.

See a recent review [23] for some connections of these three approaches.

Recently, it was found that the Regge SSA of three tachyons and one arbitrary string

states can be expressed in terms of a sum of Kummer functions U [24–26], which soon later

were shown to be the first Appell function F1 [26]. Regge stringy symmetries or recurrence

relations [25, 26] were then constructed and used to reduce the number of independent

Regge SSA from ∞ down to 1. Moreover, an interesting link between Regge SSA and

hard SSA was found [24, 27], and for each mass level the ratios among hard SSA can

be extracted from Regge SSA. This result enables us to argue that the known SL(5;C)

dynamical symmetry of the Appell function F1 [28] is crucial to probe high energy spacetime

symmetry of string theory.

More recently, the extended recurrence relations [29] among nonrelativistic low energy

SSA of a class of string states with different spins and different channels were constructed

by using the recurrence relations of the Gauss hypergeometric functions with associated

SL (4,C) symmetry [30]. These extended recurrence relations generalize and extend the

field theory BCJ [31] relations to higher mass and higher spin string states.

To further uncover the structure of stringy symmetries, in section 2 of this paper we

calculate the 26D open bosonic SSA of three tachyons and one arbitrary string states at

arbitrary energies. We discover that these SSA can be expressed in terms of the D-type

Lauricella functions1 with associated SL(K+3,C) symmetry [30]. As a result, all these SSA

and symmetries or relations among SSA of different string states at various limits calculated

previously can be rederived. These will be presented in sections 3, 4 and 5 which include

the recurrence relations in the Regge scattering limit [25, 26] with associated SL(5;C)

symmetry, the linear relations conjectured by Gross [3, 4] and corrected and proved in [6–

12] in the hard scattering limit and the extended recurrence relations in the nonrelativistic

scattering limit [29] with associated SL(4;C) symmetry discovered very recently. However,

since not all Lauricella functions F
(K)
D with arbitrary independent arguments can be used

to represent SSA, it remained to be studied how the basis states of each SL(K+3,C) group

representation for a given K relates to SSA [33].

As a byproduct from the calculation of rederiving linear relations in the hard scattering

limit directly from Lauricella functions, we propose an identity eq. (4.12) which generalizes

the Stirling number identity eq. (4.13) [24, 27] used previously to extract ratios among

hard SSA from the Appell functions in Regge SSA. Finally, as an example, in section 6 we

calculate a new recurrence relation of SSA which is valid for all energies.

2 Four-point string amplitudes

We will consider SSA of three tachyons and one arbitrary string states put at the second

vertex. For the 26D open bosonic string, the general states at mass level M2
2 = 2(N − 1),

N =
∑

n,m,l>0

(
nrTn +mrPm + lrLl

)
with polarizations on the scattering plane are of the form∣∣rTn , rPm, rLl 〉 =

∏
n>0

(
αT−n

)rTn ∏
m>0

(
αP−m

)rPm∏
l>0

(
αL−l
)rLl |0, k〉. (2.1)

1It is interesting to note that Lauricella function has been mentioned in [32] for the six gluon amplitude

in superstring theory.
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In the CM frame, the kinematics are defined as

k1 =

(√
M2

1 + | ~k1|2,−| ~k1|, 0
)
, (2.2)

k2 =

(√
M2

2 + | ~k1|2,+| ~k1|, 0
)
, (2.3)

k3 =

(
−
√
M2

3 + | ~k3|2,−| ~k3| cosφ,−| ~k3| sinφ
)
, (2.4)

k4 =

(
−
√
M2

4 + | ~k3|2,+| ~k3| cosφ,+| ~k3| sinφ
)

(2.5)

with M2
1 = M2

3 = M2
4 = −2 and φ is the scattering angle. The Mandelstam variables are

s = − (k1 + k2)
2, t = − (k2 + k3)

2 and u = − (k1 + k3)
2. There are three polarizations on

the scattering plane

eT = (0, 0, 1), (2.6)

eL =
1

M2

(
| ~k1|,

√
M2

2 + | ~k1|2, 0
)
, (2.7)

eP =
1

M2

(√
M2

2 + | ~k1|2, | ~k1|, 0
)
. (2.8)

For later use, we define

kXi = eX · ki for X = (T, P, L) . (2.9)

Note that SSA of three tachyons and one arbitrary string state with polarizations orthog-

onal to the scattering plane vanish.

For illustration, we begin with a simple case, namely, four-point function with the

three tachyons and the highest spin state at mass level M2
2 = 2(N − 1), N = p+ q + r of

the following form

|p, q, r〉 =
(
αT−1

)p (
αP−1

)q (
αL−1

)r |0, k〉. (2.10)

The four-point scattering amplitude can be calculated as

A
(p,q,r)
st =

sin(πk2 · k4)
sin(πk1 · k2)

A
(p,q,r)
tu =

sin
(
u
2 + 2−N

)
π

sin
(
s
2 + 2−N

)
π
A

(p,q,r)
tu

=
(−1)NΓ

(
s
2 + 2−N

)
Γ
(
− s

2 − 1 +N
)

Γ
(
u
2 + 2

)
Γ
(
−u

2 − 1
) A

(p,q,r)
tu

=
(−1)NΓ

(
s
2 + 2−N

)
Γ
(
− s

2 − 1 +N
)

Γ
(
u
2 + 2

)
Γ
(
−u

2 − 1
)

×
∫ ∞
1

dxxk1·k2(x− 1)k2·k3 ·
[
kT1
x

+
kT3
x− 1

]p
·
[
kP1
x

+
kP3
x− 1

]q
·
[
kL1
x

+
kL3
x− 1

]r
=

Γ
(
s
2 + 2−N

)
Γ
(
− s

2 − 1 +N
)

Γ
(
u
2 + 2

)
Γ
(
−u

2 − 1
) (

−kT3
)p (−kP3 )q (−kL3 )r

×
∫ ∞
1
dxxk1·k2(x−1)k2·k3 ·

[
1−
(
−k

T
1

kT3

)
x−1

x

]p
·
[
1−
(
−k

P
1

kP3

)
x−1

x

]q
·
[
1−
(
−k

L
1

kL3

)
x−1

x

]r
.
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In the above calculation, we have used the string BCJ relation

A
(p,q,r)
st =

sin(πk2 · k4)
sin(πk1 · k2)

A
(p,q,r)
tu , (2.11)

which was proved by monodromy of integration of string amplitudes [34, 35] and explicitly

proved recently in [29]. We can now do a change of variable x−1
x = x′ to get

A
(p,q,r)
st =

Γ
(
s
2 + 2−N

)
Γ
(
− s

2 − 1 +N
)

Γ
(
u
2 + 2

)
Γ
(
−u

2 − 1
) (

−kT3
)p (−kP3 )q (−kL3 )r

×
∫ 1

0
dx′ x′

−t
2
−2(1− x′)

−u
2
−2
[
1−
(
−k

T
1

kT3

)
x′
]p
·
[
1−
(
−k

P
1

kP3

)
x′
]q
·
[
1−
(
−k

L
1

kL3

)
x′
]r

=
Γ
(
s
2 + 2−N

)
Γ
(
− s

2 − 1 +N
)

Γ
(
u
2 + 2

)
Γ
(
−u

2 − 1
) ·

(
−kT3

)p (−kP3 )q (−kL3 )r Γ
(
− t

2 − 1
)

Γ
(
−u

2 − 1
)

Γ
(
s
2 + 2−N

)
× F (3)

D

(
− t

2
− 1;−p,−q,−r; s

2
+ 2−N ;

−kT1
kT3

,
−kP1
kP3

,
−kL1
kL3

)
, (2.12)

which can be written as

A
(p,q,r)
st =

(
−kT3

)p (−kP3 )q (−kL3 )r Γ
(
− s

2 − 1 +N
)

Γ
(
− t

2 − 1
)

Γ
(
u
2 + 2

)
× F (3)

D

(
− t

2
− 1;−p,−q,−r; s

2
+ 2−N ;−CT ,−CP ,−CL

)
(2.13)

if we define

kXi = eX · ki,
kX1
kX3

= CX . (2.14)

In eq. (2.13), the D-type Lauricella function F
(K)
D is one of the four extensions of the Gauss

hypergeometric function to K variables and is defined as

F
(K)
D (a; b1, ..., bK ; c;x1, ..., xK) =

∑
n1,··· ,nK

(a)n1+···+nK
(c)n1+···+nK

(b1)n1
· · · (bK)nK

n1! · · ·nK !
xn1
1 · · ·x

nK
K

(2.15)

where (a)n = a · (a+ 1) · · · (a+ n− 1) is the Pochhammer symbol. There is a integral

representation of the Lauricella function F
(K)
D discovered by Appell and Kampe de Feriet

(1926) [36]

F
(K)
D (a; b1, ..., bK ; c;x1, ..., xK)

=
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
dt ta−1(1− t)c−a−1 · (1− x1t)−b1(1− x2t)−b2 ...(1− xKt)−bK ,

(2.16)

which can be used to directly calculate the amplitude in eq. (2.13). The relevance of the

Lauricella function in eq. (2.16) for string scattering amplitudes was first suggested in [26].
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We now calculate the string four-point scattering amplitude with three tachyons and

one general higher spin state in eq. (2.1) as following

A
(pn;qm;rl)
st =

sin(πk2 · k4)
sin(πk1 · k2)

A
(pn;qm;rl)
tu =

sin(u2 + 2−N)π

sin( s2 + 2−N)π
A

(pn;qm;rl)
tu

=
(−1)NΓ( s2 + 2−N)Γ(− s

2 − 1 +N)

Γ(u2 + 2)Γ(−u
2 − 1)

·
∫ ∞
1

dxxk1·k2(1− x)k2·k3 ·
∏
n=1

[
(−1)n−1 (n− 1)!kT1

xn
+

(−1)n−1(n− 1)!kT3
(x− 1)n

]pn

·
∏
m=1

[
(−1)m−1 (m− 1)!kP1

xm
+

(−1)m−1(m− 1)!kP3
(x− 1)m

]qm

·
∏
l=1

[
(−1)l−1 (l − 1)!kL1

xl
+

(−1)l−1(l − 1)!kL3
(x− 1)l

]rl
=

(−1)NΓ( s2 + 2−N)Γ(− s
2 − 1 +N)

Γ(u2 + 2)Γ(−u
2 − 1)∫ ∞

1
dxxk1·k2(1−x)k2·k3−N ·

∏
n=1

(
kT3 (−1)n−1 (n−1)!

[
1−
(
−k

T
1

kT3

)(
x−1

x

)n])pn
·
∏
m=1

(
kP3 (−1)m−1 (m− 1)!

[
1−

(
−k

P
1

kP3

)(
x− 1

x

)m])qm
·
∏
l=1

(
kL3 (−1)l−1 (l − 1)!

[
1−

(
−k

L
1

kL3

)(
x− 1

x

)l])rl
. (2.17)

We can now do a change of variable x−1
x = y to get

A
(pn;qm;rl)
st =

(−1)NΓ( s2 + 2−N)Γ(− s
2 − 1 +N)

Γ(u2 + 2)Γ(−u
2 − 1)

∫ 1

0
dy yk2·k3−N (1− y)−k1·k2−k2·k3+N−2

·
∏
n=1

(
kT3 (−1)n−1 (n− 1)!

[
1−

(
−k

T
1

kT3

)
yn
])pn

·
∏
m=1

(
kP3 (−1)m−1 (m− 1)!

[
1−

(
−k

P
1

kP3

)
ym
])qm

·
∏
l=1

(
kL3 (−1)l−1 (l − 1)!

[
1−

(
−k

L
1

kL3

)
yl
])rl

=
(−1)NΓ( s2 + 2−N)Γ(− s

2 − 1 +N)

Γ(u2 + 2)Γ(−u
2 − 1)

·
∏
n=1

[
(−1)n−1 (n− 1)!kT3

]pn
∏
m=1

[
(−1)m−1 (m− 1)!kP3

]qm∏
l=1

[
(−1)l−1 (l − 1)!kL3

]rl
·
∫ 1

0
dy yk2·k3−N (1− y)−k1·k2−k2·k3+N−2

·
[
1−

(
zTn y

)n]pn [
1−

(
zPmy

)m]qm [
1−

(
zLl y

)l]rl
. (2.18)
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Finally the amplitude can be written in the following form

A
(pn;qm;rl)
st =

Γ( s2 + 2−N)Γ(− s
2 − 1 +N)

Γ(u2 + 2)Γ(−u
2 − 1)

∏
n=1

[
−(n− 1)!kT3

]pn
·
∏
m=1

[
−(m− 1)!kP3

]qm∏
l=1

[
−(l − 1)!kL3

]rl
·
∫ 1

0
dy y

−t
2
−2(1− y)

−u
2
−2 [(1− zTn y)(1− zTnωn2y)...(1− zTnωn−1n y)

]pn
·
[
(1− zPmy)(1− zPmωmy)...(1− zPmωm−1m y)

]qm
·
[
(1− zLl y)(1− zLl ωly)...(1− wLl ωl−1l y)

]pn
, (2.19)

which can then be written in terms of the D-type Lauricella function F
(K)
D as following

A
(pn;qm;rl)
st

=
Γ( s2 + 2−N)Γ(− s

2 − 1 +N)

Γ(u2 + 2)Γ(−u
2 − 1)

Γ(− t
2 − 1)Γ(−u

2 − 1)

Γ( s2 + 2−N)

·
∏
n=1

[
−(n− 1)!kT3

]pn ∏
m=1

[
−(m− 1)!kP3

]qm∏
l=1

[
−(l − 1)!kL3

]rl
· F (K)

D

(
−t2−1; {−p1}1, ...,{−pn}n,{−q1}1, ...,{−qm}m , {−r1}1 , ..., {−rl}l ; s2 +2−N ;[

zT1
]
, ...,

[
zTn
]
,
[
zP1
]
, ...,
[
zPm
]
,
[
zL1
]
, ...,
[
zLl
]
,

)

=
Γ(− s

2−1+N)Γ(− t
2−1)

Γ(u2 +2)

∏
n=1

[
−(n−1)!kT3

]pn ∏
m=1

[
−(m−1)!kP3

]qm∏
l=1

[
−(l−1)!kL3

]rl
· F (K)

D

(
− t

2−1;{−p1}1 , ...,{−pn}n ,{−q1}1 , ...,{−qm}m ,{−r1}1 , ...,{−rl}l ; s2 +2−N ;[
zT1
]
, ...,
[
zTn
]
,
[
zP1
]
, ...,
[
zPm
]
,
[
zL1
]
, ...,
[
zLl
] )

(2.20)

where we have defined

kXi = eX · ki, ωk = e
2πi
k , zXk =

(
−kX1
kX3

) 1
k

(2.21)

and

{a}n = a, a, · · · , a︸ ︷︷ ︸
n

,
[
zXk
]

= zXk , z
X
k e

2πi
k , · · · , zXk e

2πi(k−1)
k or zXk , z

X
k ωk, ..., z

X
k ω

k−1
k .

(2.22)

The integer K in eq. (2.20) is defined to be

K =
n∑
j=1

j

{for all rTj 6=0}

+
m∑
j=1

j

{for all rPj 6=0}

+
l∑

j=1

j

{for all rLj 6=0}

. (2.23)

For a given K, there can be SSA with different mass level N .
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Alternatively, by using the identity of Lauricella function for bi ∈ Z−

F
(K)
D (a; b1, ..., bK ; c;x1, ..., xK) =

Γ (c) Γ (c− a−
∑
bi)

Γ (c− a) Γ (c−
∑
bi)

· F (K)
D

(
a; b1, ..., bK ; 1+a+

∑
bi−c; 1−x1, ..., 1−xK

)
,

(2.24)

we can rederive the string BCJ relation [29, 34, 35]

A
(rTn ,r

P
m,r

L
l )

st

A
(rTn ,r

P
m,r

L
l )

tu

=
(−)NΓ

(
− s

2 − 1
)

Γ
(
s
2 + 2

)
Γ
(
u
2 + 2−N

)
Γ
(
−u

2 − 1 +N
) =

sin
(
πu
2

)
sin
(
πs
2

) =
sin (πk2 · k4)
sin (πk1 · k2)

, (2.25)

which gives another form of the (s, t) channel amplitude

A
(rTn ,r

P
m,r

L
l )

st

= B

(
− t

2
− 1,−s

2
− 1

)∏
n=1

[
−(n− 1)!kT3

]rTn · ∏
m=1

[
−(m− 1)!kP3

]rPm∏
l=1

[
−(l − 1)!kL3

]rLl
· F (K)

D

(
− t

2
− 1;RTn , R

P
m, R

L
l ;
u

2
+ 2−N ; Z̃Tn , Z̃

P
m, Z̃

L
l

)
(2.26)

and similarly the (t, u) channel amplitude

A
(rTn ,r

P
m,r

L
l )

tu

= B

(
− t

2
− 1,−u

2
− 1

)∏
n=1

[
−(n− 1)!kT3

]rTn · ∏
m=1

[
−(m− 1)!kP3

]rPm∏
l=1

[
−(l − 1)!kL3

]rLl
· F (K)

D

(
− t

2
− 1;RTn , R

P
m, R

L
l ;
s

2
+ 2−N ;ZTn , Z

P
m, Z

L
l

)
. (2.27)

In eq. (2.26) and eq. (2.27), we have defined

RXk =
{
−rX1

}1
, · · · ,

{
−rXk

}k
with {a}n = a, a, · · · , a︸ ︷︷ ︸

n

, (2.28)

and

ZXk =
[
zX1
]
, · · · ,

[
zXk
]

with
[
zXk
]

= zXk0, · · · , zXk(k−1) (2.29)

where

zXk =

∣∣∣∣∣
(
−k

X
1

kX3

) 1
k

∣∣∣∣∣ , zXkk′ = zXk e
2πik′
k , z̃Xkk′ = 1− zXkk′ (2.30)

for k′ = 0, · · · , k − 1.

With the notation introduced above, the (s, t) channel amplitude in eq. (2.20) can be

rewritten as

A
(rTn ,r

P
m,r

L
l )

st

= B

(
− t

2
−1,−s

2
−1+N

)∏
n=1

[
−(n−1)!kT3

]rTn · ∏
m=1

[
−(m−1)!kP3

]rPm∏
l=1

[
−(l − 1)!kL3

]rLl
· F (K)

D

(
− t

2
− 1;RTn , R

P
m, R

L
l ;
s

2
+ 2−N ;ZTn , Z

P
m, Z

L
l

)
. (2.31)

– 7 –



J
H
E
P
1
1
(
2
0
1
6
)
0
6
2

3 Regge scattering limit

With the exact SSA calculated in eq. (2.31), eq. (2.26) and eq. (2.27) which are valid

for all kinematic regimes, we can rederive SSA and symmetries or relations among SSA

of different string states at various limits calculated previously. These include the linear

relations conjectured by Gross [1–5] and proved in [6–12] in the hard scattering limit,

the recurrence relations in the Regge scattering limit [24–26] and the extended recurrence

relations in the nonrelativistic scattering limit [29] discovered recently. In this section, we

first calculate the Regge scattering limit. The relevant kinematics in Regge limit are

kT1 = 0, kT3 ' −
√
−t, (3.1)

kP1 ' −
s

2M2
, kP3 ' −

t̃

2M2
= − t−M

2
2 −M2

3

2M2
, (3.2)

kL1 ' −
s

2M2
, kL3 ' −

t̃′

2M2
= − t+M2

2 −M2
3

2M2
. (3.3)

One can easily calculate

z̃Tkk′ = 1, z̃Pkk′ = 1−
(
−s
t̃

)1/k
e
i2πk′
k ∼ s1/k (3.4)

and

z̃Lkk′ = 1−
(
− s
t̃′

)1/k
e
i2πk′
k ∼ s1/k. (3.5)

In the Regge limit, the SSA in eq. (2.26) reduces to

A
(rTn ,r

P
m,r

L
l )

st

' B
(
− t

2
−1,−s

2
−1

)∏
n=1

[
(n−1)!

√
−t
]rTn · ∏

m=1

[
(m−1)!

t̃

2M2

]rPm∏
l=1

[
(l−1)!

t̃′

2M2

]rLl
· F1

(
− t

2
− 1;−q1,−r1;−

s

2
;
s

t̃
,
s

t̃′

)
. (3.6)

where F1 is the Appell function. Eq. (3.6) agrees with the result obtained in [26] previously.

4 Hard scattering limit

In this section, we rederive the linear relations conjectured by Gross [1–5] and corrected

and proved in [6–12] in the hard scattering limit. As we will see that the calculation

will be more subtle than that of the Regge scattering limit. In the hard scattering limit

eP = eL [6–8], and we can consider only the polarization eL case. We first briefly review

the results [23] for linear relations among hard SSA. One first observes that for each fixed

mass level N only states of the following form [10, 11]

|N, 2m, q〉 =
(
αT−1

)N−2m−2q (
αL−1

)2m (
αL−2

)q |0, k〉 (4.1)

are of leading order in energy in the HSS limit. The choice of only even power 2m in αL−1
is the result of the observation [6–8] that the naive energy order of the amplitudes will in

– 8 –



J
H
E
P
1
1
(
2
0
1
6
)
0
6
2

general drop by even number of energy powers. Scattering amplitudes corresponding to

states with (αL−1)
2m+1 turn out to be of subleading order in energy. Many simplifications

occur if we apply Ward identities or decoupling of ZNS only on high energy states in

eq. (4.1) in the HSS limit. One important result was the discovery of the linear relations

among hard SSA of different string states at each fixed mass level N [10, 11]

A
(N,2m,q)
st

A
(N,0,0)
st

=

(
− 1

M2

)2m+q (1

2

)m+q

(2m− 1)!!. (4.2)

Exactly the same results can also be obtained by two other calculations, the Virasoro

constraint calculation and the corrected saddle-point calculation [10, 11]. In the decou-

pling of ZNS calculations at the mass level M2
2 = 4, for example, there are four leading

order SSA [6–8]

ATTT : ALLT : A(LT ) : A[LT ] = 8 : 1 : −1 : −1 (4.3)

which are proportional to each other. While the saddle point calculation of [5] gave ATTT ∝
A[LT ], and ALLT = 0 which are inconsistent with the decoupling of ZNS or unitarity of

the theory. Indeed, a sample calculation was done [6–8] to explicitly verify the ratios

in eq. (4.3).

One interesting application of eq. (4.2) was the derivation of relation of A
(N,2m,q)
st and

A
(N,2m,q)
tu in the hard scattering limit [37]

A
(N,2m,q)
st ' (−)N

sin(πk2 · k4)
sin(πk1 · k2)

A
(N,2m,q)
tu (4.4)

where

A
(N,2m,q)
tu '

√
π(−1)N−12−NE−1−2N

(
sin

φ

2

)−3(
cos

φ

2

)5−2N

· exp

[
− t ln t+ u lnu− (t+ u) ln(t+ u)

2

]
. (4.5)

Eq. (4.4) was shown to be valid for scatterings of four arbitrary string states and was

obtained in 2006,2 and thus was earlier than the discovery of four point field theory BCJ

relations [31] and “string BCJ relations” in eq. (2.25) [29, 34, 35]. In contrast to the

calculation of string BCJ relations [34, 35] which was motivated by the field theory BCJ

relations [31], the derivation of eq. (4.4) was motivated by the calculation of hard closed

SSA [37] by using KLT relation [38]. See a more detailed discussion in a recent publica-

tion [29].

2There was an (−)N ambiguity in eq. (42) in the high energy calculation of (s; t) channel amplitude in

ref. [37] due to the pole structure of the gamma function Γ(x) for negative real x.
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We are now ready to rederive eq. (4.1) and eq. (4.2) from eq. (2.26). The relevant

kinematics are

kT1 = 0, kT3 ' −E sinφ, (4.6)

kL1 ' −
2p2

M2
' −2E2

M2
, (4.7)

kL3 '
2E2

M2
sin2 φ

2
. (4.8)

One can calculate

z̃Tkk′ = 1, z̃Lkk′ = 1−
(
−s
t

)1/k
e
i2πk′
k ∼ O (1) . (4.9)

The SSA in eq. (2.26) reduces to

A
(rTn ,r

L
l )

st = B

(
− t

2
− 1,−s

2
− 1

)
·
∏
n=1

[(n− 1)!E sinφ]r
T
n
∏
l=1

[
−(l − 1)!

2E2

M2
sin2 φ

2

]rLl
· F (K)

D

(
− t

2
− 1;RTn , R

L
l ;
u

2
+ 2−N ; (1)n , Z̃

L
l

)
. (4.10)

As was mentioned above that, in the hard scattering limit, there was a difference between

the naive energy order and the real energy order corresponding to the
(
αL−1

)rL1 operator in

eq. (2.1). So let’s pay attention to the corresponding summation and write

A
(rTn ,r

L
l )

st = B

(
− t

2
− 1,−s

2
− 1

)
·
∏
n=1

[(n− 1)!E sinφ]r
T
n
∏
l=1

[
−(l − 1)!

2E2

M2
sin2 φ

2

]rLl
·
∑
kr

(
− t

2 − 1
)
kr(

u
2 + 2−N

)
kr

(
−rL1

)
kr

kr!

(
1 +

s

t

)kr
· (· · · ) (4.11)

where we have used (a)n+m = (a)n (a+ n)m and (· · · ) are terms which are not relevant to

the following discussion. We then propose the following formula

rL1∑
kr=0

(
− t

2 − 1
)
kr(

u
2 + 2−N

)
kr

(
−rL1

)
kr

kr!

(
1 +

s

t

)kr

= 0·
(
tu

s

)0
+ 0·

(
tu

s

)−1
+ · · ·+ 0·

(
tu

s

)−[ rL1 +1

2

]
−1

+CrL1

(
tu

s

)−[ rL1 +1

2

]
+O


(
tu

s

)−[ rL1 +1

2

]
+1
.

(4.12)

where CrL1
is independent of energy E and depends on rL1 and possibly scattering angle

φ. For rL1 = 2m being an even number, we further propose that CrL1
= (2m)!

m! and is φ

independent. We have verified eq. (4.12) for rL1 = 0, 1, 2, · · · , 10.
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It should be noted that, taking Regge limit (s→∞ with t fixed) and setting rL1 = 2m,

eq. (4.12) reduces to the Stirling number identity,

2m∑
kr=0

(
− t

2 − 1
)
kr(

− s
2

)
kr

(−2m)kr
kr!

(s
t

)kr
'

2m∑
kr=0

(−2m)kr

(
− t

2
− 1

)
kr

(−2/t)kr

kr!

= 0 · (−t)0+ 0 · (−t)−1+ · · ·+ 0 · (−t)−m+1 +
(2m)!

m!
(−t)−m + O

{(
1

t

)m+1
}
,

(4.13)

which was proposed in [24] and proved in [27].

It was demonstrated in [24] that the ratios in the hard scattering limit in eq. (4.2) can

be reproduced from a class of Regge string scattering amplitudes presented in eq. (3.6).

The key of the mathematical proof [27] was the new Stirling number identity proposed

in eq. (4.13).

In eq. (4.12), the 0 terms correspond to the naive leading energy orders in the hard

SSA calculation. The true leading order SSA in the hard scattering limit can then be

identified

A
(rTn ,r

L
l )

st ' B
(
− t

2
− 1,−s

2
− 1

)
·
∏
n=1

[(n− 1)!E sinφ]r
T
n
∏
l=1

[
−(l − 1)!

2E2

M2
sin2 φ

2

]rLl
· CrL1 (E sinφ)

−2
[
rL1 +1

2

]
· (· · · )

∼ E
N−

∑
n≥2 nr

T
n−
(
2

[
rL1 +1

2

]
−rL1

)
−
∑
l≥3 lr

L
l
, (4.14)

which means that SSA reaches its highest energy when rTn≥2 = rLl≥3 = 0 and rL1 = 2m being

an even number. This is consistent with the previous result presented in eq. (4.1) [6–12].

Finally, the leading order SSA in the hard scattering limit, i.e. rT1 = N − 2m − 2,

rL1 = 2m and rL2 = q, can be calculated to be

A
(N−2m−2q,2m,q)
st ' B

(
− t

2
− 1,−s

2
− 1

)
(E sinφ)N

(2m)!

m!

(
− 1

2M2

)2m+q

= (2m− 1)!!

(
− 1

M2

)2m+q (1

2

)m+q

A
(N,0,0)
st (4.15)

which reproduces the ratios in eq. (4.2), and is consistent with the previous result [6–12].

5 Nonrelativistic scattering limit

In a recent paper [29] both s−t and t−u channel nonrelativistic low energy string scattering

amplitudes of three tachyons and one leading trajectory string state at arbitrary mass

levels were calculated. It was discovered that the mass and spin dependent nonrelativistic

string BCJ relations [34, 35] can be expressed in terms of Gauss hypergeometric functions.

As an application, for each fixed mass level N, the extended recurrence relations among
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nonrelativistic low energy string scattering amplitudes of string states with different spins

and different channels can be derived.

In this section, we intend to rederive the results stated above from the Lauricella

functions. In the nonrelativistic limit | ~k1| �M2, we have

kT1 = 0, kT3 = −
[
ε

2
+

(M1 +M2)
2

4M1M2ε
| ~k1|2

]
sinφ, (5.1)

kL1 = −M1 +M2

M2
| ~k1|+O

(
| ~k1|2

)
, (5.2)

kL3 = − ε
2

cosφ+
M1 +M2

2M2
| ~k1|+O

(
| ~k1|2

)
, (5.3)

kP1 = −M1 +O
(
| ~k1|2

)
, (5.4)

kP3 =
M1 +M2

2
− ε

2M2
cosφ| ~k1|+O

(
| ~k1|2

)
(5.5)

where ε =
√

(M1 +M2)2 − 4M2
3 . One can easily calculate

zTk = zLk = 0, zPk '

∣∣∣∣∣
(

2M1

M1 +M2

) 1
k

∣∣∣∣∣ . (5.6)

The SSA in eq. (2.31) reduces to

A
(rTn ,rPm,rLl )
st '

∏
n=1

[
(n− 1)!

ε

2
sinφ

]rTn ∏
m=1

[
−(m− 1)!

M1 +M2

2

]rPm
·
∏
l=1

[
(l − 1)!

ε

2
cosφ

]rLl
B

(
M1M2

2
, 1−M1M2

)
· F (K)

D

(
M1M2

2
;RPm;M1M2;

(
2M1

M1 +M2

)
m

)
(5.7)

where

K =

m∑
j=1

j

{for all rPj 6=0}

. (5.8)

Note that for string states with rPk = 0 for all k ≥ 2, one has K = 1 and the Lauricella

functions in the low energy nonrelativistic SSA reduce to the Gauss hypergeometric func-

tions F
(1)
D = 2F1. In particular, for the case of rT1 = N1, r

P
1 = N3, r

L
1 = N2, and rXk = 0

for all k ≥ 2, the SSA reduces to

A
(N1,N2,N3)
st =

( ε
2

sinφ
)N1

( ε
2

cosφ
)N2

·
(
−M1 +M2

2

)N3

B

(
M1M2

2
, 1−M1M2

)
·2 F1

(
M1M2

2
;−N3;M1M2;

2M1

M1 +M2

)
, (5.9)
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which agrees with the result obtained in [29] previously. Similarly, one can calculate the

corresponding nonrelativistic t− u channel amplitude as

A
(N1,N2,N3)
tu = (−1)N

( ε
2

sinφ
)N1

( ε
2

cosφ
)N2

·
(
−M1 +M2

2

)N3

B

(
M1M2

2
,
M1M2

2

)
·2 F1

(
M1M2

2
;−N3;M1M2;

2M1

M1 +M2

)
. (5.10)

Finally the ratio of s− t and t− u channel amplitudes is [29]

A
(p,r,q)
st

A
(p,r,q)
tu

= (−1)N
B
(
−M1M2 + 1, M1M2

2

)
B
(
M1M2

2 , M1M2
2

)
= (−1)N

Γ (M1M2) Γ (−M1M2 + 1)

Γ
(
M1M2

2

)
Γ
(
−M1M2

2 + 1
) ' sinπ (k2 · k4)

sinπ (k1 · k2)
(5.11)

where, in the nonrelativistic limit, we have

k1 · k2 ' −M1M2, (5.12a)

k2 · k4 '
(M1 +M2)M2

2
. (5.12b)

We thus have ended up with a consistent nonrelativistic string BCJ relations. We

stress that the above relation is the stringy generalization of the massless field theory BCJ

relation [31] to the higher spin stringy particles.

6 The associate symmetry group of string scattering amplitudes

In the Lie group approach of special functions, the associate Lie group for the Lauricella

function F
(K)
D in the SSA at each fixed K is the SL (K + 3,C) group [30] which contains

the SL (2,C) fundamental representation of the 3+1 dimensional spacetime Lorentz group

SO(3, 1). So sl (K + 3,C) contains the 2+1 dimensional so(2, 1) Lorentz spacetime symme-

try on the scattering plane in our case as well. In the Regge limit, the Lauricella function

in the SSA reduces to the Appell function F1 with associate group SL (5,C) [28], which

is K independent. In the low energy nonrelativistic limit, the Lauricella function in the

SSA reduces to the Gauss hypergeometric function 2F1 with associate group SL (4,C) [30],

which is also K independent.

In sum, we have identified the associate exact SL (K + 3,C) symmetry of string scat-

tering amplitudes with three tachyons and one arbitrary string states of 26D bosonic open

string theory. However, since not all Lauricella functions F
(K)
D with arbitrary independent

arguments can be used to represent SSA, it remained to be studied how the basis states of

each SL(K+ 3,C) group representation for a given K relates to SSA. This important issue

is currently under investigation.

Finally, with the SL (K + 3,C) group and the recurrence relations of the Lauricella

functions F
(K)
D , one can derive infinite number of recurrence relations of SSA of different

string states which are valid for all energies, as long as all the Lauricella functions F
(K)
D in
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the recurrence relation representing the SSA. For a simple example, the following recurrence

relation of F
(K)
D can be verified

cF
(K)
D (bj ; c) + c(xj − 1)F

(K)
D (bj + 1; c) + (a− c)xjF (K)

D (bj + 1; c+ 1) = 0, (6.13)

where F
(K)
D (bj ; c) is the abbreviation for the Lauricella function

F
(K)
D (a; b1, ..., bK ; c;x1, ..., xK). Only relevant arguments of the recurrence relation

are listed for conciseness.

Eq. (6.13) leads to the recurrence relation of SSA(u
2

+ 2−N
)
A

(rTn ,rPm,rLl )
st −

(s
2

+ 1
)
kT3 A

(r′Tn ,rPm,r
L
l )

st = 0, (6.14)

where (r′Tn , r
P
m, r

L
l ) means the group

(
−{rT1 − 1}1,

{
−rT2

}2
, · · · ,

{
−rTn

}n
;RPm, R

L
l

)
of po-

larizations. In eq. (6.13), we have omitted those arguments of F
(K)
D which remain the same

for all three Lauricella functions.
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