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We investigate the visibility of the current and shot-noise correlations of electrical analogs of the optical
Mach-Zehnder interferometer and the Hanbury Brown Twiss interferometer. The electrical analogs are dis-
cussed in conductors subject to high magnetic fields where electron motion is along edge states. The transport
quantities are modulated with the help of an Aharonov-Bohm flux. We discuss the conductance �current�
visibility and shot noise visibility as a function of temperature and applied voltage. Dephasing is introduced
with the help of fictitious voltage probes. Comparison of these two interferometers is of interest since the
Mach-Zehnder interferometer is an amplitude �single-particle� interferometer, whereas the Hanbury Brown
Twiss interferometer is an intensity �two-particle� interferometer. A direct comparison is only possible for the
shot noise of the two interferometers. We find that the visibility of shot noise correlations of the Hanbury
Brown Twiss interferometer as a function of temperature, voltage or dephasing, is qualitatively similar to the
visibility of the first harmonic of the shot noise correlation of the Mach-Zehnder interferometer. In contrast, the
second harmonic of the shot noise visibility of the Mach-Zehnder interferometer decreases much more rapidly
with increasing temperature, voltage or dephasing rate.
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I. INTRODUCTION

With the advent of mesoscopic physics, it has become
possible to experimentally investigate quantum phase coher-
ent properties of electrons in solid state conductors in a con-
trolled way. In particular, in ballistic mesoscopic samples at
low temperatures, electrons can propagate up to several mi-
crons without loosing phase information. This opens up the
possibility of investigating electrical analogs of various op-
tical phenomena and experiments. An investigation of such
analogs is of fundamental interest. On the one hand, it allows
one to establish similarities between the properties of pho-
tons and conduction electrons, a consequence of the wave
nature of the quantum particles. On the other hand, it also
allows one to investigate the differences between the two
types of particles arising from the different quantum statisti-
cal properties of fermions and bosons. For many-particle
properties, such as light intensity correlations or correspond-
ingly electrical current correlations, noise, the quantum sta-
tistical properties are important.1,2 Both the wave-nature of
the particles as well as their quantum statistics are displayed
in a clearcut fashion in interferometer structures. In this work
we are concerned with the electrical analogs of two well
known optical interferometers, the single-particle Mach-
Zehnder �MZ� interferometer and the two-particle Hanbury
Brown Twiss �HBT� interferometer.

The MZ-interferometer is a subject of most textbooks in
optics.3 In the framework of quantum optics, considering in-
dividual photons rather than classical beams of light, the in-
terference arises due to the superposition of the amplitudes
for two different possible paths of a single photon. This leads
to an interference term in the light intensity. The MZ-
interferometer is thus a prime example of a single particle

interferometer.4 Various electronic interferometers with bal-
listic transport of the electrons have been investigated ex-
perimentally over the last decades, as e.g. Aharonov-Bohm
�AB� rings5 and double-slit interferometers.6 Detailed inves-
tigations of dephasing in ballistic interferometers was carried
out in Refs. 7 and 8. Only very recently was the first elec-
tronic MZ-interferometer realized by Ji et al.9 in a mesos-
copic conductor in the quantum Hall regime. A high visibil-
ity of the conductance oscillations was observed, however
the visibility was not perfect. This led the authors to inves-
tigate in detail various sources for dephasing. As a part of
this investigation, also shot noise was measured. Still, some
aspects of the experiment are not yet fully understood. Theo-
retically, Seelig and one of the authors10 investigated the ef-
fect of dephasing due to Nyquist noise on the conductance in
a MZ-interferometer. The effect of dephasing on the closely
related four-terminal resistance in ballistic interferometers11

was investigated as well. Dephasing in ballistic strongly in-
teracting systems is discussed by Le Hur.12,13 Following the
experimental work of Ji et al.,9 Marquardt and Bruder inves-
tigated the effect of dephasing on the shot-noise in MZ-
interferometers, considering dephasing models based on both
classical14,15 as well as quantum fluctuating fields.16 Very
recently, Förster, Pilgram and one of the authors17 extended
the dephasing model of Refs. 10 and 14 to the full statistical
distribution of the transmitted charge.

The HBT-interferometer18–20 was originally invented for
stellar astronomy, to measure the angular diameter of stars. It
is an intensity, or two-particle,4 interferometer. The interfer-
ence arises from the superposition of the amplitudes for two
different two-particle processes. Importantly, there is no
single particle interference in the HBT-interferometer. Con-
sequently, in contrast to the MZ-interferometer there is no
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interference in the light intensity, the interference instead ap-
pears in the intensity-intensity correlations. Moreover, the
intensity-intensity correlation also displays the effect of
quantum statistics. Photons originating from thermal sources
tend to bunch, giving rise to positive intensity cross correla-
tions. For the electronic analog of the HBT-interferometer, it
was the corresponding antibunching of electrons that origi-
nally attracted interest. It was predicted1 that the electrical
current cross correlations in mesoscopic conductors would
be manifestly negative, i.e., display antibunching, as a con-
sequence of the fermionic statistics of the electrons. Negative
current cross correlations were subsequently observed in two
independent experiments.21,22 Recently, antibunching for
field emitted electrons in vacuum was also demonstrated.23

The two-particle interference in the HBT-experiment has re-
ceived much less attention. We emphasize that while the
bunching of the photons was necessary for obtaining a finite,
positive cross correlation signal, it was the two-particle ef-
fect that was of main importance to HBT since the angular
diameter of the star was determined from the two-particle
interference pattern. In electrical conductors, two-particle ef-
fects in AB-interferometers were investigated theoretically in
Refs. 24–26. Only very recently two of the authors and
Sukhorukov27 proposed a direct electronic analog of the op-
tical HBT-interferometer which permits to demonstrate two-
particle interference in an unambiguous way.

In this work we investigate and compare in detail the
current and and zero-frequency noise in electronic MZ and
HBT interferometers. We consider interferometers imple-
mented in mesoscopic conductors in the integer quantum
Hall regime, where the transport takes place along single
edge states and quantum point contacts �QPC’s� serve as
controllable beamsplitters. The effect of finite temperature,
applied bias and asymmetry, i.e., unequal length of the inter-
ferometer arms, is investigated. The strength of the interfer-
ence contribution is quantified via the visibility of the phase
oscillations. The dependence of the visibility on the beam-
splitter transparencies as well as on the temperature, voltage
and asymmetry is discussed in detail. Of interest is the com-
parison of visibility of the shot-noise correlation of the MZ-
interferometer and the HBT-intensity interferometer. Shot
noise correlations in the MZ-interferometer exhibit two con-
tributions, one with the fundamental period of h /e and a
second harmonic with period h /2e. The shot noise correla-
tions in the HBT-interferometer, even though they are due to
two particle processes, are periodic with period h /e. Thus the
Aharonov-Bohm period can not be used to identify the two
particle processes which give rise to the HBT effect. It is
therefore interesting to ask whether the HBT two-particle
processes have any other signature, for instance in the tem-
perature or voltage dependence of the visibility of the shot-
noise correlation. We find that this is not the case. To the
contrary, we find that the shot noise correlations in the HBT
intensity interferometer behave qualitatively similar to the
h /e shot noise correlation in the MZ-interferometer. In con-
trast the h /2e contribution in the shot noise of the MZ-
interferometer decreases more rapidly with increasing tem-
perature, voltage or dephasing rate than the h /e oscillation in
the MZ-or HBT-interferometer.

We investigate dephasing of the electrons propagating
along the edge states by connecting one of the interferometer

arms to a fictitious, dephasing voltage probe. In all cases, the
current and noise of the MZ-interferometer as well as the
noise in the HBT-interferometer, the effect of the voltage
probe is equivalent to the effect of a slowly fluctuating
phase.

II. MODEL AND THEORY

A. Optical analogs in the quantum Hall regime

In the paper we consider implementations of the MZ and
HBT interferometers in mesoscopic conductors in strong
magnetic fields, in the integer quantum Hall regime.28 The
typical system is a two-dimensional electron gas in a semi-
conductor heterostructure, with the lateral confinement of the
electron gas controllable via electrostatic gating. The trans-
port between reservoirs29 connected to the conductor takes
place along edge states.30 The edge states, quantum analogs
of classical skipping orbits, are chiral, the transport along an
edge state is unidirectional. Scattering between edge states is
suppressed everywhere in the conductor except at electro-
statically controllable constrictions, QPC’s.31,32 For a mag-
netic field that does not break the spin degeneracy of the
edge states, each edge state supplies two conduction modes,
one per spin.

These properties make conductors in the integer quantum
Hall regime ideal for realizing analogs of optical experi-
ments. First, the edge states correspond to single mode
waveguides for the light. The unidirectional motion along the
edge states allows for “beams” of electrons to be realized.
Second, the QPC’s work as electronic beam splitters with
controllable transparency. Moreover, due to chirality the
beamsplitters are reflectionless, a property essential for the
MZ and HBT interferometers but difficult to achieve for
beam splitters in conductors in weak �or zero� magnetic
fields.22,33 These properties of conductors in the quantum
Hall regime have been demonstrated experimentally in a
number of works, see e.g., Refs. 9, 21, and 34.

Theoretically, several works have been concerned with
the conductance and noise properties of beamsplitters and
interferometers in quantum Hall systems, for a recent re-
views see, e.g., Refs. 2 and 35. Recently, it was proposed to
use these appealing properties of edge states in the context of
orbital36 quasiparticle entanglement in static27,37,38 and
dynamic39,40 systems as well as for quantum state transfer.41

It is interesting to note that the edge state description also
hold for conductors at even higher magnetic fields, in the
fractional quantum Hall regime. As examples, the fractional
charge has been determined in shot-noise experiments42,43

and the quantum statistical properties of the fractionally
charged quasiparticles have been investigated theoretically in
beamsplitter,44 and HBT �Ref. 45� geometries. Various inter-
ferometer structures have also been considered.46–48 Very re-
cently, a MZ-interferometer in the fractional Quantum Hall
regime was proposed.49 In this work we however consider
only the integer quantum Hall effect, where the quasiparti-
cles are noninteracting and the electrical analogs to optical
experiments can be directly realized.

B. Scattering approach to current and noise

This discussion leads us to consider single mode, multi-
terminal conductors with noninteracting electrons. The prin-
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ciple aim of this work is a comparison of the MZ and HBT-
interferometers. In reality in both interferometers interactions
�screening� play a role both for the voltage and temperature
dependence. A noninteracting scattering approach is not
gauge invariant but requires a treatment of screening.50 How-
ever, these effects are expected to be simliar in the two in-
terferometers and will not affect the main conclusions of this
work. Therefore, below we treat noninteracting quasiparticle
interferometers. The conductors are connected to several
electronic reservoirs, biased at a voltage eV or grounded. The
current51 and the noise1,52 are calculated within the scattering
approach for multiterminal conductors. We first introduce the
creation and annihilation operators for ingoing, â�

†�E� and

â��E�, and outgoing, b̂�
†�E� and b̂��E�, particles, at energy E

in terminal �. For simplicity we suppress spin notation. Con-
sidering a conductor with N terminals, the in- and outgoing
annihilation operators are related via the N�N scattering
matrix, as

b̂��E� = �
�=1

N

s���E�â��E� , �1�

where s���E� is the amplitude to scatter from terminal � to
terminal �. The current operator in the lead � has the form51

Î��t� =
e

h
�
��
� dEdE� exp�i�E − E��t/��

� A��
� �E,E��â�

†�E�â��E�� , �2�

with the notation

A��
� �E,E�� = ������ − s��

* �E�s���E�� . �3�

The average current is given by51

�I�� =� dEj��E� , �4�

where the spectral current density is

j��E� =
1

e
�
�

G���E�f��E� . �5�

Here f��E�=1/ �1+exp��E−eV�� /kBT�� is the Fermi Dirac
distribution of terminal �, with V� the corresponding applied
voltage. The spectral conductance G���E� is given by

G���E� =
e2

h
A��

� �E,E� . �6�

The zero frequency correlator between current fluctuations in
terminals � and � is defined as

S�� =� dt�	Î��0�	Î��t� + 	Î��t�	Î��0�� , �7�

where 	Î��t�= Î��t�− �Î��t��. The current correlator is given
by1,52

S�� =� dES���E� , �8�

where

S���E� =
2e2

h
�
��

A��
� �E,E�A��

� �E,E�f��E��1 − f��E�� �9�

is the spectral current correlator.

C. Dephasing voltage probe model

There are several physical mechanisms that might lead to
dephasing of the electrons propagating along the edge states
�see e.g., the discussion in Ref. 9�. In this work we are not
interested in any particular mechanism for dephasing but
consider instead a phenomenological model, a dephasing
voltage probe. The idea of using a voltage probe to induce
dephasing was introduced in Refs. 53 and 54. A voltage
probe connected to a mesoscopic sample was considered,
leading to a suppression of coherent transport due to inelastic
scattering. The probe model, originally considered for the
average current, was extended to treat the effect of inelastic
scattering on shot noise by Büttiker and Beenakker55 by con-
sidering a conservation of current fluctuations at the probe as
well. Later De Jong and Beenakker56 extended the voltage
probe concept and introduced a �fictitious� voltage probe
which breaks phase but does not dissipate energy. Scattering
in the voltage probe is �quasi-�elastic. This is achieved with
the help of a distribution function in the voltage probe which
conserves not only total current like a real voltage probe, but
conserves current in every small energy interval. Such a
probe provides a model of pure dephasing. The different
probe models have been used as qualitative models in a num-
ber of works, see Refs. 2 and 57 for a review. For an appli-
cation to quantum Hall systems, see Ref. 58.

In this work we consider the dephasing voltage probe
model, which conserves the current at each energy. The
model is based on the assumption that the current is con-
served on a time scale 
C, much shorter than the time of the
measurement but much longer than the time between injec-
tion of individual electrons, here of the order of � / eV. One
could however consider a more general voltage probe model
that takes into account a more complicated dynamics of the
probe. A detailed discussion of such a general model in the
light of recent work14,15,59,60 is however deferred to a later
work. Here we only note that below we find that the voltage
probe in both the MZ and HBT-interferometers only gives
rise to a suppression of the phase dependent terms in con-
ductance and noise, just as one would naively expect to be
the effect of pure dephasing.

The condition of zero current into the fictitious probe � at
each energy is fulfilled by considering a time dependent dis-
tribution function of the probe

f��E,t� = f̄��E� + �f��E,t� , �10�

where �f��E , t� fluctuates to conserve current on the times-
cale 
C. As a consequence, the spectral current density at
each energy in lead � fluctuates in time as
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j��E,t� = j��E� + 	j��E,t� , �11�

where the fluctuations 	j��E , t�=�j��E , t�
+ �1/e�G���E��f��E , t� consist of two parts, the intrinsic
fluctuations �j��E , t� and the additional fluctuations due to
�f��E , t�. The requirement of zero average current into the
probe, j��E�=0, leads to the averaged distribution function at
the probe reservoir �

f̄��E� = − �
���

G���E�
G���E�

f��E� . �12�

The average spectral current density j�
dp�E� is then found

from Eq. �5�.
The fluctuating part of the distribution function, �f��E , t�,

is obtained from the requirement of zero current fluctuations
into the probe, 	j��E , t�=�j��E , t�+ �1/e�G���E��f��E , t�=0.
The total current density fluctuation is then given by

	j��E,t� = �j��E,t� −
G���E�
G���E�

�j��E,t� . �13�

As a result, in the presence of dephasing the total spectral
current correlation S��

dp �E� is

S��
dp �E� = S���E� −

G���E�
G���E�

S���E� −
G���E�
G���E�

S���E�

+
G���E�G���E�

G��
2 �E�

S���E� , �14�

where S���E� is the correlation function between the intrinsic
current fluctuations, �j� and �j�, of contact � and �, given
by Eq. �9�, and G���E� is the conductance, given by Eq. �6�.

III. MACH-ZEHNDER INTERFEROMETERS

A schematic of the MZ-interferometer is shown in Fig. 1.
An incident beam of light from source 1 is divided in two
parts at the semitransparent beamsplitter A. The two partial
beams are reflected at mirrors and later joined at the second

beamsplitter B. Beams of light going out from B are detected
in 3 and 4. The amplitude of the light in an outgoing beam is
the sum of the amplitudes for the two partial beams, A
=A1 exp�i�1�+A2 exp�i�2�. This gives an intensity 	A	2

= 	A1	2+ 	A2	2+2 Re
A1A2
* exp�i��1−�2���. The interference

term 2 Re
A1A2
* exp�i��1−�2��� thus contains the difference

between the geometrical phases, �1−�2. Importantly, the
four terminal geometry together with the reflectionless beam-
splitters lead to an incident beam that traverses the interfer-
ometer only once. This is a defining property of the MZ-
interferometer.

We then turn to the electric analog of the MZ-
interferometer, shown in Fig. 2. As pointed out above, sev-
eral results for the current and noise are available in the
literature.10,11,14–17 Here we analyze the most general situa-
tion possible, with finite voltage, temperature, and interfer-
ometer arm asymmetry as well as different beamsplitters A
and B with arbitrary transparency. When we consider limit-
ing cases, e.g., small temperature, bias or asymmetry, known
results are recovered. This detailed analysis of the MZ-
interferometer is of importance when comparing to the HBT-
interferometer below.

We first discuss a fully coherent interferometer, the effect
of dephasing is investigated below. An electric potential eV
is applied at terminal 1, all other terminals are kept at zero
potential. The injected electrons propagate along single edge
states. Scattering between the edge states can take place only
at the two QPC’s, acting as beamsplitters with controllable
transparency. The beamsplitters j=A ,B are characterized by
the scattering matrices

FIG. 1. �Color online� An optical Mach-Zehnder interferometer.
A beam of light incident from 1 is split in two partial beams at the
semitransparent beamsplitter A. The two partial beams acquire geo-
metrical phases �1 and �2, respectively, and are rejoined at the
second beamsplitter B. The light intensity is measured in detectors 3
and 4.

FIG. 2. �Color online� The electronic analog of the MZ-
interferometer, implemented by Ji et al. �Ref. 9� in a conductor in
the quantum Hall regime. The electronic reservoir 1 is biased at eV
and reservoirs 2–4 are kept at ground. The edge states �solid lines�
have a direction of transport indicated by arrows. The QPC’s A and
B play the role of the beam splitters in Fig. 1. Geometrical phases
�1 and �2 and the AB-flux � are shown.
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�i
Rj

T j


T j i
Rj
� , �15�

where T j and Rj =1−T j are the transmission and reflection
probabilities, respectively. We note that any additional
phases of the beamsplitters just give rise to a constant phase
shift of the oscillations in the interference terms and are
therefore not considered.

Propagating along the edge states, the electrons pick up
geometrical phases �1 and �2 as well as phases 
1 and 
2
due to the AB-flux � through the center of the interferom-
eter. For example, the amplitude for scattering from terminal
1 to 4 is given by

s41 = i
TBRAei��1+
1� + i
TARBei��2−
2�. �16�

For the geometrical phases, to be specific we consider the
case when the potential landscape eU�x ,y� of the conductor
in Fig. 2 is varying smoothly on the scale of the magnetic
length lB= �� /e	B	�1/2, with Bẑ the applied magnetic field per-
pendicular to the plane in Fig. 2 �the effect of selfconsistency
of the potential61 is neglected�. This allows for a semiclassi-
cal treatment.62 In a high magnetic field the edge states at
Fermi energy EF follow equipotential lines determined by
eU�x ,y�=EF−��c�n+1/2� where �c=eB /m is the cyclotron
frequency and m the effective electron mass. We are con-
cerned here with the case where there is only one edge state
and thus n=0. Suppose the x-axis is a line intersecting quan-
tum point contacts A and B in Fig. 2. Excluding self-
intersections we can express the edge state in terms of func-
tions y1�x� and y2�x� for the left and right path of the
interferometer. Working in the symmetric gauge, the geomet-
ric phases can be written62 �i=−lB

−2�xA

xBdxyi�x�, where xA and
xB are the locations of the QPC’s. Importantly, �1−�2 cor-
responds to the total area A enclosed by these two paths
divided by the magnetic length squared, or �1−�2
=2�BA /�0, where BA is the total flux through the enclosed
area and �0=h /e the elementary flux quantum. Note that the
Aharonov-Bohm flux � adds an additional phase 
1 and 
2,
with 
1+
2=2�� /�0, to each of the paths.

For the discussion of the temperature and voltage depen-
dence of the current and the noise, we also need to know the
energy dependence of the phases. First, instead of parameter-
izing the edge state through x we introduce the parameter s
which measures directly the path length, i.e., x�s� ,y�s�. In
addition at s we introduce local coordinates s� along and s�

perpendicular to the equipotential line. In these coordinates,
an edge state that follows the equipotential line at a small
energy E away from EF acquires the additional phase 	�=
−lB

−2�ds	s� with e�dU /ds��	s�=E. The potential gradient
dU /ds� determines the local electric field F�s�=−dU /ds� at
s. But eF�s�lB

2 =�vD�s�, where vD�s�=F�s� /B is the drift ve-
locity of the guiding center of the cyclotron orbit at point s of
the edge state. Thus a small increase in energy leads to a
phase increment given by 	�i=�ds�1/�vD�si��E. A rough
estimate using a drift velocity which is constant along the
edge gives 	�i��Li /�vD�E with Li the length of the edge
state i. For the phase-difference of the two interfering paths
we have

�1�E� − �2�E� = 	��EF� + E/Ec �17�

with 	��EF�=�1�EF�−�2�EF� the equilibrium phase differ-
ence. Formally, higher order terms in energy can be ne-
glected for characteristic energies kBT and eV much smaller
than �dU /ds��2 / �d2U /ds�

2 �. The asymmetry of the two
edges thus gives rise to an energy scale Ec
= 
�ds�1/�vD�s1��−�ds�1/�vD�s2���−1 which is due to the
mismatch of the edge state path lengths, i.e., Ec
��vD / �	L� with 	L=L1−L2. In principle, for a completely
symmetric interferometer one has Ec→�.

Given the scattering amplitudes s��, the spectral current
density is found from Eqs. �3�, �5�, and �6�. For example,
terminal 4, one gets

j4�E� = �e/h��f�E� − f0�E���TARB + TBRA

+ 2
TATBRARB cos�E/Ec + ��� , �18�

where we introduce the total, energy independent phase �
=	��EF�+2�� /�0. Here f0�E� is the distribution functions
of the grounded terminals 2, 3, and 4 and f�E�= f0�E−eV�
the distribution function of terminal 1. The current is then
given from Eq. �4�, as

I4 =
e

h
��TARB + TBRA�eV + 
TATBRARB

� 4�kBT csch� kBT�

Ec
�sin� eV

2Ec
�cos� eV

2Ec
+ ��� .

�19�

Current conservation gives I3= �e2 /h�V− I4. The current con-
sists of two physically distinct parts. The first term in Eq.
�19� is the phase independent, incoherent part, the current in
the absence of interference, while the second, phase depen-
dent term is the interference contribution. We note that a bias
eV of the order of the asymmetry energy Ec leads to the
phase shifts of the oscillation. The strength of the interfer-
ence can conveniently be quantified via the visibility as

�I =
Imax − Imin

Imax + Imin
=

amp�I�
�I�

, �20�

which gives for the current in the MZ-interferometer

�I,MZ =

TATBRARB

TARB + TBRA

4�kBT

eV
csch� kBT�

Ec
��sin� eV

2Ec
�� .

�21�

The visibility is a product of a term containing the QPC
scattering probabilities and a function depending on the en-
ergy scales kBT, eV, and Ec. The scattering probability term
is maximum for identical QPC’s, TA=TB. The energy scale
dependence is shown in Fig. 3 where the visibility for iden-
tical point contacts is plotted as a function of the normalized
temperature, kBT /Ec. We note several interesting features
from Fig. 3 and Eq. �21�. �i� the visibility shows decaying
oscillations as a function of voltage �I,MZ
� 	sin�eV/2Ec�	 / eV for arbitrary temperature. �ii� A symmet-
ric MZ-interferometer, Ec�kBT, eV, has unity visibility �for
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TA=TB�, i.e., shows perfect interference. �iii� The visibility
decays monotonically with increasing temperature. For large
temperatures, kBT�Ec, the visibility decays exponentially
with the temperature as �I,MZ�kBT exp�−�kBT /Ec�.

It is interesting to compare the calculated visibility to the
experimentally measured one in Ref. 9. As already shown in
Ref. 9, the measured scattering probability dependence of
�I,MZ is well reproduced by Eq. �21�. For the energy scale
dependence, no information about the drift velocity vD or the
asymmetry 	L needed to determine Ec is provided in Ref. 9.
However, to obtain the order of magnitude of Ec, considering
as a rough estimate a typical drift velocity63 vD�104 m/s at
a magnetic field B�1 T and an asymmetry 	L�0.1 �m
gives an Ec corresponding to an applied bias �10 �V or a
temperature �100 mK. These values are typically of the
same order of magnitude as the ones considered in the ex-
periment. As a first approximation, one would thus expect
asymmetry effects to be of importance. The observed tem-
perature dependence, a strong decrease of the visibility for
increased temperature, is also qualitatively described by Eq.
�21� with an Ec /kB�50 mK. This is however not the case
with the voltage dependence. Ji et al. find a differential vis-
ibility, i.e., the visibility of dI�V� /dV, which decays strongly
with applied voltage, while Eq. �19� predicts a constant, volt-
age independent differential visibility. There are several pos-
sible explanations to why the voltage dependence in contrast
to the temperature dependence is not reproduced by the
theory. Ji et al. themselves point out two voltage dependent
dephasing mechanism: low frequency noise of 1 / f type due
to moving impurities, induced by a higher current and fast
fluctuations of the potential landscape �and hence of the
phase via the enclosed area� caused by screening of the ad-
ditional charges injected at higher current. Screening might
also, for the nonlinear current-voltage characteristics pre-
dicted by Eq. �19�, lead to a voltage dependent renormaliza-
tion of the transmission probabilities, introducing a voltage
dependence in the differential visibility.50,64 We also note that
in the model of Ref. 16, inducing dephasing by coupling the
MZ-interferometer to a quantum bath, gives a dephasing rate
that increases with increasing voltage. Clearly, further inves-
tigations are needed to clarify the origin of the dephasing in
the experiment in Ref. 9.

Turning to the noise, we focus on the cross correlator
between currents flowing in terminals 3 and 4 �the autocorr-

elator can be obtained analogously�. This allows for a
straightforward comparison to the result of the HBT-
interferometer, for which the cross correlator was investi-
gated in Ref. 27. From Eqs. �8� and �9� and the expressions
for the scattering amplitudes, we arrive at the noise spectral
density

S34�E� =
− 2e2

h
�f�E� − f0�E��2�c0 + c� cos� E

Ec
+ ��

+ c2� cos�2� E

Ec
+ ���� , �22�

with coefficients

c0 = TARA + TBRB − 6TARATBRB,

c� = 2�TA − RA��TB − RB�
TATBRARB,

c2� = 2TATBRARB. �23�

Performing the energy integrals in Eq. �8� we find for the
cross correlator

S34 = −
2e2

h
�c0S̄0 + c�S̄� cos� eV

2Ec
+ ��

+ c2�S̄2� cos�2� eV

2Ec
+ ���� , �24�

where we introduce the functions

S̄0 = eV coth
eV

2kBT
− 2kBT , �25�

and

S̄m� = 2�kBT csch�m�kBT

Ec
��coth� eV

2kBT
�sin�meV

2Ec
�

−
mkBT

Ec
cos�meV

2Ec
�� �26�

with m=1,2, containing the dependence on the energy scales
eV, kBT, and Ec.

Just as the current in Eq. �19�, the noise consists of a
phase independent, incoherent part and a phase dependent,
interference part. However, in contrast to the current, the
phase dependent part of the noise contains two terms with
different periods in �, corresponding to oscillations periodic
in h /e and h /2e. These terms result from two-particle scat-
tering processes which enclose the AB-flux one and two
times respectively. Similarly to the current, the phase of the
oscillations are shifted for a bias eV of the order of the asym-
metry energy Ec.

It is important to note that in the MZ �in contrast to the
HBT� interferometer, two particle and higher order scattering
processes are just products of single particle scattering pro-
cesses. The full distribution of current fluctuations17 is thus a
function of single particle scattering probabilities only. In
particular, the noise spectral density S34�E� in Eq. �22� is
proportional to −	s41	2	s31	2, i.e., partition noise1 with phase
dependent scattering probabilities. As a consequence, the

FIG. 3. �Color online� Current visibility of the Mach-Zehnder
interferometer �I,MZ versus normalized temperature kBT /Ec for TA

=TB.
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phase independent, incoherent part of the noise cannot be
understood as partition noise from incoherent single particle
processes, i.e., �	s41	2�inc�	s31	2�inc� �	s41	2	s31	2�inc. This is for-
mally clear since the term proportional to cos2 �= �1
+cos�2��� /2, from two coherent scattering processes, obvi-
ously contribute to the phase independent part of the noise.
As a consequence, as shown by Marquardt and Bruder,14,15 a
model2 with a filled stream of classical particles injected
from reservoir 1 correctly reproduces the incoherent part of
the current but fails to reproduce the incoherent part of the
noise. In contrast, as found in Ref. 15 and further discussed
below, the completely dephasing voltage probe model cor-
rectly reproduces the incoherent part of both the current and
the noise.

To quantify the strength of the oscillations we introduce
two separate quantities, �N,MZ

� and �N,MZ
2� , here simply called

visibilities, which in close analogy to the current visibility in
Eq. �21� are defined as the ratio of the amplitudes of the
noise oscillations and the average noise. They become

�N,MZ
� =

	c�S̄�	

c0S̄0

�27�

and

�N,MZ
2� =

	c2�S̄2�	

c0S̄0

. �28�

Similarly to the current, both visibilities are products of a
term containing the scattering probabilities and a function of
the energy scales eV, kBT, and Ec. We first focus on the
scattering probability dependent term by considering the vis-
ibility in the limit of a symmetric interferometer, Ec�eV,
kBT, where the energy-scale dependent terms are unity. This
gives

�N,MZ
� =

2	�TA − RA��TB − RB�	
TATBRARB

TARA + TBRB − 6TARATBRB
�29�

and

�N,MZ
2� =

2TATBRARB

TARA + TBRB − 6TARATBRB
. �30�

The two visibilities are plotted in Fig. 4. Both visibilities are
symmetric under the substitutions TA↔RA and TB↔RB. The
visibility �N,MZ

� is zero for TA=RA=1/2, i.e., for a symmetric
setting of any of the QPC’s. The visibility increases for in-
creasing QPC asymmetry, reaching a maximum for 0�TA
�0.5 and 0�TB�0.5 �unity only in the limit TA ,TB�1� and
then decreases again toward zero at TA=0 or TB=0. Interest-
ingly, the visibility �N,MZ

2� shows an opposite behavior. It is
maximum, equal to unity, at TA=TB=1/2 and then decreases
monotonically for increasing QPC asymmetry, reaching zero
at TA=0 or TB=0. This different dependence on the scatter-
ing probabilities makes it possible to investigate the two os-
cillations independently by modulating the QPC transparen-
cies.

Turning to the energy scale behavior, we consider for sim-
plicity �N,MZ

� in the limit TA ,TB�1 and �N,MZ
2� in the limit

TA=TB=1/2 where respective scattering probability terms
are unity. For a symmetric interferometer, i.e., Ec�eV,kBT,
both visibilities are unity. Considering the situation when the
temperature is comparable to the asymmetry energy scale Ec
but the voltage is small eV�kBT, Ec, we get the visibilities
�m=1,2�

�N,MZ
m� =

m�kBT

Ec
csch�m�kBT

Ec
��1 + �mkBT

Ec
�2� . �31�

The temperature dependence of the visibilities are
shown in Fig. 5. Both visibilities decrease monotonically
with increasing temperature. For large temperature

FIG. 4. �Color online� Noise visibility �N,MZ
� �a� of the h /e and

�N,MZ
2� �b� of the h /2e oscillations in the shot noise of the Mach-

Zehnder interferometer versus transmission TA of beamsplitter A for
Ec�kBT, eV for various transmission probabilities TB of beamsplit-
ter B.

FIG. 5. �Color online� Noise visibilities �N,MZ
� �for TA ,TB�1� of

the h /e oscillations �solid curve� and �N,MZ
2� �for TA=TB=1/2� of the

h /2e oscillations �dashed curve� in the shot noise correlation of a
Mach-Zehnder interferometer versus kBT /Ec for eV�kBT, Ec

�thick, red curve� and versus eV/Ec for kBT�Ec, eV �thin, blue
curve�.
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kBT�Ec, the visibilities decay exponentially as �N,MZ
�

� �kBT�3exp�−�kBT /Ec� and �N,MZ
2� � �kBT�3 exp�−2�kBT /Ec�.

The visibility �N,MZ
2� is thus considerably more sensitivity to

thermal smearing than �N,MZ
� . In the opposite limit, for a

small temperature but a voltage comparable to Ec, i.e., kBT
�Ec, eV, we instead get the visibilities

�N,MZ
m� =

2Ec

meV
�sin�meV

2Ec
�� . �32�

The visibilities as a function of voltage are plotted in Fig. 5.
Both visibilities show an oscillating behavior, decaying as a
power law �1/eV with increasing voltage. The period of
oscillations, in eV, is 2�Ec for �N,MZ

� but �Ec for �N,MZ
2� , half

the value for �N,MZ
� . The different voltage dependence gives

an additional possibility to investigate the two visibilities
independently.

In the experiment of Ji et al.9 the noise was measured in
the high voltage regime, with the interference terms in both
the current and noise completely suppressed. The depen-
dence of the incoherent noise on the transparencies TA and
TB was investigated �TA was kept at 1 /2 and TB was varied�.
A good agreement was found with the first, incoherent term
in Eq. �24�. Taken the open questions on the effect of deco-
herence on the average current, a detailed experimental in-
vestigation on the phase dependent, interference part of the
noise would be of great interest.

Effect of dephasing

Next we consider the effect of dephasing on the current
and noise. As discussed above, dephasing is introduced by
connecting one of the two arms of the interferometer to a
fictitious, dephasing voltage probe. The interferometer with
the probe, denoted terminal 5, is shown in Fig. 6. The
dephasing probe is connected to the edge via a contact de-
scribed by a scattering matrix

�
1 − � i
�

i
� 
1 − �
� , �33�

where the dephasing parameter � varies between 0 �no
dephasing, fully coherent transport� and 1 �complete dephas-
ing, fully incoherent transport�. The presence of the dephas-
ing probe modifies the amplitudes for scattering between the
terminal 1, 2, 3, and 4. As an example, the scattering ampli-
tude s41, given in Eq. �16� in the absence of dephasing, now
becomes

s41��� = i
TBRAei��1+
1� + i
1 − �
TARBei��2−
2�. �34�

In addition, amplitudes for scattering into and out from
the probe terminal 5 have to be considered. The current is
obtained from Eqs. �4�, �5�, and �12�. For the current in ter-
minal 4, we find

I4
dp =

e

h
��TARB + TBRA�eV

� 
1 − �
TATBRARB4�kBT csch� kBT�

Ec
�

� sin� eV

2Ec
�cos� eV

2Ec
+ ��� . �35�

Comparison with the result in the absence of dephasing in
Eq. �19� shows that the effect of the dephasing is to suppress
the phase-dependent oscillations by multiplying the phase-
dependent interference term with a factor 
1−�. For com-
plete dephasing �=1, the phase dependent term is com-
pletely suppressed. The effect of dephasing can thus be
simply incorporated in the visibility as

�I,MZ
dp = 
1 − ��I,MZ, �36�

where �I,MZ is the visibility of the current oscillations in the
absence of dephasing, given by Eq. �21�. As is clear from the
discussion above, to account for the experimental observa-
tions in Ref. 9, one would have to consider a voltage depen-
dent dephasing parameter �.

Turning to the noise, we obtain the cross correlator be-
tween currents in lead 3 and 4 in the presence of dephasing
from Eqs. �8� and �14�, giving

S34
dp = −

2e2

h
�c0S̄0 + c�S̄�


1 − � cos� eV

2Ec
+ ��

+ c2�S̄2��1 − ��cos�2� eV

2Ec
+ ���� . �37�

Here the terms c0, c� c2�, S̄0, S̄�, and S̄2� are defined above
in Eqs. �23� and �25�. Similarly to the current, the effect of
the dephasing is only to suppress the amplitude of the phase-
dependent oscillations. That is what one would naively ex-
pect to be the consequence of pure dephasing. The two
phase-dependent terms are however affected differently, the
cos � term is suppressed by a factor 
1−� while the cos 2�
term is suppressed by �1−��. The cos 2� oscillations are
thus more strongly suppressed. The visibilities of the two

FIG. 6. �Color online� The electrical MZ-interferometer, Fig. 2,
with a dephasing voltage probe, 5, attached along one edge.
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oscillations in the presence of dephasing can simply be writ-
ten

�N,MZ
�,dp = 
1 − ��N,MZ

� �38�

and

�N,MZ
2�,dp = �1 − ���N,MZ

2� , �39�

where �N,MZ
� and �N,MZ

2� are the visibilities for the noise oscil-
lations in the absence of dephasing, given by Eqs. �27� and
�28�, respectively.

Importantly, both oscillating terms are fully suppressed
for complete dephasing, �=1. Complete dephasing within
the voltage probe model thus gives a noise expression that
only consists of the phase independent, incoherent term in
Eq. �22�. We note already here that the same result is found
below for the HBT-interferometer. Since quantum interfer-
ence by definition is excluded from the model, i.e., all scat-
tering phases are neglected, the completely dephasing volt-
age probe thus constitutes a classical model that correctly
reproduces the incoherent part of the noise. As pointed out
above, a more detailed discussion of the physics of the volt-
age probe and a comparison with Refs. 14, 15, and 59 is
deferred to a later work.

It is interesting to note that the effect of dephasing intro-
duced with the voltage probe, both for the current and noise,
is for arbitrary coupling to the voltage probe identical to a
phase averaging. The result in Eqs. �38� and �39� can be
obtained by averaging the fully coherent expressions in Eqs.
�27� and �28� with respect to a Lorentzian distribution ����
of slow fluctuations of the phase � around the average value
�0, as

� d�����cos�n�� = �1 − ��n/2 cos�n�0� �40�

with the Lorentzian distribution

���� =
a/�

�� − �0�2 + a2 , a = − �1/2�ln�1 − �� . �41�

We note that, as pointed out in Ref. 15, a Gaussian distribu-
tion of the phase fluctuations gives a different result, not
consistent with the dephasing voltage probe approach for
arbitrary coupling to the voltage probe.

We emphasize that the results above are independent on to
which edge the probe is connected. Moreover, we also point
out that the effect of the voltage probes, for arbitrary �, is
multiplicative, i.e., attaching n voltage probes at arbitrary
places along the arms can be described by renormalizing
1−�→ �1−��n. Writing �1−��n=exp�n ln�1−���
=exp�−L /L��, with L�=−d / ln�1−�� and L=nd with d the
distance between two probes, we can quite naturally incor-
porate the effect of a uniform distribution of probes into a
dephasing length L�. The suppression of the visibilities of
the h /e and h /2e oscillations due to dephasing in Eqs. �38�
and �39� are then modified as �1−��1/2→exp�−L /2L�� and
�1−��→exp�−L /L��.

IV. HANBURY BROWN TWISS INTERFEROMETERS

The HBT-interferometer is less well known than the MZ-
interferometer and deserves some additional comments.65

The HBT-interferometer was invented as a tool to measure
the angular diameter of stars. The first measurement18 was
carried out on a radio star in 1954. Compared to existing
schemes based on Michelson interferometers, the HBT-
interferometer proved to be less sensitive to atmospheric
scintillations, which allowed for a more accurate determina-
tion of the angular diameter. After having demonstrated a
table-top version of the interferometer in the visual range,19

the angular diameter of the visual star Sirius was
determined.20

The experimental results, both the two-particle interfer-
ence and the positive intensity cross correlations, were suc-
cessfully explained within a semiclassical framework. Soon
after the experiments, it was however shown by Purcell66

that the positive cross correlations could be explained in
terms of bunching of individual photons, emerging from the
star, a thermal source of light. This bunching was also dem-
onstrated explicitly in subsequent photo counting
experiments.67,68 The HBT experiment thus laid the founda-
tions for quantum statistical methods in quantum optics.69

The HBT approach has also been of importance in experi-
mental particle physics.70 It is interesting to note that positive
intensity cross correlations between beams of light emerging
from a thermal source, according to some contemporary71,72

“would call for a major revision of some fundamental con-
cepts in quantum mechanics.” Purcell,66 however, providing
an elegant explanation of the bunching phenomena, pointed
out that “the Hanbury Brown Twiss effect, far from requiring
a revision of quantum mechanics, is an instructive illustra-
tion of its elementary principles.”

An optical table-top version73,74 of the HBT-
interferometer is shown in Fig. 7. A beam of light is emitted
from each one of the sources 2 and 3, completely uncorre-
lated with each other. The beams are split in two partial
beams at the semitransparent beam splitters C and D respec-
tively. The partial beams acquire phases �1 to �4 before

FIG. 7. �Color online� Two-source, four-detector optical Han-
bury Brown Twiss geometry proposed in Ref. 27. Two beams of
light incident from 2 and 3 are split in partial beams at the semi-
transparent beamsplitters C and D. The partial beams acquire geo-
metrical phases �1–�4 and are rejoined in the beamsplitters A and
B. The light intensity is measured in detectors 5–8.
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scattering at the second pair of beam splitters A and B. The
resulting beams are collected in detectors at ports 5 to 8.

Importantly, there is no interference pattern in the inten-
sities at the detectors 5 to 8, instead the interference occurs
only in the cross correlations between intensities at 5, 6 and
7, 8. The intensity cross correlations are sensitive to the two-
particle amplitudes: the interference is thus between two dif-
ferent two-particle scattering events, e.g. �i� one particle
from 2 scatters to 5 and one particle from 3 scatters to 8, with
an amplitude A1 exp�i��1+�2�� and �ii� one particle from 2
scatters to 8 and one particle from 3 scatters to 5, with an
amplitude A2 exp�i��3+�4��. The amplitude to detect one
particle in 5 and one in 8 is then the sum of the two two-
particle amplitudes. This is the case since both scattering
processes have the same initial and final states and cannot
be distinguished. The �reducible� cross correlation between
intensities in 5 and 8 is directly related to the corre-
sponding two-particle probability 	A1 exp�i��1+�2��
+A2 exp�i��3+ �4��	2 = 	A1	2+ 	A2	2+2 Re
A1A2

* exp�i��1+�2

−�3−�4���. The interference term 2 Re
A1A2
* exp�i��1+�2

−�3−�4��� contains the four geometrical phases �1 to �4.
The HBT-interferometer is thus, in contrast to the MZ-
interferometer, a two-particle interferometer.

The electrical analog of the HBT-interferometer, pre-
sented in Ref. 27, is shown in Fig. 8. It consists of a �rect-
angular� conductor with a hole in the middle, a Corbino ge-
ometry. Similar to the MZ-interferometer, the electrons
propagate along single edge states. Scattering between the
edge states take place only at the beamsplitters A–D. The
beamsplitters are described by scattering matrices given by
Eq. �15�. We first consider the fully coherent case. In contrast
to the MZ-interferometer, the scattering amplitudes contain
the phases �i and 
i only via multiplicative phase factors. As
an example, the amplitude to scatter from terminal 2 to ter-
minal 5 is given by

s52 = 
TATCei��1−
1�. �42�

As a consequence, the average currents which depend only
on the modulus squared of the scattering amplitudes �see
Eqs. �4� and �6�� do not contain any scattering phases. We get
the currents at terminals 5–8 as

I5 = �e2/h�V �TATC + RARD� ,

I6 = �e2/h�V �TARD + RATC� ,

I7 = �e2/h�V �TBRC + RBTD� ,

I8 = �e2/h�V �TBTD + RBRC� . �43�

Turning to the current noise, the correlation between currents
in terminals 5,6 and 7,8 is given by Eq. �9�. We find for the
spectral density for the correlators between terminal 5 and 8

S58�E� =
− 2e2

h
�f�E� − f0�E��2
c0,58 + c� cos�E/Ec + ���

�44�

with the coefficients

c0,58 = TARBTCRC + TBRATDRD;

c̄� = 2 �
j=A,B,C,D


T jRj , �45�

and for the correlator between terminal 5 and 7

S57�E� =
− 2e2

h
�f�E� − f0�E��2
c0,57 + c̄� cos�E/Ec + ���

�46�

with the coefficient

c0,57 = TATBTCRC + RARBTDRD. �47�

Performing the energy integrals in Eq. �9�, we obtain the
corresponding current cross correlators

S58 =
− 2e2

h
�c0,58S̄0 + c̄�S̄� cos� eV

2Ec
+ ��� �48�

and

S57 =
− 2e2

h
�c0,57S̄0 + c̄�S̄� cos� eV

2Ec
+ ��� . �49�

Here S̄0 and S̄� are given by Eqs. �25� and �26�. The other
two correlators S67 and S68 are given by the substitutions
S67=S58 �TC↔TD� and S68=S57 �TC↔TD�. Here, as for the
MZ-interferometer we have �=	��EF�+2�� /�0 with
	�=�1+�2−�3−�4 and �i=1

4 
i=2�� /�0.
Several observation can be made from the results above,

put in comparison with the result for the noise correlations
for the MZ-interferometer in Eq. �24�. Just as for the MZ-
interferometer, the noise consists of an incoherent, phase in-
dependent part, and a coherent, interference part. The phase
dependent part of the noise in Eqs. �48� and �49� however

FIG. 8. �Color online� Two-source, four-detector electrical Han-
bury Brown Twiss geometry implemented in a conductor in the
quantum Hall regime. The electronic reservoirs 2 and 3 biased at eV
and reservoirs 1 and 4 to 8 are kept at ground. The edge states �solid
lines� have a direction of transport indicated by arrows. The QPC’s
A and B play the role of the beamsplitters in Fig. 7. Geometrical
phases �1 to �4 and the AB-flux � are shown.
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contains only one term. The amplitude of the oscillating term
is a product of a scattering probability term and an energy-
scale dependent function, just as for the MZ-interferometer.
This phase dependent term has the same dependence on the
phase �, the same voltage dependent phase shift as well as
the same energy-scale dependence as the second term in Eq.
�24�. This is the case since they both arise from processes
which enclose the AB-flux once. Despite the fact that in the
HBT interferometer the AB-effect results from two-particle
processes, the periodicity is determined by the single elec-
tron flux quantum h /e. The dependence on the scattering
probabilities is however different, a consequence of the MZ
and HBT interferometer geometries being different. Impor-
tantly, there is no term in the noise in Eqs. �48� and �49� that
corresponds to the last term in Eq. �24�, describing processes
which enclose the AB-flux twice. We note that the elemen-
tary scattering processes in the HBT-interferometer, in con-
trast to the MZ-interferometer, are two-particle processes. An
important consequence of this is that the incoherent, phase
independent noise term in Eqs. �48� and �49� can directly be
reproduced by a model with filled streams of classical par-
ticles incident from reservoirs 2 and 3.

Since there is only one phase-dependent term, the visibil-
ity of the phase-dependent oscillations can again be directly
defined, giving for �=5,6 and �=7,8

�N,HBT
�,�� =

	c̄�S̄�	

c0,��S̄0

. �50�

Since the energy-scale dependence of the visibilities is iden-
tical to �N,MZ

� for the MZ-interferometer in Eq. �27�, shown
in Fig. 5, we focus here only on the scattering probability
terms. We thus consider the limit of a symmetric interferom-
eter, Ec�kBT, eV for which the energy-scale dependent part
is unity. Several symmetries exists, e.g., all visibilities �N,HBT

�,��

are unchanged by the substitutions RC↔TC and RD↔TD.
The visibility �N,HBT

�,58 is unity for scattering probabilities
obeying TARBRCTC=TBRARDTD and similar relations hold
for the other visibilities. All visibilities go to zero for any of
the transmission probabilities approaching either zero or
unity. Focusing on the case with TC=TD �or equivalently
TC=RD�, the visibilities are given by

�N,HBT
�,58 = �N,HBT

�,67 =
2
TARATBRB

TARB + TBRA
�51�

and

�N,HBT
�,57 = �N,HBT

�,68 =
2
TARATBRB

TATB + RARB
. �52�

The two different visibilities are plotted in Fig. 9 as a func-
tion of TA for different TB. The visibility �N,HBT

�,58 has a maxi-
mum equal to unity for TA=TB, while �N,HBT

�,57 instead has a
maximum equal to unity for TA=RB.

The effect of dephasing

Just as in the MZ-interferometer, the dephasing in the
HBT-interferometer is introduced by connecting a fictitious

voltage probe to an edge between any of the two point con-
tacts. The HBT-interferometer with the probe, denoted 9, is
shown in Fig. 10. Here the probe is connected to the edge
between contact C and A, we emphasize that the results dis-
cussed below do not depend on to which edge-state the probe
is connected.

The presence of the probe modifies the amplitudes for
scattering from terminals 2, 3 to terminals 5 to 8. As an
example, the scattering amplitude in Eq. �42� is modified

s52 = 
1 − �
TATCei��1−
1�. �53�

In addition, we also have to consider amplitudes for scatter-
ing into and out from the probe terminal 9. The average
currents in the presence of dephasing, given from Eqs.
�4�–�6� and �12�, turn out to be given by the same equations
as in the absence of dephasing, i.e., Eq. �43�. This is what

FIG. 9. �Color online� Noise visibilities �N,HBT
�,58 and �N,HBT

�,57 of
shot noise correlations in the HBT geometry versus transmission
probability TA for various values of TB. A symmetric geometry,
Ec�kT, eV, and identical QPC’s C and D are considered.

FIG. 10. �Color online� The electrical HBT-interferometer, Fig.
8, with a dephasing voltage probe, 9, attached along one edge.
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one expects, i.e., that dephasing affects only the phase-
dependent parts of the observables.

Turning to the current correlators, given from Eqs. �8�,
�9�, and �14�, we find for the correlators between terminal 5
and 8

S58
dp =

− 2e2

h
�c0,58S̄0 + c̄�S̄�


1 − � cos� eV

2Ec
+ ���

�54�

and for the correlators between terminals 5 and 7

S57
dp =

− 2e2

h
�c0,57S̄0 + c̄�S̄�


1 − � cos� eV

2Ec
+ ��� .

�55�

The two remaining correlators are again given by the substi-
tutions S67=S58 �TC↔TD� and S68=S57 �TC↔TD�. We see
from Eqs. �54� and �55� that just as for the MZ-
interferometer, the only effect of dephasing is to suppress the
phase-dependent term. The suppression factor is 
1−�, just
the same as for the cos � term in the noise for the MZ-
interferometer in Eq. �24�. We can thus directly write the
visibilities in the presence of dephasing as

�N,HBT
�,��,dp = 
1 − ��N,HBT

�,�� . �56�

This leads to the conclusion that the voltage probe for the
HBT-interferometer, just as for the MZ-interferometer, just
has the same effect as dephasing due to slow fluctuations of
the phase �, with the distribution of the phase fluctuations
obeying the relation in Eq. �40�. Moreover, the voltage
probes have the same multiplicative property as for the MZ-
interferometer, allowing one to describe the effect of a con-
tinuum of probes along the edges �of total length L=L1+L2
+L3+L4� with a dephasing length L�. The suppression of the
visibilities of the h /e oscillations due to dephasing are then
modified as �1−��1/2→exp�−L /2L��, just as for the h /e os-
cillations of the MZ-interferometer.

V. CONCLUSIONS

The MZ-interferometer is an amplitude interferometer: it
exhibits a visibility in the average current with period h /e

and exhibits a visibility in the shot noise with periods of both
h /e and h /2e. In contrast, the HBT interferometer is an in-
tensity interferometer, it exhibits no AB-effect in the current
and exhibits only an h /e-effect in the shot noise correlations.
Interestingly, our investigation shows that the shot noise vis-
ibility of the HBT interferometer as a function of tempera-
ture, voltage and dephasing rate, is qualitatively similar to
that of the h /e-component of the shot noise of the MZ-
interferometer. This is contrary to the naive expectation that
the visibility of the two particle processes which lead to the
HBT effect should be similar to the visibility of the two
particle processes in the MZ-interferometer, that is the h /2e
component of the shot noise. Instead it is the number of
times the AB-flux is enclosed which determines the behavior
of the visibility.

In this paper we have investigated and compared in detail
the voltage, temperature and asymmetry dependence for the
current and noise visibilities in the MZ and HBT-
interferometers. The experimental realization of the HBT-
interferometer is of large importance since it allows for an
unambiguous demonstration of two-particle interference ef-
fects with electrons, to date not demonstrated. Moreover, a
successful realization of the HBT-interferometer would also
enable a first demonstration of orbital entanglement in elec-
trical conductors, a fundamentally important result. The re-
sults presented in this work should prove useful for the ex-
perimental work aiming to detect the HBT effect in electrical
conductors.

Note added in proof. Recently, I. Neder et al.75 presented
new measurements on the conductance in an electronic
Mach-Zehnder interferometer, indicating the importance of
screening effects in understanding the finite voltage proper-
ties of the interferometer.

ACKNOWLEDGMENTS

We thank M. Heiblum, I. Neder, H. Förster, and E. Sukho-
rukov for stimulating discussions. This work was supported
by the Graduate Students Study Abroad Program and
NSC93-2112-M-009-036 of Taiwan National Science Coun-
cil, the Swedish Research Council and the Swiss National
Science Foundation and the network for Materials with
Novel Electronic Properties.

1 M. Büttiker, Phys. Rev. B 46, 12485 �1992�.
2 Ya. Blanter and M. Büttiker, Phys. Rep. 336, 1 �2000�.
3 M. Born and E. Wolf, Principles of Optics, 7th ed. �Cambridge

University Press, Cambridge, 1999�.
4 L. Mandel, Rev. Mod. Phys. 71, S274 �1999�.
5 See, e.g., S. Pedersen, A. E. Hansen, A. Kristensen, C. B. So-

rensen, and P. E. Lindelof, Phys. Rev. B 61, 5457 �2000�, and
references therein.

6 E. Buks, R. Schuster, M. Heilblum, D. Mahalu, and V. Umansky,
Nature �London� 391, 871 �1999�.

7 A. E. Hansen, A. Kristensen, S. Pedersen, C. B. Sorensen, and P.
E. Lindelof, Phys. Rev. B 64, 045327 �2001�.

8 K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, J. Phys. Soc.
Jpn. 71, 2094 �2002�.

9 Y. Ji, Y. Chung, D. Sprinzak, M. Heilblum, D. Mahalu, and H.
Shtrikman, Nature �London� 422, 415 �2003�.

10 G. Seelig and M. Büttiker, Phys. Rev. B 64, 245313 �2001�.
11 G. Seelig, S. Pilgram, A. N. Jordan, and M. Büttiker, Phys. Rev.

B 68, 161310�R� �2003�.
12 K. Le Hur, Phys. Rev. B 65, 233314 �2002�.
13 K. Le Hur, Phys. Rev. Lett. 95, 076801 �2005�.
14 F. Marquardt and C. Bruder, Phys. Rev. Lett. 92, 056805 �2004�.
15 F. Marquardt and C. Bruder, Phys. Rev. B 70, 125305 �2004�.
16 F. Marquardt, cond-mat/0410333 �unpublished�.

CHUNG, SAMUELSSON, AND BÜTTIKER PHYSICAL REVIEW B 72, 125320 �2005�

125320-12



17 H. Förster, S. Pilgram, and M. Büttiker, Phys. Rev. B 72, 075301
�2005�.

18 R. Hanbury Brown and R. Q. Twiss, Philos. Mag. 45, 663 �1954�.
19 R. Hanbury Brown and R. Q. Twiss, Nature �London� 177, 27

�1956�.
20 R. Hanbury Brown and R. Q. Twiss, Nature �London� 178, 1046

�1956�.
21 M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M.

Holland, and C. Schönenberger, Science 284, 296 �1999�.
22 W. D. Oliver, J. Kim, R. C. Liu, and Y. Yamamoto, Science 284,

299 �1999�.
23 H. Kiesel, A. Renz, and F. Hasselbach, Nature �London� 418, 392

�2002�.
24 M. Büttiker, Physica B 175, 199 �1991�.
25 M. Büttiker, Phys. Rev. Lett. 68, 843 �1992�.
26 D. Loss and E. V. Sukhorukov, Phys. Rev. Lett. 84, 1035 �1992�.
27 P. Samuelsson, E. V. Sukhorukov, and M. Büttiker, Phys. Rev.

Lett. 92, 026805 �2004�.
28 K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494

�1980�.
29 M. Büttiker, Phys. Rev. B 38, 9375 �1988�.
30 B. I. Halperin, Phys. Rev. B 25, 2185 �1982�.
31 B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Will-

iamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon,
Phys. Rev. Lett. 60, 848 �1988�.

32 D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H.
Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A.
Ritchie, and G. A. C. Jones, J. Phys. C 21, L861 �1988�.

33 R. C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Nature
�London� 391, 263 �1998�.

34 S. Oberholzer, M. Henny, C. Strunk, C. Schonenberger, T. Hein-
zel, K. Ensslin, and M. Holland, Physica E �Amsterdam� 6, 314
�2000�.

35 M. Büttiker, P. Samuelsson, and E. V. Sukhorukov, Physica E
�Amsterdam� 20, 33 �2003�.

36 P. Samuelsson, E. V. Sukhorukov, and M. Büttiker, Phys. Rev.
Lett. 91, 157002 �2003�.

37 C. W. J. Beenakker, C. Emary, M. Kindermann, and J. L. van
Velsen, Phys. Rev. Lett. 91, 147901 �2003�.

38 C. W. J. Beenakker and M. Kindermann, Phys. Rev. Lett. 92,
056801 �2004�.

39 P. Samuelsson and M. Büttiker, Phys. Rev. B 71, 245317 �2005�.
40 See also related work by C. W. J. Beenakker, M. Titov, and B.

Trauzettel, Phys. Rev. Lett. 94, 186804 �2005�; A. V. Lebedev,
G. B. Lesovik, and G. Blatter, cond-mat/0504583 �unpublished�.

41 T. M. Stace, C. H. W. Barnes, and G. J. Milburn, Phys. Rev. Lett.
93, 126804 �2004�.

42 L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev.
Lett. 79, 2526 �1997�.

43 R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bu-
nin, and D. Mahalu, Nature �London� 389, 162 �1997�.

44 I. Safi, P. Devillard, and T. Martin, Phys. Rev. Lett. 86, 4628
�2001�.

45 S. Vishveshwara, Phys. Rev. Lett. 91, 196803 �2003�.
46 S. A. Kivelson and V. L. Pokrovsky, Phys. Rev. B 40, 1373

�1989�.
47 C. deC. Chamon, D. E. Freed, S. A. Kivelson, S. L. Sondhi, and

X. G. Wen, Phys. Rev. B 55, 2331 �1997�.
48 M. R. Geller and D. Loss, Phys. Rev. B 56, 9692 �1997�.
49 T. Jonckheere, P. Devillard, A. Crepieux, and Th. Martin, cond-

mat/0503617 �unpublished�; K. T. Law, D. E. Feldman, and
Yuval Gefen, cond-mat/0506302 �unpublished�.

50 T. Christen and M. Büttiker, Europhys. Lett. 35, 523 �1996�; M.
Büttiker, J. Phys.: Condens. Matter 5, 9361 �1993�.

51 M. Büttiker, Phys. Rev. Lett. 57, 1761 �1986�.
52 M. Büttiker, Phys. Rev. Lett. 65, 2901 �1990�.
53 M. Büttiker, Phys. Rev. B 33, 3020 �1986�.
54 M. Büttiker, IBM J. Res. Dev. 32, 63 �1988�.
55 C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46, R1889

�1992�.
56 M. J. M. de Jong and C. W. J. Beenakker, Physica A 230, 219

�1996�.
57 S. A. van Langen and M. Büttiker, Phys. Rev. B 56, R1680

�1997�.
58 C. Texier and M. Büttiker, Phys. Rev. B 62, 7454 �2000�; 46,

1889 �1992�.
59 A. A. Clerk and A. D. Stone, Phys. Rev. B 69, 245303 �2004�.
60 C. W. J. Beenakker and B. Michaelis, cond-mat/0503347 �unpub-

lished�.
61 D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Phys. Rev.

B 46, 4026 �1992�; N. R. Cooper and J. T. Chalker, ibid. 48,
4530 �1993�.

62 H. A. Fertig, Phys. Rev. B 38, 996 �1988�.
63 See, e.g., the discussion in N. C. van der Vaart, M. P. de Ruyter

van Steveninck, L. P. Kouwenhoven, A. T. Johnson, Y. V. Naz-
arov, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 73,
320 �1994�, and references therein.

64 D. Sanchez and M. Büttiker, Phys. Rev. Lett. 93, 106802 �2004�;
T. Christen and M. Büttiker, Phys. Rev. B 53, 2064 �1996�.

65 For an interesting historical account, see R. Hanbury Brown, The
Intensity Interferometer �Taylor and Francis, London, 1974�.

66 E. M. Purcell, Nature �London� 178, 1449 �1956�.
67 R. Q. Twiss, A. G. Little, and R. Hanbury Brown, Nature �Lon-

don� 180, 324 �1957�.
68 G. A. Rebka and R. V. Pound, Nature �London� 180, 1035

�1957�.
69 See, e.g., R. Loudon, Rep. Prog. Phys. 43, 58 �1980�.
70 G. Baym, Acta Phys. Pol. B 29, 1839 �1998�.
71 E. Brannen and H. I. S. Ferguson, Nature �London� 178, 481

�1956�.
72 R. Hanbury Brown and R. Q. Twiss, Nature �London� 178, 1447

�1956�.
73 B. Yurke and D. Stoler, Phys. Rev. Lett. 68, 1251 �1992�.
74 B. Yurke and D. Stoler, Phys. Rev. A 46, 2229 �1992�.
75 I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, and V. Umansky,

cond-mat/0508024 �unpublished�.

VISIBILITY OF CURRENT AND SHOT NOISE IN… PHYSICAL REVIEW B 72, 125320 �2005�

125320-13


