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Abstract: It is theoretically demonstrated that the planar geometric mode with a π/2 mode 
converter, so called the circularly geometric mode, can be solved from the inhomogeneous 
Helmholtz equation by considering the pump distribution on the lasing mode. Theoretical 
analysis clearly reveal that the vortex structures of circularly geometric modes are determined 
by the minimum order of transverse lasing modes, the total number of transverse lasing 
modes and the degenerate condition in the cavity. Moreover, we experimentally manifest that 
the circularly geometric mode can be generated from the selective pumped solid-state laser 
with an external π/2 mode converter. To explore the vortex structures of the generated 
geometric modes, the interference patterns are performed by an experimental apparatus 
consisting of a Mach-Zehnder interferometer. The good agreement between experimental 
observations and numerical calculations confirms the analysis of vortex structures is reliable. 
© 2016 Optical Society of America 
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1. Introduction 

Over the past decades, the orbital angular momentum (OAM) or optical vortice has been 
exploited in a variety of applications, such as trapping [1,2] and rotating [3] of microscopic 
particles in hydrodynamics and biology, controlling the chirality of twisted metal 
nanostructures [4,5], quantum communication [6,7], and spiral interferometry [8]. Thus far 
the OAM can be generated from several special cases of laser modes with different 
techniques, such as generation of Laguerre-Gaussian (LG) modes [9], transformation from 
Hermite-Gaussian (HG) modes by lens coverters [10–12], and creation with Gaussian beams 
through spiral phase plates [13], synthesized holograms [14], spatial light modulation on 
liquid crystal cells [15] or dielectric wedges [16]. Nowadays, generation of light beams with 
huge OAM is an important and interesting task for potential applications including 
demonstration of optomechanical effects and trapping of cold atoms [17]. Therefore, the 
investigation of high-order laser modes is useful for developing the idea for generating the 
coherent structured light that can carry huge OAM. 

Selective pumping is an interesting method to yield high-order transverse modes. 
Recently, the Herriott-type multipass beams, known as planar geometric modes, have been 
experimentally found under the selective pumping [18–24]. The lasing modes have a 
preference to be localized on the periodic ray trajectories when the cavity lengths are 
somewhat close to the degenerate cavities. More intriguingly, the planar geometric modes 
formed by the coherent superposition of HG eigenmodes could be converted into the 
corresponding LG modes by a π/2-cylindrical-lens mode converter for producing huge OAM. 
Although it has been verified that the planar geometric modes can be transformed into the 
circularly geometric modes by using a mode converter [25], there has been no study with 
regard to the vortex structures related to the circularly geometric modes thus far. 

In this work we exploit the inhomogeneous Helmholtz equation to manifest a theoretical 
analysis of the circularly geometric modes performed by using the eigenmode expansion for 
considering the pump distribution on the lasing mode in Ref [26]. Through numerical 
calculations of the phase distribution, it can be found that the topological charge of the central 
singularity is determined by the minimum order of transverse lasing eigenmodes. Moreover, 
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the number of singularities and the vortex distributions surrounding outside are decided by 
not only the minimum order of transverse lasing eigenmodes, but also the total number of 
transverse lasing eigenmodes and the degenerate condition in the cavity. In experiments, we 
use the selective pumped microchip laser with an external π/2-cylindrical-lens mode 
converter to generate the circularly geometric modes. To analyze vortex structures of 
generated geometric modes, the experimental equipment with a Mach-Zehnder interferometer 
is also employed to display the desired interference patterns. Note that the interference pattern 
is formed by the plane wave and the circularly geometric mode. It is found that the 
experimental interference pattern can be excellently reconstructed with the theoretical model. 
Furthermore, the experimental interference patterns formed by a tilted plane wave and a 
circularly geometric mode can agree very well with the numerical calculations. The good 
agreement confirms that an analysis of vortex structures for circularly geometric modes in the 
present theoretical model is trustworthy. 

2. Theoretical analysis of vortex structures generated by a π/2 mode converter 

Under the paraxial approximation, the eigenmodes for the laser cavity with a concave mirror 
at z = - L and a plane mirror at z = 0 can be expressed as the ,n mHG  modes, where n and m are 

the transverse indices in x- and y- directions. Considering m = 0, the eigenmodes are given by: 

 ( ) [ ], ,( , , ) ( , , ) exp exp ( 1) (z) ,n s n n s Gx y z x y z ik z i nψ θ= Φ − +  (1) 

where 

 
2 2

2

2 1 2
( , , ) exp ,

( ) ( )2 ! ( )n nn

x x y
x y z H

w z w zn w zπ
   +Φ = −       

 (2) 

s is the longitudinal index, Hn (•) is the Hermite polynomial of order n, , ,2 /n s n sk f cπ= , 

,n sf is the eigenmode frequency, ( )Rz L R L= −  is the Raleigh range, R is the radius of 

curvature of the concave mirror, ( )1(z) tan /G Rz zθ −=  is the Gouy phase, 

2( ) 1 ( )o Rw z w z z= + , /o Rw zλ π=  is the beam radius at the waist, 
2 2 2 2[( ) ] [2( )]Rz z x y z z z= + + + , and λ is the emission wavelength. With the transformation 

of spatial morphologies, the corresponding ,pLG   modes for the radial index p  and the 

azimuthal index   can be expressed as: 

 ( ) [ ]( ) ( )
, ,( , , ) ( , , ) exp exp ( 1) (z) ,n s n n s Gz z ik z i nψ ρ φ ρ φ θ± ±= Φ − +   (3) 

with 
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Note that ( )
, ( , , )n s zψ ρ φ± in Eq. (3) is explicitly the azimuthal-order 0,nLG  eigenmodes. With 

planar geometric modes expressed as the expansion of HG eigenmodes satisfying the 
inhomogeneous Helmholtz equation [26], it is intriguing to explore the spatial morphology of 
planar geometric modes by transforming each HG components into the corresponding LG 
modes. Under the selective pumping, the transformed modes, also called circularly geometric 
modes, can be expressed as: 
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where on  is the central transverse order, os  is the central longitudinal order, zc is the location 

of the gain medium, γ  represents the inverse quality factor, and η is a constant that includes 

the effective conversion efficiency and the overlap integral in the longitudinal direction. The 
eigenmode frequency of the concave-plano cavity can be given by 

, [ ( 1) ]n s L Tf s f n f= ⋅Δ + + ⋅ Δ . The transverse mode spacing TfΔ  is given by 
1[(1 ) tan ( )]T L Rf f L zπ −Δ = Δ ⋅ , where / 2Lf c L′Δ = , [ (1/ )]c c cL L n n L′ = + − , nc is the 

refractive index of the gain medium, Lc is the physical length of the gain medium, and the 
mode-spacing ratio is T Lf fΩ = Δ Δ . To fulfill the degenerate condition, the mode-spacing 

ratio requires satisfying the fractional degeneracy of /P QΩ = , where P and Q are co-prime 

integers. 2 1N +  and 2 1J +  are the total number of the transverse and longitudinal 
eigenmodes, respectively; J is the integer closest to N Ω . To clarify the 0,nLG  eigenmodes 

contributed in the circularly geometric modes, we set L of Q fΔ = ⋅  and T of P fΔ = ⋅ , and of  is 

the common factor of frequencies. The indices n and s are expressed as on QK+  and 

os PK−  for any integers K . Consequently, the eigenmode frequency can be normalized as 

[ ], / ( 1)n s o o of f s Q n P= ⋅ + + ⋅ . For the resonant condition, ,n sk k=  for 2 /k π λ= , the 

circularly geometric mode in Eq. (5) can be further expressed as a superposition of the 
degenerate eigenmodes: 
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where [ ] [ ]/ /N Q K N Q− ≤ ≤ , and [ ]u  denotes the largest integer u≤ . Equation (6) clearly 

indicates that the circularly geometric modes are formed by ( ) ( , , )n zρ φ±Φ  with various order 

n. 
To further verify the vortex structures of circularly geometric modes, phase singularities 

are conventionally described in terms of the phase angle field 

(1 ( )( , ) tan Im[ ( , , )]zρ φ ρ φ− ±Θ = Ψ )( )/ Re[ ( , , )]zρ φ±Ψ  for a constant z, where 
( )Re[ ( , , )]zρ φ±Ψ  and ( )Im[ ( , , )]zρ φ±Ψ  are the real and imaginary parts of the field 

( ) ( , , )zρ φ±Ψ . The vortices of ( , )ρ φΘ  are the singularities at which the phase angle of the 

field ( ) ( , , )zρ φ±Ψ  is undefined. For convenience, we take the parameter N  to be the integral 

multiple of Q , i.e., N K Q= . From the theoretical analysis of the phase angle field ( , )ρ φΘ , 

it can be found that in addition to the central singularity at the origin with the topological 
charges of min on n KQ= −  determined by the minimum order of transverse lasing modes, 

there are 2KQ  singularities surrounding on the minn  groups of branches outside. Due to the 

equally distributed property, Q singularities require to be uniformly arrayed on the minn  

groups of branches as far as possible. With the total number of the transverse eigenmodes to 
be 2 1KQ + , the number of singularities for the each group of branches increases with the 
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multiple of 2K . Consequently, the topological charges for each group of branches are the 
components of { 2 , 2 ( 1)}K u K u +  for minn Q< , where u  is the quotient of min/Q n . On the 

other hand, the topological charges for each group of branches are 2K  for minn Q=  and the 

components of { 0, 2 }K  for minn Q> . 

(a) (b) (c)

(d) (e) (f)

 

Fig. 1. (a)-(c) Calculated wave patterns 
( ) 2

| ( , , ) |zρ φ+Ψ for the case of nmin < Q with nmin = 3, 

Q = 4, no = 7, 11 and 15 and K = 1, 2 and 3, respectively; (d)-(f) Numerical patterns of phase 

angle fields for 
( )

( , , )zρ φ+Ψ  corresponding to (a)-(c), respectively. 

(a) (b) (c)

(d) (e) (f)

 

Fig. 2. (a)-(c) Calculated wave patterns 
( ) 2

| ( , , ) |zρ φ+Ψ  for the case of nmin = Q = 3 with no = 

6, 9 and 12 and K = 1, 2 and 3, respectively; (d)-(f) Numerical patterns of phase angle fields 

for 
( )

( , , )zρ φ+Ψ  corresponding to (a)-(c), respectively. 
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(a) (b) (c)

(d) (e) (f)

 

Fig. 3. (a)-(c) Calculated wave patterns 
( ) 2

| ( , , ) |zρ φ+Ψ  for the case of nmin > Q with nmin = 4, 

Q = 3, no = 7, 10 and 13 and K = 1, 2 and 3, respectively; (d)-(f) Numerical patterns of phase 

angle fields for 
( )

( , , )zρ φ+Ψ  corresponding to (a)-(c), respectively. 

As seen in Figs. 1(a)-1(c), the circularly geometric modes 
2( ) ( , , )zρ φ+Ψ  at z = 10 mm 

are indicated with on  = 7, 11 and 15, K  = 1, 2 and 3, 4Q =  and the fixed central topological 

charge of min 3n =  for the case of minn Q< , respectively. The phase angle field ( , )ρ φΘ  

depicted in Figs. 1(d)-1(f) exhibits that there are 8, 16 and 24 singularities represented by 
black dots surrounding outside, and the topological charges for each group of branches 
separated by white dotted curves are the components of {2, 4}, {4, 8} and {6, 12}, 
respectively. Figures 2(a)-2(c) reveal the circularly geometric modes with the parameters on  

= 6, 9 and 12, K  = 1, 2 and 3 and min 3n Q= = . The number of singularities surrounding 

outside are 6, 12 and 18, and the topological charges for each group of branches are 2, 4 and 6 
as shown in Figs. 2(d)-2(f), respectively. Furthermore, Figs. 3(a)-3(c) display the numerical 
results of the circularly geometric modes for the case of minn Q>  with the parameters on  = 7, 

10 and 13, K  = 1, 2 and 3, 3Q =  and min 4n = , respectively. There are 6, 12 and 18 

singularities surrounding outside, and the topological charges for each group of branches are 
the components of {0, 2}, {0, 4} and {0, 6} depicted in Figs. 3(d)-3(f). The promising 
manifestation not only accurately analyzes the vortex structures of circularly geometric 
modes but also provides a new attempt to employ the inhomogeneous Helmholtz equation to 
explore these structured beams. 

3. Experimental results and discussions 

To confirm the vortex structures of the circularly geometric modes in the experiment, we 
exploit the selective pumping to excite planar geometric modes in a concave-plano resonator 
as shown in Fig. 4. The laser medium is an a-cut 2.0-at.% Nd3+:YVO4 crystal with a length of 
2 mm. Both sides of the Nd:YVO4 crystal are coated for antireflection at 1064 nm (reflection 
< 0.1%). The radius of curvature of the concave mirror is R = 20 mm and the reflectivity is 
99.8% at 1064 nm. The output coupler is a flat mirror with a transmission of 2% at 1064 nm. 
The pump source is an 809 nm fiber-coupled laser diode with a core diameter of 100 μm, a 
numerical aperture of 0.16, and a maximum output power of 3 W. A focusing lens with 20 
mm focal length and 90% coupling efficiency is used to reimage the pump beam into the laser 
crystal. The pump radius is estimated to be approximately 25 μm. For a 20-mm radius-of-
curvature concave mirror, it is found that the planar geometric mode could be realized when 
the optical cavity length L′  is designed to be 18.5 mm. At a pump power of 1.5 W, the 
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emission power of the planar geometric mode with the off-axis displacement xΔ  = 0.3 mm 
can be seen to be 20 mW. 

Coupling lens

Front 
mirror

Nd:YVO4

Output 
coupler

Focusing 
lens

BS1
90(R):10(T)

BS2
50(R):50(T)Pin-hole

M2

M1

Fiber coupled 
laser diode

CCD 
camera

π/2 mode 
converter

 

Fig. 4. Experimental setup for generating the interference patterns between plane waves and 
circularly geometric modes from a selective pumped solid-state lasers with an external π/2-
cylindrical-lens mode converter. 

For generating the interference patterns between plane waves and circularly geometric 
modes, the output planar geometric modes can be split into two beams after passing through a 
lens with focal length 125 mm and the beam splitter (BS1). One sub-beam passes through a 
pin-hole with the radius 50 μm and the mirror M1; the other sub-beam passes through a π/2 
mode converter consisting of two cylindrical lenses and the mirror M2. Note that the π/2-
cylindrical-lens mode converter can transform the planar geometric modes into the circularly 
geometric modes when the axes of the cylindrical lenses are parallel to one another but at 

45± °  to the principal axes of the planar geometric modes. The focal length of the cylindrical 

lenses is f = 25 mm; the distance is precisely adjusted to be 2 f  for the operation of the π/2 

converter. Interference patterns formed by recombining two sub-beams behind another beam 
splitter (BS2) are imaged by a CCD camera. 

Because of the circularly geometric modes formed by the superposition of the azimuthal-
order 0,nLG  eigenmodes, the experimental interference patterns for 0,nLG  modes 

significantly shown in the first row of Fig. 5 manifest that the vortex structures of 0,nLG  

modes could be flexibly generated from low to high orders under the present experimental 
approach. The second row of Fig. 5 depicts the contour plot of phase angle ( , )ρ φΘ of the 

field ( )
, ( , , )n s zψ ρ φ+  at z = 10 mm corresponding to the experimental results in the first row of 

Fig. 5. We can find that there is only a central singularity at the origin for each 0,nLG  mode 

with the topological charge of n . On the other hand, the numerical interference patterns 
between plane waves and the 0,nLG  modes can be further expressed as: 

 ( )( )
,( , , ) ( , , ) exp z ,n s z tE z z A i k kρ φ ψ ρ φ ρ+  = + + ⋅ 

 
  (7) 

where cosz zk k θ= , ( )sin cos ,sint z t tk k θ θ θ=


 and A is the amplitude of plane waves. The 

calculated patterns 2| ( , , ) |E zρ φ  are shown in the third row of Fig. 5 for various azimuthal-

order n  with z = 10 mm and 0z tθ θ= = . It can be found that the numerical patterns agree 

very well with the experimental results in the first row of Fig. 5. 
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0,1LG 0,2LG 0,3LG 0,4LG 0,13LG0,9LG0,5LG

 

Fig. 5. (first row) Experimental interference patterns for LG0,n modes with various azimuthal-
order n; (second row) Numerical patterns of phase angle fields for LG0,n modes; (third row) 
Calculated wave patterns corresponding to experimental results in the first row. 

For investigating the experiment observations of circularly geometric modes under the 
selective pumping, the value of the parameter no signifies the magnitude of the off-axis 
displacement xΔ  with 2[ / ( )]o cn x w z= Δ , and the effective range of mode index n can be 

limited as on n N− ≤  with 2 oN n= . For given values of the parameters 13on = , 7N =  

1 3Ω = , cz  = 10 mm, z = 10 mm and λ = 1064 nm, the circularly geometric modes 
2( ) ( , , )zρ φ+Ψ and 

2( ) ( , , )zρ φ−Ψ  calculated with Eq. (5) can be shown in Figs. 6(e) and 6(g), 

respectively. The theoretical patterns are in good agreement with the experimental results 
depicted in Fig. 6(a) and 6(c). To validate vortex structures of generated geometric modes, we 
also experimentally employ the plane wave to perform interference with the circularly 
geometric mode shown in Figs. 6(b) and 6(d). It can be seen that the inverse spiral directions 
for Figs. 6(b) and 6(d) are caused by rotating the axis of the mode converter with 45± °  to the 

principal axis of the planar geometric mode. Substituting ( ) ( , , )zρ φ±Ψ  into Eq. (7) to replace 
( )
, ( , , )n s zψ ρ φ+ , the theoretical interference patterns are also depicted in Figs. 6(f) and 6(h) for 

comparison. From the phase angles ( , )ρ φΘ  for the fields ( ) ( , , )zρ φ±Ψ  in Figs. 6(e) and 

6(g), the central topological charge of the circularly geometric modes is 7, the number of 
singularities surrounding outside is 12, and the topological charges for each group of branches 
are the components of {0, 4} for the parameters on  = 13, K  = 2 and 3Q =  satisfying the 

case of minn Q> . To the best of our knowledge this is the first exploration for vortex 

structures of the circularly geometric modes. We finally demonstrate the interference patterns 
for the circularly geometric mode by using a tilted plane wave. Figures 7 (b) and 7(c) depict 
the experimental results for the interference patterns between tilted plane waves and circularly 
geometric modes in Fig. 7(a). It can be seen that the experimental observations agree very 
well with the numerical patterns in Figs. 7(d)-(f). Here we use the parameters of 

36 10zθ π−= × , 0.2tθ π=  in Fig. 7(e) and 39 10zθ π−= × , 1.1tθ π=  in Fig. 7(f). The good 

agreement confirms that the analysis of vortex structures in the present theoretical model is 
reliable. 
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(a)

(f)(e)

(b) (c)

(h)(g)

(d)

 

Fig. 6. (a) and (c) Experimental patterns of circularly geometric modes; (e) and (g) Calculated 

wave patterns 
( ) 2

| ( , , ) |zρ φ+Ψ and 
( ) 2

| ( , , ) |zρ φ−Ψ  for 1 / 3Ω =  corresponding to 

experimental results shown in (a) and (c), respectively; (b) and (d) Experimental interference 
patterns for circularly geometric modes; (f) and (h) Calculated wave patterns corresponding to 
experimental results in (b) and (d), respectively. 

(a) (b) (c)

(e) (f)(d)

 

Fig. 7. (a) Experimental pattern of the circularly geometric mode; (b) and (c) Experimental 
interference patterns formed by tilted plane waves and circularly geometric modes; (d) 
Calculated wave patterns corresponding to experimental results in (a); (e) and (f) Calculated 

wave patterns with parameters 
3

6 10
z

θ π−= × , 0.2
t

θ π=  and 
3

9 10
z

θ π−= × , 1.1
t

θ π=  

corresponding to experimental results in (b) and (c), respectively. 

4. Conclusions 

In summary, we employed a theoretical analysis of the eigenmode expansion satisfying the 
inhomogeneous Helmholtz equation to manifest the vortex structures of circularly geometric 
modes. It was theoretically indicated that in addition to the central singularity at the origin, 
there were several singularities surrounding outside. The topological charge of the central 
singularity was found to be determined by the minimum order of transverse lasing 
eigenmodes, and the number of outside singularities was controlled by the total number of 
transverse lasing eigenmodes and the degenerate condition in the cavity. Moreover, the 
topological charges for each group of branches were exhibited the significant dependence of 
the mode-spacing ratio in degenerate cavities and the minimum order of transverse lasing 
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eigenmodes. Furthermore, we employed the selective pumped solid-state laser with an 
external mode converter to generate the circularly geometric modes, and further exploited the 
Mach-Zehnder interferometer to display the interference pattern between the plane wave and 
the circularly geometric mode to investigate its vortex structures. It was clearly found that the 
numerical calculations agree very well with the experimental observations. Finally, we 
verified experimental and numerical interference patterns for circularly geometric modes by 
using a tilted plane wave to manifest the reliability of theoretical exploration. In addition to 
laser resonators with the selective pumping, spatial light modulators (SLMs) are the universal, 
adjustable, and widely applicable schemes for generating structured beams by controlling the 
phase of light distribution within an optical system. The intimate analysis of phase 
distribution in circularly geometric modes are also predictably applied to flexible SLMs. It is 
believed that the present exploration of circularly geometric modes can be used to develop in 
numerous optical manipulation because of their particular vortex structures and huge OAM. 
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