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Abstract 

A finite incidence structure H = (X, ~ )  is called a quasi-semisymmetric design (QSSD) with 
nexus ct if there exist positive integers 2, #, and ~ such that any two distinct points are in 0 
or 2 common blocks, any two distinct blocks are incident with 0 or # common points, and 
for each nonincident point-block pair (x,B), there are exactly ct blocks B' with x E B' and 
B 'N B ~ 0. Symmetric designs, semisymmetric designs, and partial 2-geometries are among 
such structures. In this paper, in addition to some general properties, we study the existence 
conditions for QSSDs with # = 2 - 1 ~>2 and the properties of QSSDs satisfying the following 
extremal condition: if Bi and B2 are two blocks with a nonempty intersection, then there are 
another 2 - 2 blocks B3 . . . . .  B;. such that n j ~i ~< 2Bi = B I n B2. We show that ct >/(22 (# - 1 ) + 2)/# 
under such a condition, and QSSDs with equality are classified whenever p = 2 or p = 2 - 1 
following a classification of affine polar spaces by Cohen and Shult (Geometraic Dedicata 35 
(1990), 43-76). 

O. Introduction 

Motivated by the study of the geometric structures associated with the half dual polar 

graph Dn, n(q) and the alternating forms garphs Alt(n,q)  (Fu and Huang, 1995; Huang 

and Laurent, 1993; Huang and Pan, 1988), we consider some specific conditions over 

incidence structures: 

(QSS1) every two distinct points are in 0 or 2 common blocks, 

(QSS2) every two distinct blocks intersect in 0 or/~ points, 

(QSS3) if 2 = 1, then there are constants k and r such that every block contains k 

points and every point is on r blocks, 

(QSS4) if (x,B) is a nonincident pair of point x and block B, then there are exactly 

ct blocks of x intersecting B. 

Let 2, #, and ~ be positive integers. A finite incidence structure/7 = ( ~ ,  M) is called 

a quasi-semisymmetric desi#n (abbreviated 'QSSD' )  for 2,# if conditions (QSS1)-  

(QSS3) are satisfied, and H is called a quasi semisymmetric design for 2,# with nexus 
ct if conditions (QSS1)-(QSS4) are satisfied. Clearly, 2 = 1 if and only i f / a - -  1, and 
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hence H is a semilinear space or a partial linear space (see Brouwer et al., 1989, 
for the definition). Condition (QSS3) is necessary to ensure the k-uniformity and r- 
regularity o f / 7  (i.e., every block o f / 7  contains k points, and every point o f / 7  is in 

r blocks). An example that satisfies (QSS1) and (QSS2) with 2 -- p = 1 but does not 
satisfy (QSS3) is given in Huang and Pan (1988). Partial geometries, first studied by 
Bose, are examples o f  QSSDs with 2 = p = 1, and partial 2-geometries, introduced 

by Cameron and Drake (1980) are QSSDs with 2 -- p. 
QSSDs with multiple intersections, i.e., 2~>p~>2, are treated in this paper. Basic 

properties, associated combinatorial structures, some examples constructed from vector 

spaces, and some existence conditions for QSSDs with p = 2 - 1/> 2 are described in 

Section 1. Two extremal conditions are introduced in Section 2; we shall show that 

= ( 2 2 ( , / /  - -  1 ) + 2)//~ under these extremal conditions. QSSDs satisfying the extermal 

conditions with p -- 2 and p = 2 - 1  are classified in Section 3 following a classification 
o f  affine polar spaces by Cohen and Shult in (1990). 

1. Basic properties and some necessary conditions 

In this section, we study basic properties and associated combinatorial structures 

such as the block graphs and point graphs of  QSSDs. We also study some existence 

conditions for QSSDs with p = 2 - 1 1>2. 

Lemma 1.1 (Lin, 1992). I f  lI  = (X,M)  is a QSSD for 2 and p, where 2, p>~2, then 
/7 is k-uniform and r-regular for some positive integers k and r, and has no repeated 
blocks. 

Lemma 1.1 shows that each block can be identified with the set of  points it contains. 

Let v = I~1 and b = IMI, and denote /7 by QSSD(v,k,[2],[p]).  It is obvious that the 
dual incidence structure of  /7 is a QSSD(b,r , [p] , [2]) ,  and hence, without loss of  

generality, we may assume that 2 ~> p. 
For the rest of  this paper, we assume that H = (~r, ~ )  is a QSSD(v, k, [2], [/1]) with 

nexus ~, where 2 ~>p ~>2. Two points are called collinear if  they are in a common 

block. For x E Y', define x ± -- {x} U {y E Y'] y and x are collinear}. An incident pair 

(x,B) of  point x and block B is called a flag. For a QSSD(v,k, [2], [p]) with nexus ~, 

the condition (QSS4) is equivalent to the following dual condition: 

(QSS4')  if (x,B) is a nonflag, then x is collinear with exactly fl points o f  B. 
For a nonflag (x,B), counting the number o f  flags (y,A) with x C A and y c B shows 

that f12 = ~p. The following lemma shows that v, b, and r are functions o f  k, 2, and p. 

Lemma 1.2. ( i )  v = ( k ( r  - l ) (k  - p ) /~p)  + k, 

(ii) b = (r(k - 1 )(r - 2)/fl2) + r, and 
(iii) (k - 1)(2 - 1) = (r - 1)(p - 1). 

Proof.  Fix a block B, and count the set { (x ,y ,A) lA  C ~ , x  q~ B,y  E B,x ,y  E A} in 
two ways. By condition (QSS4), each point x ~ B is in ~ blocks A with IA n BI = ~. 
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On the other hand, each point y E B is in another r - ! blocks A with [A\B I = k - I~. 

Therefore, (v - k)ct~t = k(r  - 1)(k - /~ ) ,  and hence (i) follows. (ii) is obtained by a 

dual argument. To prove (iii), fix a flag (x ,B) ,  and count the number of  flags ( y , A )  

with y C x, A ¢ B, and x, y E A N B. [] 

Let AI , . . . ,A~ be the blocks of  x that intersect B, and let Hx.B be the incidence 
structure (x ± N B , { A i  N B  [ 1<i~<~}).  Observe that each point z E x ± N B  is in A 

members of  {Ai N B I  1~<i~<~}, and each IAi NB[ is p. We thus have the following 

result: 

Lemma 1.3. Hx, B is A-regular and #-uniform. 

The regularity o f  QSSDs is reflected in some graph structures. The block graph of  

a QSSD /7 = (Y', M) is defined on the block set M such that two blocks A and B are 
adjacent if and only if A n B is nonempty. The point graph of  H is defined on the 

point set Y" such that two points x and y are adjacent if and only if x and y are in a 

common block. Recall that a strongly regular graph is a simple connected bo-regular 

graph of  order n with the following property: the number of  vertices adjacent to both 

x and y is a constant a if x and y are themselves adjacent, and is the constant c 

otherwise, for some nonnegative integers n, b0, a, and c. 

Theorem 1.4. Let  /7 = ( Y ' , ~ )  be a QSSD(v,k,[A],[I~]), #>~2, with nexus ~. 

(i) The block graph of~7 is a strongly regular graph with the following parameters: 

n = (r (k  - 1)(r - A)/ctp) + r, b0 = k(r  - 1 )/p, 

a = (k(~ - 1) + #(r  - ~ - 1))/p, c = ks~#. 

(ii) The point graph of~7 is a strongly regular graph with the following parameters." 

n = (k(r  - 1)(k - #)/ctp) + k, bo = r(k  - 1)/2, 

a = (r(fl  - 1 ) + A(k - fl - 1 ))/2, e = rfl/A. 

Proof.  (i) n = b, given in Lemma 1.2. To compute b0, fix a block B and observe that 
the number o f  flags (x ,A)  with A ~ B, x E A NB, is k(r  - 1) = b0/~. To compute a, 
let A and B be two fixed blocks with a nonempty intersection, and count the set 

= {(x ,y ,C)  lC  E ~ , C  ¢ A,B, and x E C N A ,  y E C A B }  

in two ways. We have 

a/22= Z ( ~ -  1)kt + Z ( r - 2 ) / t  
xEA\B xEAAB 

= (k - /~ ) (~  - 1)p + (r - 2 ) p  2 

= k(a - 1 )p + (r - ~ - 1)/~2. 
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To compute c, let A and B be two fixed blocks with an empty intersection. Counting 
the set ~ in two ways shows that ctfl  = kot#. (ii) is obtained by a dual argument. [] 

The integrality condition for strongly regular graphs (see Cameron, 1978, for more 
details) provides some necessary conditions on parameters. 

Proposition 1.5. (i) ~/z(k + / z ( r  - ~ - 1 )) is a divisor o f  kr(k - 1 )(r - 2); 
(ii) cqz(r + 2(k - fl - 1 )) is a divisor o f  r k ( r  - 1 ) (k  - It). 

Some classes of  examples of  QSSDs are given below. Example (iii) was treated in 
(Cameron and Drake, 1980). Example (iv) will be treated in detail in Section 3. 

Examples.  (i) Let V be a vector space of  dimension m over GF(q). Let X = [~],  the 
set of  all two-dimensional subspaces of  V, and M = {[B]IB C [v]  }, where [B] = {x E 
[v]  iBC_x}" Then ( Y ' , M ) i s  a 

( ( q m  _ l ) (qm-I  _ 1) qm-I  _ 1 ) 
QSSD \ ~ 2 - 1 ~ = T )  ' q ~ l  ,[1],[1] 

with nexus ~ = q +  1, and the point graph of  (X, ~ )  is a strongly regular graph with pa- 
rameters n = [(qm _ 1)(qm-1 _ 1)/(q2 _ 1 ) ( q -  1)], b0 = (q + 1)(q m-I - q ) / ( q -  1), 
a = (qm- l  - 1) / (q - 1 ) + q 2 - 2 ,  a n d c = ( q + l ) 2 .  

(ii) Let V be a vector space of  dimension m + 2 over GF(q). Fix an m-dimensional 
subspace W of  V, and let ~r : {x E [~] [ x N W  = 0} and ~ : {[B] c [v]  [BfqW = 0}, 
where [B] = {x E 3 f ] B C x } ,  Then ( X , ~ )  is a QSSD(q2m, qm,[1],[1]) with nexus 

= q, and the point graph of  ( g f , ~ )  is a strongly regular graph with parameters 
n = q2m, bo = (q + 1 )(qm _ 1 ), a = qm + q2 _ q _ 2, and c : q(q + 1). 

(iii) Let V be an eight-dimensional vector space over GF(q) with a quadratic form of  
Witt index 4. The set A e of  all maximal totally isotropic subspaces (of  dimension 4) 
can be partitioned into two families with the property that x, y c ~ belong to the 
same family if and only if the codimension of  x fq y is even. The incidence struc- 
ture ( ~ ,  9~), where X is the set o f  all isotropic 1-subspaces and ~ is one family of  
~ ,  is a QSSD((q 3 + 1)(q 2 + l )(q + 1 ) , ( q  4 - 1 ) / ( q  - 1 ) , [ q  + l ] , [ q  + 1]) with nexus 

c~ = q2 + q + 1. The point graph of  (A c, ~ )  is a strongly regular graph with parameters 
n = (q3 + 1 )(q2 + 1 ) (q+  1 ), bo = (q2 + 1 )(q3 +q2 + q ) ,  a = (q4 _ 1 ) / ( q -  1 )+q2(q2 + q ) _  2, 

and c = (q2 + l)(q2 + q + 1). 

(iv) Let V be a four-dimensional vector space over GF(q). Denote by X the set 
o f  all alternating bilinear forms defined over V, and let ~ = {[A] I A E [3v]}, where 
[A] is { f  E ~ ] Rad( f )C_A} with translations (see Huang and Laurent, 1993, for 
more details). The incidence structure ( ~ ,  M) is a QSSD(q6,q 3, [q + I], [q]) with nexus 

= q2 + q. Its point graph, denoted by Alt(4,q),  is a strongly regular graph with 
parameters n = q6,  bo = (q2 + 1 ) (q3  _ 1 ), a = q4 + q3 _ qZ _ 2, and c = (q2 + 1)q2. 

Remark .  The half  dual polar graph D4,4(q) is defined on one family of  maximal totally 
isotropic subspaces of  S~ (in Example (iii)). Two vertices x and y are adjacent if and 
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only if the codimension of  x fq y is 2. It is well known that D4,4(q) is isomorphic to 

the point graph of  ( Y ' , ~ )  (this is implicit in Wells, 1984, p. 384). It is also known 

that Alt(4,q) is the induced subgraph of  D4,a(q) over the distance 2 neighborhood of  

some vertex x E D4,4(q) (see Brouwer et al., 1989, Proposition 9.5.11). 

Note that the Examples (iii) and (iv) are QSSDs with p = 2 and /~ = 2 -  1, 

respectively. It is worth mentioning here that O4,a(q) and Al t (4 ,q)  are Zara graphs 
(Zara, 1984) with maximal cliques of  size ( q 4 _  1 ) / ( q -  1) and q3, respectively. For 

the rest o f  this section, we study the existence of  QSSDs with # -- 2 - 1 >t 2. 

Lemma 1.6. I f  there exists  a Q S S D ( v ,  k, [ #+  1 ], [#]), p >~ 2, with nexus  c~ = fi(l~+ 1 )/Iz 

then k - 1 = m(p  - 1 ) f o r  some integer m, and 

(m# - m - 1 ) ( # 2  _ 1) 
fl - 1 >~F(rn,#) = 

m#  - m - 1 + # 2 - 2 # '  

Proof.  A result of  Neumaier (1981, Lemma 1.6) gives a lower bound for/3: 

( k -  2)(# 2 - 1) 
/~- l~> 

k - 2 + #2 _ 2#" 

Lemma 1.2(iii) shows that r -  1 = #(k - 1)/(# - 1), hence # - 1 divides k - 1, and 

so k - 1 = m(# - 1) for some integer m. The expression for F ( m , # )  is obtained by 

substituting m(p - 1 ) for k - 1 in the above inequality. [] 

Corollary 1.7. I f  there exists  a Q S S D ( v ,  k, [# + 1], [#]), # >~ 2, with nexus  ~ = fl(l~ + 

1)/# a n d k  > /3+1, then ~>>,f(#), where f ( 2 ) =  4, f ( 3 ) =  7, f ( 4 ) =  10, f ( 5 ) =  13, 

f ( # ) = 3 # - 4  /f6~<#~<13 and f ( # ) = 3 # - 5  tf#~>14. 

Proof.  From Lemma 1.6, 

F(m,  #)  _ 1 # (#  - 2) 
#2 _ 1 (#  - 1)m + # 2  _ 2# - 1" 

Thus F ( m , p )  is a nondecreasing function of  m for each fixed #>j2. If  # = 2, then 

fl >>. 1 + F ( m ,  2) = 4. If  # -- 3, 4 or 5, then 2 ~<k-/3 ~< m ( p -  1 ) -  F(m,  #)  implies m >_-4, 

so fl>~l + F ( 4 , # ) .  I f  p~>6, then /3f> 1 + F ( 3 , # ) = 3 # - 6 + ( ( 1 6 # - 2 4 ) / ( # 2 + # - 4 ) ) .  
In particular, /3>_-3# - 4 if  6~<#~< 13, and ]/>/-3# - 5 if #>/14. The corollary follows 
immediately. [] 

Proposition 1.8. For each pair  (V, fl) with #>~2, there are only f in i te ly  many  Q S S D  

(v , k , [#  + 1],[#]) with nexus  ~ = fl(# + 1)/#. 

ProoL Substituting 2 = # + 1 and r -  1 = ( k -  1 ) # / ( p -  1) in Proposition 1,5(ii) 
shows that 

pk(k - 1)(k - #)(k# - l )  

~ ( # -  1 ) [ # ( k # -  1 ) +  (#3 _ # ) ( k - / ~ -  1)] 
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is an integer. Let f ( k )  = p(kp - 1 ) + (p3  _ p)(k - fl - 1 ). Then f ( k )  divides pk(k - 1 ) 
( k -  p ) ( k p -  1), Use of  the Euclidean algorithm shows that GCD(f(k) ,p) ,  the great- 
est commom divisor of  f ( k )  and p, is p; GCD(f (k ) , k )  divides p(flp2 + #2 _ fl); 

G C D ( f ( k ) , k -  1) divides p ( p -  1)(tip + f l -  1); G C D ( f ( k ) , k -  p) divides p ( p 2 _  1) 
( f l -  p); and G C D ( f ( k ) , k p -  1) divides (p2 _ l)(flp + p -  1). It follows that f ( k )  
divides N = p4(/~ _ 1 )3(/~ + 1 )2(/~p2 +/~2 _/~)(/~/~ + /3  - 1 )(/~ - p)(/1/~ +/~ - 1 ), and 

there are only finitely many possible k ' s  for a given pair (p, fl) such that f ( k )  divides 
N. Hence, by Theorem 1.4, there are only finitely many possible v's. [] 

2. Some extremai conditions 

In this section, we introduce two extremal conditions that provide an upper bound 
and a lower bound, respectively, for ~. The following two equivalent conditions, called 
the (,)-conditions, were studied for (s, r; p)-nets in Huang and Laurent (1993) and 
for partial 2-geometries in Cameron and Drake (1980). As mentioned in the previous 

section, for a nonflag (x,B), Ix I NBI is a constant fl, where fl2 = ~p, and we let llx.8 
be the incidence structure defined over x ± M B. The structure of  IIx, B, together with 
the (*)-condition, gives a sharp lower bound for fl (and hence for c~). 

Lemma 2.1. Let 11 = (.~g,M) be a QSSD(v,k,[2],[p]), p>~2, with nexus o~. The 
following two conditions are equivalent." 

(i) i f & ,  B2 are two distinct blocks, with B1NB2 ¢ 0, then there exist B3 . . . . .  B;~ ¢ 
such that Nl<~i.~;~Bi = B l n  B2, which consists of  p points. 
(ii) i f  B1, B2, B3 are three distinct blocks with IB1NB2NB31 >~2, then IB1NB2NB3[ =p. 

Proof.  First we assume (i), and let BI, Bz, and B3 be three distinct blocks such that 

I Bl nBznBsl~> 2. Let x, y E B l ABzNB3 be distinct; then by (i) there are blocks B4 . . . . .  B~ 

containing x and y such that I Ml~i~;Bi[ = I& NB2] = P, hence [Bl NB2 MB31 = p. 
Conversely, we assume (ii), and let Bz, B2 C ~ be distinct with BI n B2 ¢ 0, then 
IBI MB2I = p. I f x ,  y ¢ Bl MB2 are distinct, then there are another B3 . . . . .  B;~ E 

containing x and y. Since x, y E Bl NBzMBi, IB1MB2MBil = p by (ii) for i = 3 . . . . .  2. 

Hence [ nl<~i<~)Bi I = IBz NBzl ----- p. [] 

Corol lary 2.2. Let (x,B) be a nonflag o f  a QSSD satisfying the (*)-condition, and 
let At and A2 be two distinct blocks o f  x intersecting B. Then [A~ hA2 n B[ ~< 1. 

Proof.  I f  [A1 NA2 nBI/>2, then, by Lemma 2.1(ii), IAL hA2 nBI  = I~ = IAz nazi ,  and 
hence x c A1 n A2 n B C_ B, a contradiction. [] 

Lemma 2.3. Let H = (Sf, M) be a QSSD(v,k,[2],[p]), 1~>~2, satisfying the (*)- 
condition with nexus ~, and let (x,B) be a nonfla9. Then 

(i) f l ~ > 2 ( p -  1 ) +  1, and hence c~>(22(/~-  1) + 2)/p, 
(ii) equality holds i f  and only i f  the structure Hx, o is a 2-(2(p - 1 ) + 1, p, 1 ) design. 
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Proof. Let y E x ± NB, and let AI . . . . .  A;~ be the blocks containing x and y. Then each 

Ai intersects B in/1 points. By the (*)-condition and Corollary 2.2, (AiNB)N(A/NB) = y 

(i 5 ~ j ) ,  so fl ---- I x-l- n B I >tl Ul <~i<J Ai n B[ -- E 1  <<.i<d~ IAi N B\{y}l  + 1 -- ).(p - 1 ) q- 1, 
and the lower bound for ct ( =  fl2/p) follows immediately. 

I f  equality holds then any point z E x ± n B \ { y }  is in exactly o n e  Ai n B for some 
i (1 ~<i~<2). Since y is arbitrary, every two distinct points are in exactly one 'b lock '  
of  Hx, B, and hence 11x, B is a 2-(2(# -- 1) + 1,/~, 1 ) design. [] 

Substituting/~ = 2 ( =  q + 1 ) and /~ = 2 - 1 ( =  q) in the previous lemma, we have 
c~>q 2 + q + 1 and a>~q2 + q, respectively. Examples (iii) and (iv) in the previous 

section show that both bounds are sharp. Moreover, the 2-designs mentioned above in 
the QSSDs of  Examples (iii) and (iv) are projective planes and affine planes of  order 
q, respectively. 

An upper bound for fl (and hence for a)  is obtained by the following extremal 
condition, called the (A)-condition, 

Any three distinct pairwise collinear points are in at least one common block. 

L e m m a  2.4. Let  11 = (Sf, M) be a QSSD(v,k,[2],[It]),I~>~2, satisfying the (A) -  
condition with nexus or. Then f l~<2( /a-  1 ) +  1, and hence : t~<() .2(p-  1 ) +  )~)//~. 

Proof. Let (x,B) be a nonflag, y E x ± n B ,  and Al . . . . .  A;~ be the blocks containing x and 
y. By the (A)-condition, every point o f  x l n  y±  is in at least one block of  Al . . . . .  A;., 

and hence every point z E x I N B \ { y }  (C_x ± n y  ± )  is in at least one A i N B  for some i 

(1 ~<i<~2), so fl = Ix±riB[ = lu~i~,4,nBI ~< E~.<e~, [ A i n B \ { y } l + l  = ) ~ ( p - 1 ) + 1 .  
[] 

Corollary 2.5. Let H = (95, ~ )  be a QSSD(v,  k, [2], [/~]) satisfying the (.)-condition 
with nexus ~ = (22(/~ - 1) + 2)//~. Then the (A)-condition holds. 

Proof. Let x, y, and z be three distinct pairwise collinear points, and let B be a block 
containing y and z. I f x  E B then we are done; otherwise x ~ B. Let Ai . . . .  ,A; be the 
blocks containing x and y. Since the (*)-condition holds and c~ = ( 2 2 ( p -  1 ) +  2)//~, 
the structure 11x, B is a 2-design by Lemma 2.3. Then z (E x + N B \ { y } )  lies in one 
Ai N B for some i (1 ~< i ~< 2), and hence x, y , z  E Ai, a s  required. [] 

For a nonflag (x,B), the incidence structure Ilx~ is determined under the (*)- and 
(A)-conditions. 

Corollary 2,6. Let  I1 = (~?,~)  be a QSSD(v,k,[2],[p]),  #>~2, with nexus ~. The 
following are equivalent: 

(i) 11 satisfies the ( . ) -  and ( A )-conditions, 
(ii) IIx, B is a 2-(2(# - 1 ) +  1 ,# ,1)  design. 

Proof.  By Lemmas 2.3 and 2.4, we have (i) implies (ii). Conversely, let x, y, and 
z be three distinct pairwise collinear points, and let B be a block containing y and z 
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but x ~ B. Since 11x, B is a 2-design, z (E x ± ¢q B \ { y } )  lies in one 'block'  of  FIx, B, 
and hence x,y, and z are in a common block of  ~3. So the (A)-condition holds. Let 

A, B, and C be three distinct blocks with IA N B N  C[~>2, say u, v E A N B N  C. We 

want to show that [A n B fl C[ = /c Suppose, to the contrary, [A fq B fq C I < /~; then 
CNA ~ BNA. Choose any point w E (Cf3A)\(BNA).  Then u and v are in two 'blocks'  
A NB and C A B  of  11w, B. This contradicts the assumption that Ilw.B is a 2-design with 
index 1. So [An B n C I = / t ,  and hence the (*)-condition holds. [] 

3. A characterization of Alt(4, q) 

Cameron and Drake (1980) showed that a QSSD(v,k,[2],[2])  satisfying the (*)- 

condition with nexus c~ = 22 - 2 + 1 is obtained from a polar space of  type D4(q) 

with one family o f  maximal totally isotropic subspaces as the block set. As a result, 

its point graph is isomorphic to D4,4(q). In this section, we shall prove a similar result 
for a QSSD(v, k, [2], [2 - I])  with nexus ~ = 22 - 2 .  

Let H = (Y',M) be a QSSD(v,k,[2],[/~]) satisfying the (.)-condition with nexus 
c~ = (22(# - 1)+2)/ /~ (i.e.,/~ = 2 ( / ~ - 1 ) +  1). Associate 11 with an incidence structure 

11' = (~,L~¢) with a collection ~ of  substructures, where LP = {A N B  [A ,B  E 
are distinct with A N B  ¢ 0} and let ~ = {x ± N B  ] x E &r,B E M,x ~ B}. Members 
o f  ~ and ~ are called lines and planes, respectively. Clearly, the point graphs of  

17 and 11r are identical. For any two collinear points x and y, let A1,...,A~, be the 

blocks containing x and y and denote by xy the line A1 NA2 = (-11 ~<i~<).Ai (by the (*)- 
condition). Since ~ reaches the lower bound, the (A)-condition also holds, by Corollary 

2.5. Thus x ± N y  ± = (.Jl<~i<~2Ai, and {Ai\xy [ 1 ~<i~<2} forms a partition o f x ± n y ± \ x y .  
Hence the incidence structure /7' = (Sf, ~ )  is a gamma space, and each block of  11 

induces a maximal singular subspace in 11' (refer to Brouwer et al., 1989, for the 

definitions of  gamma spaces and singular subspaces). Note also that each plane in 
is a singular subspace too. A triple o f  points is called a triangle if  they are pairwise 

collinear but not contained in a common line. The main theorem in this section is as 

follows: 

Theorem 3.1. Let 11 = ( Yf , M ) be a Q SSD( v, k, [2],[/~]) satisfyin9 the (.)-condition 
with nexus ~ = (22(/~ - 1) + 2)//~ (i.e., ¢ / =  2(/~ - 1) + l). Then 

( i ) / f /~  = 2 (=  q +  1 ~>3), then 11' = (Yf, LP) is the polar space of  type Da(q) and 
the point 9raph o f  11 is isomorphic to D4.4(q). 

(ii) / f  # = 2 - 1 (=  q>~4), then either 11~ = (y-,Aa) is the affine polar space of  
type D4(q)\cx~ ± and the point 9raph of  H is isomorphic to Alt(4,q),  or k : 55, 115. 

We refer to Cohen and Shult (1990) for the notion o f  affine polar spaces and hyper- 
planes o f  the form ~ ±  for some point ~ of  a polar space. Assertion (i) of  Theorem 
3.1 is proved in Cameron and Drake (1980, Section 3) together with the fact that 
O4,4(q) is isomorphic to the point graph of  D4(q) (see Wells, 1983). For the rest of  
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this section, we assume that H = (~f ,~ ' )  is a QSSD as mentioned in Theorem 3.1 
w i t h # = ) . -  1 = q / > 4 .  It follows that c t = q 2 + q  a n d f l = q 2 .  

Lemma  3.2. Every plane ~ E ~ together with the lines it contains is an affine plane 
o f  order q. 

Proof. Every plane ~z E ~ is x ± fOB for some nonflag (x,B). By Lemma 2.3 (ii) with 
/1 -- ). - 1 = q, zt is a 2-(q 2, q, 1 ) design, and hence is an affine plane of  order q. [] 

L e m m a  3.3. Every triangle is in a unique block and hence in a unique plane. 

Proof.  Let {x ,y , z }  be a triangle, and let Al . . . . .  Aq+l be the blocks containing x and 
y. Then {Ai \xy  I 1 <~i<~q+ 1} forms a partition of x i f o y i \ x y .  Since z E x i f o y i \ x y ,  

z is in a unique block Ai, 1 ~<i~<q + 1. Moreover, since z ~ Aj for j ¢ i, there exists 
a point w E (z ± N A i ) \ x y  such that x, y, and z are in the plane w ± NAi. Since H '  is 
a gamma space, w ± NAi is the unique plane containing the triangle {x ,y , z} .  [] 

The following corollary follows from a classical result of  Buekenhout (1969). 

Corol lary 3.4. q & a prime power and every block together with the lines it contains 

is an affine space o f  dimension d>~3 over GF(q). 

We may now assume k = qd for some integer d~>3, and hence, by Lemma 1.2(iii), 
r = (qd+l _ 1 ) / ( q -  1). Since rill2 is an integer (Theorem 1.4(ii)), we have q2 _ 1 
divides q2(qd+l _ 1), and hence the following holds. 

L e m m a  3.5. d is an odd integer. 

By Proposition 1.5(i), ~ p ( k + # ( r - ~ -  1)) is a divisor of  k r ( k -  1 ) ( r - 2 ) .  Substituting 
the values of  p, ct, k, and r, we have 

qd+l(qd+l _ 1)(qd _ 1)(qd--I _ 1) 
(q2 _ 1)(qd+3 + qd+2 _ qd+l _ qS) 

is an integer. Let f ( q )  ----qd+3 + qd+2 _ qd+l _ qS. Then f ( q )  divides qd+l(qd+l _ l )  

(qd_ 1 ) (qd-1_  1 ). From the facts that G C D ( f ( q ) ,  qd+l) divides qS; G C D ( f ( q ) ,  qd+l_ 1 ) 
divides q5 _ q 2 _ q +  1 ; G C D ( f ( q ) ,  qd _ 1 ) divides qS_q3_q2 +q;  and G C D ( f ( q ) ,  qd-1_ 1 ) 
divides q5 _ q 4  _ q3 + q2, we have f ( q )  divides qS(q5 _ q2 _ q + 1)(q5 _ q3 _ q2 + q) 

(q5 _ q 4 _ q 3 + q 2 )  ( <  q2O if  q~>2). Hence d + 3  < 20, i.e., d~<15. 
For odd d>~5, f ( q )  = qS(q2 _ 1)(qd-4 + qd-5 + qd-7 + . . .  + 1). Let D(d ,q)  = 

qd -4+  qd--5 ÷ q d - 7 ÷ . . .  ÷ 1. From above, we conclude that D(d ,q )  divides q3(q + 1) 
( q _  1)3(q3 + q _  1)(q3 + q a _  1). I f  d = 15, we denote D(15,q)  = qll + q l 0 +  

q8 + q6 ÷ q4 ÷ q2 + 1 by D. The Euclidean algorithm shows that GCD(q ,D)  = 1, 

G C D ( q +  1,D) divides 5, G C D ( q - 1 , D )  divides 7, GCD(q 3 + q - 1 , D )  divides 51, and 
GCD(q3 + q2 _ 1,D) divides 61. Therefore, D divides 5 • 73 • 51 • 61 (denoted by M).  
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But D > M if q/> 5, a contradiction. One can eliminate the remaining possibilities for 
q < 4  by computing D(15, q). Therefore d < 13. One can eliminate the possibilities for 
7 < d <  13 by the same arguments. For the case of  d --- 5, 

q6(q6 _ 1)(q5 _ l)(q4 _ 1) 

(q2 _ 1 )(q8 + q7 _ q6 _ qS) 

is an integer. After being simplified, q(q4 + q2 + 1 )(q5 _ 1 )(q2 + 1 )/(q + 1 ) is an integer. 
The same argument as above shows that GCD(q + 1,q) = l, GCD(q + 1 ,q4+  q 2 +  1) 
divides 3, GCD(q + 1, q5 _ 1 ) divides 2, and GCD(q + 1, q2 + 1 ) divides 2. Hence q + 1 
divides 3 . 2 . 2  -- 12. For q~>4, only q = 5 and q = 11 remain. This completes the 
proof  of  the following lemma. 

L e m m a  3.6. Either d -- 3, or (d ,q )  = (5,5), (5, 11). 

Note that every block of  ~ '  carries the structure of  an affine space of  dimension 3 
if d = 3. The following proposition shows that the associated gamma space H ~ o f / 7  
is obtained from an affine polar space. 

Proposit ion 3.7. I f  d = 3, then (YC, 5¢) is an affine polar space o f  type Da(q) \oo  ±. 

Proof.  By Lemma 1.2 (i), v ---- q6. We shall verify that (~,L~ a)  together with the 
collection ~ of  affine planes satisfies the axioms for affine polar spaces in Cohen and 
Shult (1990). It is clear that x±C_ y ±  implies x --- y for any two points, and that 
( ~ ,  L~') is a connected gamma space. Note that every block carries the structure of  
an affine space of  dimension 3. Any three pairwise collinear points not on a line lie 
in a unique plane of  ~ (Lemma 3.3). Let rt ~ ~ and z C Y" with z ~ n, and let 
B be a block containing it. I f  z E B, then nC_z±; otherwise z ~ B, and z ± N B  is 
an affine plane. I f  the two planes rt and z ± n B are identical, then n C_ z±; otherwise, 

N (z ± N B) is either an empty set or a line. Hence z ± n n either is empty, is the 
set of  points on a line, or coincides with the set o f  all points in n. It follows that, by 
Cohen and Shult (1990, Corollary 4.2), (Y', LP) is an affine polar space (consisting of  
q6 points) of  rank 4 derived from a polar space of  rank 4 by removing a hyperplane. 
According to the classification given in Cohen and Shult (1990, Proposition 5.2 and 
Theorem 5.12), (X,L,e) is obtained from the polar space of  type D4(q) by deleting a 
hyperplane oc ± for some point oo (see also Cooperstein and Shuit, 1991). [] 

Since O4,4(q) is isomorphic to the point graph of  the polar space of  type D4(q) and 
Alt(4,q)  is isomorphic to the subgraph of  D4,a(q) induced over D4,4(q)\x ± for some 
vertex x, the proof  of  assertion (ii) o f  Theorem 3.1. is completed. 
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