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A systematic approach to designing
statistically powerful heteroscedastic 2 × 2
factorial studies while minimizing financial
costs
Show-Li Jan1 and Gwowen Shieh2*

Abstract

Background: The 2 × 2 factorial design is widely used for assessing the existence of interaction and the extent of
generalizability of two factors where each factor had only two levels. Accordingly, research problems associated
with the main effects and interaction effects can be analyzed with the selected linear contrasts.

Methods: To correct for the potential heterogeneity of variance structure, the Welch-Satterthwaite test is
commonly used as an alternative to the t test for detecting the substantive significance of a linear combination of
mean effects. This study concerns the optimal allocation of group sizes for the Welch-Satterthwaite test in order to
minimize the total cost while maintaining adequate power. The existing method suggests that the optimal ratio of
sample sizes is proportional to the ratio of the population standard deviations divided by the square root of the
ratio of the unit sampling costs. Instead, a systematic approach using optimization technique and screening search
is presented to find the optimal solution.

Results: Numerical assessments revealed that the current allocation scheme generally does not give the optimal
solution. Alternatively, the suggested approaches to power and sample size calculations give accurate and superior
results under various treatment and cost configurations.

Conclusions: The proposed approach improves upon the current method in both its methodological soundness
and overall performance. Supplementary algorithms are also developed to aid the usefulness and implementation
of the recommended technique in planning 2 × 2 factorial designs.

Keywords: Budget, Factorial design, Heteroscedasticity, Interaction, Power, Sample size

Abbreviations: NLPQN, The nonlinear optimization by quasi-Newton method; SAS/IML, The interactive matrix
language software of SAS

Background
The factorial designs are the most common formulation
for assessing the existence of interaction and the extent
of generalizability of two or more factors in medical re-
search. Notably, systematic reviews and practical guide-
lines have been presented in Green, Liu, and O’Sullivan
[1], Kahan [2], Kent et al. [3], McAlister et al. [4], and
Montgomery, Astin, and Peters [5]. The prominent

advantages of factorial designs over a series of single-
factor studies can be easily seen with the 2 × 2 factorial
design. Particularly, a wide range of research problems
associated with interactions, main effects, and various
mixtures can be examined in terms of a linear combin-
ation of mean effects. It is noteworthy that the desig-
nated linear comparison represents the substantive
hypothesis of interest and reveals essential information
that cannot be obtained from single-factor studies. Com-
prehensive exposition and further information can be
found in Kutner et al. [6] and Maxwell and Delaney [7].
In addition, useful flowcharts of two-factor studies were
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presented in Figure 19.11 of Kutner et al. [6] and Figure
7.2 of Maxwell and Delaney [7] for appropriate ap-
proaches to evaluating effects either in the presence or
the absence of an interaction.
It follows from the independence, normality, and

homogeneity of variance assumptions, that the inference
for a linear combination of mean effects can be con-
ducted with a t statistic. However, numerous studies
have found that the homogeneous variances assumption
is frequently untenable in many research areas. It was
explicitly stressed in Golinski and Cribbie [8], Grissom
[9], Keselman et al. [10], and Ruscio and Roche [11] that
variances are often extremely different across treatment
groups. Therefore, it is prudent to adopt proper ap-
proaches that are superior to the traditional methods
under various circumstances of heterogeneous variances.
For testing a hypothesis of a linear combination of group
means, the approximation suggested independently by
Satterthwaite [12] and Welch [13] is the most widely
recommended technique to correct for variance hetero-
geneity (Kirk [14]; Maxwell & Delaney [7]). The proced-
ure is sometimes referred to as the Welch–Satterthwaite
test and provides a simple and robust t-solution with ap-
proximate degrees of freedom.
A research study typically requires adequate statistical

power and sufficient sample size to detect scientifically
credible effects. Within the context of medical trials, the
power and sample size implications for subgroup analysis
of treatment combination and interaction in factorial
studies were noted in Beck et al. [15], Brookes et al. [16],
Gonen [17], Natarajan et al. [18], and Wolbers et al. [19].
To extend the applicability of the Welch–Satterthwaite
procedure in planning research designs, Shieh and Jan
[20] presented two approaches to power and sample size
calculations for the Welch–Satterthwaite test. The ap-
proximate method presents a particularly convenient
technique for general use. Alternatively, the exact formu-
lation is noticeably more effective in maintaining the
power performance in some situations. However, the pre-
scribed approaches for choosing sample size to provide
adequate power do not consider the cost issues of differ-
ent sample size choices. But the cost for treating a subject
often varies with treatment groups and it is impossible for
researchers to overlook budget constraints in practice.
Bacchetti [21] and Bacchetti, McCulloch, and Segal [22]
also emphasized that the conventional sample size proce-
dures do not take cost into account and can produce cost-
inefficient sample size choices. Alternatively, Allison et al.
[23] advocated designing statistically powerful studies
while minimizing costs.
Recently, Luh and Guo [24] studied the problem of ef-

ficient sample size allocation to reduce budget for the
Welch–Satterthwaite test within the context of 2 × 2 fac-
torial design. The optimal ratio of sample sizes suggested

in Luh and Guo [24] is proportional to the ratio of the
population standard deviations divided by the square
root of the ratio of the unit sampling costs. Despite the
presented argument and demonstration, their method is
susceptible to three critical issues. First, the two-step
procedure of Luh and Guo [24] involved several approxi-
mations including the use of quantiles of a standard nor-
mal distribution and a t distribution with approximate
degrees of freedom. Unlike the two approaches of Shieh
and Jan [20], Luh and Guo [24] did not employ the fea-
ture of a noncentral t distribution in their computation.
More importantly, they did not explicitly define the non-
null distribution and the power function of the Welch–
Satterthwaite test. Therefore, the resulting explication is
incomplete by its absence of vital technical formulations.
Second, the optimal sample size ratios in Luh and Guo

[24] were obtained with the simplified assumption that
the test statistic has a normal distribution with known
variances. Note that the particular formula has been
adopted in Guo and Luh [25] to determine the presum-
ably optimal sample size ratios for designing statistically
powerful two-sample studies while minimizing financial
costs. However, it was shown in Jan and Shieh [26] that
such an allocation scheme generally do not give the opti-
mal solution. Hence, it is arguable that Luh and Guo’s
[24] claim of optimal allocations requires further clarifi-
cation. Third, the sample sizes need to be integer values
in reality. The final sample sizes in Luh and Guo [24]
are determined by rounding up the outcomes of the
two-step calculations to the next largest integers. Con-
ceivably, the use of discrete numbers induces some in-
exactness into the optimal evaluation. It is unlikely that
a direct integer rounding process will always give the op-
timal result under power and cost considerations even
that the optimal sample size ratios have been imple-
mented. Instead, a systematic power calculation and cost
assessment needs to be conducted to find the proper
result.
In order to make a useful and well-supported recom-

mendation on optimal sample size allocations, this art-
icle presents an alternative approach for designing
statistically powerful heteroscedastic 2 × 2 factorial stud-
ies while minimizing financial costs. A detailed account
of the Welch–Satterthwaite test is presented next to
document its theoretical characteristics and computa-
tional requirements. Moreover, the optimization pro-
cesses of the proposed procedure with power and cost
constraints are described. To provide definitive evidence,
extensive empirical investigations were conducted to
demonstrate the advantages of the suggested approach
over the potentially defective method of Luh and Guo
[24] under a variety of model configurations. Essentially,
this study contributes to the literature of sample size
methodology for the Welch–Satterthwaite test in two
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aspects. First, the suggested allocation scheme extends
the design strategy of Shieh and Jan [20] to accom-
modate both budgetary constraints and power assess-
ments. Second, the proposed optimization technique
offers prominent improvement over Luh and Guo’s
[24] method to obtain the true optimal sample sizes.
For computing the attained power and optimal alloca-
tion scheme in planning research designs, the SAS
computer algorithms are offered to facilitate the rec-
ommended procedure.

Methods
Consider the statistical model of a 2 × 2 heteroscedastic
factorial design:

XijkeN μij; σ2ij

� �
; ð1Þ

where Xijk represents the independent and normally dis-
tributed response variable with expected values μij and
variances σij

2, μij is the population mean, and σij
2 is the

error variance at level i of the factor A and level j of the
factor B for i and j = 1 and 2, and k = 1, …, Nij. In gen-
eral, a linear combination of mean parameters is defined
as

ψ ¼
X2
i¼1

X2
j¼1

Lijμij ð2Þ

where Lij are the linear coefficients. A contrast is a
special case of a linear combination in which the co-
efficients of the means add up to 0. Notably, the con-
trasts associated with the main effect A, the main
effect B, and the interaction effect between A and B
can be expressed as

ψA ¼ μ11 þ μ12–μ21–μ22;
ψB ¼ μ11–μ12 þ μ21–μ22;

and

ψI ¼ μ11–μ12–μ21 þ μ22; ð3Þ
respectively. An unbiased estimator ψ̂ of the linear com-
bination ψ is obtained by simply replacing each popula-
tion mean in Equation 2 by the corresponding sample
mean:

ψ̂ ¼
X2
i¼1

X2
j¼1

LijX ij; ð4Þ

where Xij ¼
XNij

k¼1

Xijk=Nij for i and j = 1 and 2. The

hypothesis testing of H0: ψ = ψ0 versus H1: ψ ≠ ψ0 can be
conducted with the following statistic

T� ¼ ψ̂−ψ0

ω̂
; ð5Þ

where ψ0 is a specified constant, ω̂2 ¼
X2
i¼1

X2
j¼1

L2ijS
2
ij=Nij

is the typical estimator of ω2
⋅ ¼ Var ψ̂ð Þ ¼

X2
i¼1

X2
j¼1

L2ijσ
2
ij=Nij ,

and S2ij ¼
X
l¼1

Nij

Xijk−Xij
� �2

= Nij−1
� �

is the sample variance

estimator of σij
2 for i and j = 1 and 2. Under the null hy-

pothesis H0: ψ = ψ0, it was demonstrated in Satterthwaite
[12] and Welch [13] that the statistic T* given in
Equation 5 has a convenient approximate distribution

T� e: t vð Þ; ð6Þ
where t(ν) is a t distribution with degrees of freedom ν
and

v ¼
X2
i¼1

X2
j¼1

L2ijσ
2
ij=Nij

( )2

=
X2
i¼1

X2
j¼1

L4ijσ
4
ij= N2

ij Nij−1
� �h i( )

:

For inferential purposes, the term of degrees of free-
dom ν is replaced by its counterpart v̂ with direct substi-
tution of Sij

2 for σij
2 in ν, where

v̂ ¼
X2
i¼1

X2
j¼1

L2ijS
2
ij=Nij

( )2

=
X2
i¼1

X2
j¼1

L4ijS
4
ij= N2

ij Nij−1
� �h i( )

:

ð7Þ
Hence, the null distribution of T* is modified as

T� e: t v̂ð Þ; ð8Þ
and the Welch–Satterthwaite procedure rejects H0 at
the significance level α if T�j j > tv̂; a=2 where tv̂;a=2 is the
upper 100(α/2) percentile of the t distribution t v̂ð Þ.
Moreover, it was noted in Shieh and Jan [20] that the

statistic T* has the general approximate distribution

T� e: t v; δð Þ; ð9Þ
where t(ν, δ) is a noncentral t distribution with degrees
of freedom ν and noncentrality parameter

δ ¼ ψ−ψ0

ω
:

It immediately follows from the noncentral t distribu-
tion given in Equation 9 that the power function of the
Welch–Satterthwaite test can be approximated by

π δð Þ ¼ P t v; δð Þj j > tv;a=2
� �

: ð10Þ
Accordingly, Shieh and Jan [20] noted that the ap-

proximate power function π(δ) provides a useful ex-
pression because of its theoretical implications and
practical applications. The numerical computation of
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the power level requires the evaluation of the cumu-
lative distribution function of a noncentral t variable
with respective to the quantile of a regular t distribu-
tion. Since all related functions are embedded in
major statistical packages, the actual computations
can be readily conducted with current computing
capabilities. A SAS/IML (SAS Institute [27]) program
is presented in Additional file 1 for computing π(δ)
with the designated sample sizes and model configu-
rations. More importantly, the empirical examina-
tions presented later reveal that the approximate
power function is sufficiently accurate for general
purposes.

Optimal allocation scheme
The determination of an adequate and efficient alloca-
tion of sample sizes is a vital aspect in the planning
stage of research studies. It is often sensible to con-
sider the sample size issues in the presence of fund-
ing constraints. The total cost of a 2 × 2 factorial
study can be represented by the overhead cost and
sampling costs through the following linear cost
function

CT ¼ Co þ
X2
i¼1

X2
j¼1

CijNij; ð11Þ

where CO is the fixed overhead cost associated with
the study and Cij reflects unit sampling cost of each
subject in group (i, j) for i and j = 1 and 2. It is im-
portant to note that the consideration of the total
number of subjects can be viewed as a special case of
the cost function CT, with CO = 0 and Cij = 1 for i and
j = 1 and 2. From the cost perspective, a question
arises naturally in choosing the optimal sample sizes:
What is the least cost for a research study to main-
tain its desired power level?
To develop a systematic search of the optimal solu-

tion to ensure the nominal power performance while
minimizing the total cost CT defined in Equation 11,
the suggested approach is conducted in two steps.
With the specifications of the significance level α, the
desired power level 1 – β, the null effect size ψ0, and
the model parameters of group means and variance
components, the first step computes the preliminary
sample sizes {NP11, NP12, NP21, NP22} via an
optimization process by minimizing the objective cost
function with the constraint that the attained power
is equal to or greater than the designated level. Note
that the attained power is computed with the ap-
proximate power function π(δ) of the Welch–Sat-
terthwaite test defined in Equation 10. A closed form
solution rarely exists for most situations and therefore

the minimization typically requires iterative and ex-
tensive computations.
Accordingly, the NLPQN subroutine of the SAS/

IML package provides an efficient approach to finding
the optimal solution for cost minimization with the
power function as a nonlinear constraint. It must be
emphasized that the sample sizes are treated as con-
tinuous variables in the optimization process. Thus,
the resulting values {NP11, NP12, NP21, NP22} are al-
most surely not all integers. Due to the underlying
metric of integer sample sizes, in practice, the values
are rounded up to the nearest integer. This simple
and intuitive adjustment maintains that the corre-
sponding power is still no less than the nominal
power. But both the achieved power and total cost
actually increase for the modified sample sizes {NM11,
NM12, NM21, NM22} = {[NP11] + 1, [NP12] + 1, [NP21] + 1,
[NP22] + 1}, where [N] denotes the integer part of N.
Notably, the optimal property of the sample sizes
{NP11, NP12, NP21, NP22} does not necessarily carry
over to the adjusted sample sizes {NM11, NM12, NM21,
NM22}. In sum, the rounding process tends to induce
a suboptimal solution and the optimal set of sample
sizes remains to be determined.
In the second step, a detailed comparison is conducted

to find the proper result by taking into account the
discrete character of sample sizes in practice. Specific-
ally, power calculations and cost evaluations are per-
formed for a total of 24 = 16 sample size sets {N11, N12,
N21, N22} with Nij = [NPij] or [NPij] + 1 for i and j = 1 and
2. Then the optimal allocation {N11

* ,N12
* ,N21

* ,N22
* } is

found through a screening of the sample size combina-
tions that attain the desired power while giving the least
cost. If more than one combination yields the same
magnitude of least cost, the one producing the largest
power is reported. Note that this fine-tuning procedure
can be considered as a safeguard to ensure that the
nearly optimal and integer sample sizes {NM11, NM12,
NM21, NM22} is the true optimal solution. Unfortunately,
the conducted numerical calculations revealed that the
sample sizes {NM11, NM12, NM21, NM22} are rarely the
correct optimal allocation. This finding justifies the sug-
gested screening technique and notifies the deficiency of
the rounding process in Luh and Guo [24]. A special
purpose SAS/IML computer program is presented in
Additional file 2 for performing the necessary
computation.
On the other hand, Luh and Guo [24] presented a

two-step procedure for obtaining the optimal result.
First, using the simplified normal assumption, they
showed that the optimal sample size ratio is proportional
to the ratio of the population standard deviations di-
vided by the square root of the ratio of the unit sampling
costs:
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rij ¼ Nij

N11
¼ σijC111=2

σ11C
1=2
ij

; ð12Þ

i and j = 1 and 2. The initial sample sizes {NZ11, NZ12,
NZ21, NZ22} are obtained with NZij =NZ11·rij, i and j = 1
and 2, where

NZ11 ¼
Zα=2 þ Zβ
� �2

w2

ψ−ψ0

� �2 ;

w2 ¼
X2
i¼1

X2
j¼1

Lij

2

σij

2

=rij; and zα/2 and zβ are the upper

100(α/2)th and 100 · βth percentiles of the standard nor-
mal distribution, respectively. Then, to account for the ap-
proximate degrees of freedom of the Welch–Satterthwaite
test, they suggested a modified process by using the sam-
ple sizes {NZ11, NZ12, NZ21, NZ22} to yield the second set of
sample sizes {NT11, NT12, NT21, NT22} where NTij =NT11·rij,
i and j = 1 and 2,

NT11 ¼
tυ;��α=2 þ tυ;��β
� �2

w2

ψ−ψ0

� �2 ;

and

υ ¼
X2
i¼1

X2
j¼1

L2ijσ
2
ij=NZij

( )2

=
X2
i¼1

X2
j¼1

L4ijσ
4
ij= N2

Zij NZij−1
� �h i( )

:

Because the values of {NT11, NT12, NT21, NT22} are
most likely fractional, a direct rounding process is ap-
plied to give the final sample sizes {NLG11, NLG12, NLG21,
NLG22} where NLGij = [NTij] + 1 for i and j = 1 and 2. In
contrast to the proposed fine-tuning algorithm, Luh and
Guo [24] overlooked the inexactness issue caused by in-
teger sample sizes in power evaluation and cost
minimization. This is one of possible causes that their
method does not guarantee to produce the optimal sam-
ple sizes as shown in the subsequent numerical
comparisons.

Numerical assessments
To illustrate the advantage of the proposed optimal pro-
cedure over the existing method of Luh and Guo [24],
numerical appraisals were performed to assess the opti-
mal sample size calculations of the two methods under a
wide variety of model configurations. The empirical in-
vestigation consists of two studies with real and hypo-
thetical data that correspond to the model settings in
Tables 2 and 3 of Luh and Guo [24].

Study I
For the purposes of comparison, the illustrative example
for the 2 × 2 factorial study of attack context and panic

fear in Luh and Guo [24] is reexamined here. The data
was obtained from the investigations of frequency and
cost of emergency service use in Barnett and Nurma-
gambetov [28] and Greaves et al. [29]. To exemplify a
typical research scenario most frequently encountered in
the planning stage of a study, the reported findings are
employed to provide planning values of the model pa-
rameters and design characteristics for future asthma
study.
Specifically, the mean effects and variance components

are designated as {μ11, μ12, μ21, μ22} = {1.23, 0.42, 0.13,
0.38} and {σ11

2 , σ12
2 , σ21

2 , σ22
2 } = {0.6889, 0.5184, 0.1156,

0.5929}, respectively. The contrast effect sizes associated
with the main effect A (Asthma attack: recent and
stable), the main effect B (Panic fear: low and high), and
the interaction effect defined in Equation 3 are ψI = 1.06,
ψA = 1.14, and ψB = 0.56, respectively. For the definition
of total cost, the fixed cost is set as CO = 0, and two sets
of unit costs CU = {784.74, 267.96, 82.94, 242.44} and
CE = {1, 1, 1, 1} are considered to represent varied
and identical unit sampling costs for the four treat-
ment groups. Then the proposed allocation procedure
was employed to find the optimal sample sizes
needed to achieve the nominal power 1 – β = 0.8 for
three contrast effects and two cost structures.
Throughout this empirical study, the significance level
is set as α = 0.05 and the null value is ψ0 = 0. Overall,
a total of six different sets of sample sizes were
obtained.
The optimal allocation, total cost, and total sample

size are summarized in Table 1. Unlike the presented
procedure, the numerical outcomes reported in Table 2
of Luh and Guo [24] are based on the sample size ratios
in Equation 12. For ease of illustration, the correspond-
ing results are also presented in Table 1. In addition, the
attained powers for the computed sample sizes were
computed by the suggested approximate power function
π(δ) given in Equation 10. Due to the approximate na-
ture of the suggested power calculations, Monte Carlo
simulation of 10,000 independent data sets was also con-
ducted to obtain the simulated powers. Accordingly, the
adequacy of the approximate power function can be
evaluated by the difference between the simulated power
and approximate power. In addition to the prescribed
optimal sample allocation, total cot and total sample
size, the approximate power, simulated power and differ-
ence are also listed in Table 1.

Study II
To further explicate the optimal behavior and profound
implication of the two sample size procedures, additional
numerical assessments were performed with different
variability patterns and cost structures. In this study, the
simulation design of Luh and Guo [24] is adopted as a
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convenient framework. The model configurations are
{μ11, μ12, μ21, μ22} = {1, 0, 0, 1} and {σ11

2 , σ12
2 , σ21

2 , σ22
2 } =

{1, 4, 9, 16}. Here, the focus is on the detection of the
interaction effect ψI = μ11 – μ12 – μ21 + μ22 = 2. For the
calculation of total cost, the fixed cost is set as CO = 0,
and six sets of unit costs are considered: {C11, C12, C21,
C22} = {1, 1, 1, 1}, {1, 2, 3, 4}, {4, 3, 2, 1}, {1, 1, 2, 5}, {5, 2,
1, 1}, and {1, 3, 3, 1}. These combinations of unit cost
patterns were chosen to represent as much as possible
the extent of characteristics that are likely to be obtained
in actual applications. Similar to the illustration in Study
I, the main settings are assigned as the significance level
α = 0.05, nominal power 1 – β = 0.8, and the null value
ψ0 = 0. Also, Monte Carlo simulation of 10,000 inde-
pendent data sets was again conducted to obtain the

simulated powers. The computed sample sizes, total
cost, total sample size, approximate power, simulated
power, and associated error of the two competing ap-
proaches are presented in Table 2 for six different cost
functions.

Results
As was pointed out above, Luh and Guo [24] did not
explicitly describe the power function for the Welch–
Satterthwaite test and only the simulated powers were
reported in their numerical demonstration. Note that
the approximate powers presented in Table 1 of both
sample size procedures are computed with respect to
the approximate power function π(δ) for the reported
sample sizes. The appraisal and implication of power

Table 1 Computed sample size, total cost, total size, simulated power, and error for the approaches of the proposed approach and
Luh and Guo’s (2016) method, when α = 0.05, 1 – β = 0.8, and {σ112 , σ122 , σ212 , σ222 } = (0.6889, 0.5184, 0.1156, 0.5929)

ψa Unit costsb Method Sample sizes Total cost Total sample size Approximate powerc Simulated power Error

ψI CU Proposed procedure {11, 16, 13, 19} 18604.08 59 0.8005 0.7964 0.0041

Luh and Guo {12, 17, 14, 19} 19739.72 62 0.8254 0.8169 0.0085

CE Proposed procedure {16, 14, 7, 15} 52 52 0.8038 0.8053 –0.0015

Luh and Guo {17, 14, 7, 15} 53 53 0.8113 0.8077 0.0036

ψA CU Proposed procedure {10, 13, 12, 16} 16205.20 51 0.8004 0.7906 0.0098

Luh and Guo {10, 15, 13, 17} 17066.50 55 0.8208 0.8157 0.0051

CE Proposed procedure {14, 12, 6, 13} 45 45 0.8014 0.8012 0.0002

Luh and Guo {15, 13, 6, 14} 48 48 0.8273 0.8304 –0.0031

ψB CU Proposed procedure {38, 56, 48, 62} 63838.28 204 0.8000 0.7889 0.0111

Luh and Guo {38, 57, 48, 64} 64591.12 207 0.8046 0.8019 0.0027

CE Proposed procedure {56, 49, 23, 52} 180 180 0.8021 0.7969 0.0052

Luh and Guo {56, 49, 23, 52} 180 180 0.8021 0.8008 0.0013

Note: aThe contrast effects are ψI = 1.06, ψR = 1.14, and ψC = 0.56. bThe cost coefficients are CU = {784.74, 267.96, 82.94, 242.44} and CE = {1, 1, 1, 1}. cThe attained
power computed by the suggested approximate power function

Table 2 Computed sample size, total cost, total size, simulated power, and error for the approaches of the proposed approach and
Luh and Guo’s (2016) method, when α = 0.05, 1 – β = 0.8, ψI = 2, and {σ112 , σ122 , σ212 , σ222 } = (1, 4, 9, 16)

Unit costs Method Sample sizes Total cost Total sample size Approximate powera Simulated power Error

{1, 1, 1, 1} Proposed procedure {20, 40, 60, 79} 199 199 0.8016 0.8002 0.0014

Luh and Guo {20, 40, 60, 80} 200 200 0.8036 0.8029 0.0007

{1, 2, 3, 4} Proposed procedure {33, 48, 58, 68} 575 207 0.8000 0.7971 0.0029

Luh and Guo {34, 48, 59, 68} 579 209 0.8028 0.8050 –0.0022

{4, 3, 2, 1} Proposed procedure {14, 32, 57, 108} 374 211 0.8009 0.7979 0.0030

Luh and Guo {14, 32, 58, 109} 377 213 0.8041 0.8047 –0.0006

{1, 1, 2, 5} Proposed procedure {32, 63, 68, 58} 521 221 0.8001 0.7928 0.0073

Luh and Guo {33, 65, 69, 58} 526 225 0.8038 0.8033 0.0005

{5, 2, 1, 1} Proposed procedure {11, 34, 72, 95} 290 212 0.8006 0.8000 0.0006

Luh and Guo {11, 34, 73, 97} 293 215 0.8046 0.8089 –0.0043

{1, 3, 3, 1} Proposed procedure {27, 32, 47, 107} 371 213 0.8004 0.8030 –0.0026

Luh and Guo {28, 32, 48, 109} 377 217 0.8039 0.8067 –0.0028
aThe attained power computed by the suggested approximate power function
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performance are valid only when the power function
provides reasonably accurate results. With the target
power 0.8, it is evident that all the errors between
the approximate power and simulated power are con-
tained in the interval [–0.0031, 0.0111]. Hence, the
presented power function in Equation 10 and result-
ing powers appear to be accurate enough to validate
optimization analysis. Moreover, all the approximate
powers induced by the computed sample sizes are
greater than the nominal level 0.8 for all 12 cases.
Hence, the two contending optimal allocations pro-
vide adequate power to validate further methodo-
logical comparisons of corresponding sample size
procedures.
It can be readily seen from the reported sample sizes

in Table 1 that the two allocation procedures do not
agree with the optimal sample size settings. The com-
puted sample sizes of Luh and Guo’s [24] method are
larger than or equal to those of the suggested technique.
The last scenario associated with ψB and CE is the only
one case where the two sets of sample sizes are identical.
Specifically, the sample sizes associated with the inter-
action effect ψI and cost coefficient set CE are {11, 16,
13, 19} and {12, 17, 14, 19} for the proposed approach
and Luh and Guo’s [24] method, respectively. In this
case, the maximum difference of cell sample sizes be-
tween the two procedures is only one. This indicates
that a simple rounding process may distort an optimal
solution even the sample size ratios {r11, r12, r21, r22}
provide a nearly optimal result under normal approxi-
mation. Moreover, for the main effect ψA and cost coeffi-
cient set CU, the computed sample sizes for the two
contending procedures are {10, 13, 12, 16} and {10, 15,
13, 17}, respectively. Hence, the cell sample sizes incur
the largest difference of two units. The same situation
also occurred with the setup of the main effect ψB and
cost coefficient set CU. In both scenarios, the discrep-
ancy of more than one unit in sample size determina-
tions reveals that the normality-based sample size ratios
rij given in Equation 12 is also responsible for the sub-
optimal behavior of Luh and Guo’s [24] method. Conse-
quently, the total cost incurred by the proposed
approach is always no larger than that of the Luh and
Guo [24] procedure. These numerical evidences showed
that their method does not warrant optimal sample size
allocation for minimizing the total cost.
With the different variability patterns and cost struc-

tures in the second empirical study, it is clear from the
marginal differences between the approximate power
and simulated power in Table 2 that the approximate
power function π(δ) maintains a accurate solution for
power calculations. Specifically, all the absolute errors
are less than 0.01 for all 12 cases. Just as in the preced-
ing study, all the approximate powers or attained powers

associated with both optimal allocation methods satisfy
the desired power performance 0.8 for all six cost struc-
tures. However, the computed sample sizes in Table 2
indicate that Luh and Guo’s [24] method consistently
give greater total cost and larger total sample size than
the suggested technique. Notably, the accuracy of their
method deteriorates as the variability of the unit costs
increases. For the identical unit costs {1, 1, 1, 1}, the
computed sample sizes {20, 40, 60, 79} and {20, 40, 60,
80} of the two approaches are nearly the same. However,
the corresponding optimal sample sizes and total costs
become prominently different when the unit costs are
{1, 1, 2, 5}, {5, 2, 1, 1}, and {1, 3, 3, 1}. Accordingly, the
performance of the existing method of Luh and Guo
[24] is sensitive to model settings and cost schemes. In
view of the potentially diverse treatment and cost config-
urations in factorial designs, their formula does not
serve as a robust procedure for general use. Conse-
quently, the allegedly optimal sample sizes calculations
of Luh and Guo [24] are actually suboptimal, and their
claim of developing the most efficient allocation for het-
eroscedastic 2 × 2 factorial designs is incorrect.

Discussion
The 2 × 2 factorial design is widely used in different
fields of research for assessing the interaction between
two factors. However, violation of the homogeneity of
variance assumption has been the target of criticism in
applications of standard factorial ANOVA. For testing a
hypothesis of a linear combination of group means, the
Welch–Satterthwaite procedure emerges as a robust al-
ternative to heteroscedasticity when distributions are
normal. For the ultimate aim of selecting the optimal
sample size allocation, the analytical argument and em-
pirical performance of an optimization technique must
be well examined before it can be adopted as a general
methodology in practice. The large sample theory shows
that in order to ensure the nominal power while minim-
izing total cost, an optimal ratio of sample sizes is pro-
portional to the ratio of the population standard
deviations divided by the square root of the ratio of the
unit sampling costs. At first sight, Luh and Guo’s [24]
sample size procedure is easy to use and seem to give
practically useful results. However, it is unlikely that a
direct implementation of the simple allocation formula
with a simple integer rounding will give the optimal so-
lution under cost considerations. Therefore, there is a
need to provide a systematic and detailed process to cal-
culate the final optimal sample sizes. Evidently, the pro-
posed procedure and the current method of Luh and
Guo [24] are prominently different in fundamental prin-
ciples and demand varying computational efforts. Due to
the complexity of the sample size optimization problem
under power and cost considerations, a complete
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analytic examination is not feasible. Instead, numerical
assessments were conducted to examine their unique
feature and underlying discrepancy in order to better
understand the selection of an appropriate approach for
optimal sample size determination in 2 × 2 factorial
studies. Detailed appraisals showed that Luh and Guo’s
[24] procedure generally do not give the optimal solu-
tion. Alternatively, the described approach provides a su-
perior solution for optimal sample size allocation.

Conclusions
To enhance the usefulness of the Welch–Satterthwaite
procedure in planning research designs, this article ad-
dresses the corresponding problem of designing statisti-
cally powerful heteroscedastic 2 × 2 factorial studies
while minimizing financial costs. The suggested ap-
proach outperforms the current method in both its
methodological soundness and overall performance. The
presented sample size optimization methodology can be
useful for the advocated practice of planning research
design under both power and cost considerations. Com-
puter algorithms are also developed to facilitate the im-
plementation of the recommended power and sample
size calculations in planning 2 × 2 factorial designs.
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