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A Unifying Approach to Determine the Necessary
and Sufficient Conditions for Nonblocking

Multicast 3-Stage Clos Networks
F. K. Hwang

Abstract—The 3-stage Clos network is the most-studied
switching network. However, exact conditions on the strictly
nonblocking multicast three-stage Clos network under various
models are difficult to get, due to the messy detail and because
each case employs a different argument. Hwang and Liaw made
the latest attempt and pointed out errors in previous attempts.
However, they made errors, too. In this paper, we propose a
unifying approach to study those models systematically (which
also applies to some wide-sense nonblocking (WSNB) networks).
We also propose a new routing algorithm, and use the unifying
approach to derive a necessary and sufficient condition for WSNB.

Index Terms—3-stage Clos network, strictly nonblocking
switching network, wide-sense nonblocking (WSNB) switching
network, window algorithm.

I. INTRODUCTION

A3-stage Clos network [1] has
switches of size in the input stage (stage 1),

switches of size in the middle stage (stage 2), and
switches of size in the output stage (stage 3). Every
middle switch has exactly one link to each input switch and
each output switch. Thus, the network has inputs
and outputs (see Fig. 1).

Each switch is assumed to be nonblocking, in the sense that
any one-to-one mapping between its inputs and outputs can be
connected simultaneously. A switch is said to have fan-out capa-
bility if any one-to-many mapping between its inputs and out-
puts can be connected. Under multicast traffic, each input can
request to connect to many idle outputs. A request is called an

-request if the number of outputs involved is . In an -cast
traffic, no -request is allowed for . A network is -cast
strictly nonblocking (SNB) if it can always route an -request,

, regardless of how existing connections are routed. It is
-cast wide-sense nonblocking (WSNB) if routing is possible

under the condition that all requests are routed according to a
given routing strategy.

Giacomazzi and Tricordi [3] first studied necessary and suffi-
cient conditions for to be SNB for -cast
traffic. (Although Masson and Jordan [8] wrote a paper some 20
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Fig. 1. C(2; 4; 3; 2; 3) with eight inputs and six outputs.

years earlier, giving a sufficient condition for SNB in a multicast
3-stage Clos network, this network was later [2] determined to
be WSNB). Let denote the number of middle switches re-
quired for SNB. Giacomazzi and Tricordi gave the following
necessary and sufficient condition:

(1)

where indicates that the current request is -cast, is the
number of outputs connected by other inputs on the same input
switch as , and

is the maximum number of connections over all requests going
to at least one of the output switches involved in the current
request.

Note that (1) is complicated and implicit, since one has to
maximize over three variables. No closed-form solution was
given in [3]. Recently, Pattavina and Tesei [9] gave a counterex-
ample against (1).

Giacomazzi and Tricordi also gave a similar equation for the
model where the input stage has no fan-out capability.

Hwang and Liaw [6] used a different approach to obtain a
necessary and sufficient condition for SNB in a -cast 3-stage
Clos network

(2)

where the second term reflects the boundary condition from the
input size, and the third term reflects the boundary condition
from the output side. Compared with (1), (2) is explicit and
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easily computed. Pattavina and Tesei extended (2) to the case
that a multicast call must connect to at least outputs.

Call this model, which assumes fan-out capability for every
switch, model 0. Hwang and Liaw also gave similar equations
to models 1, 2, and 3, where model assumes that switches in
stage have no fan-out capability. Note that such a model can
also be treated as a WSNB [4], [5] network by interpreting that
no fan-out in stage is not due to the lack of capability of the
switch, but due to the rule of a routing strategy.

Hwang and Liaw also studied a genuine WSNB model, in
which an -request can have at most one path going to an output
switch, regardless of how many outputs on that switch are in-
volved in the request. This routing strategy is called “no-split,”
and was the one used in [8].

Actually, Hwang and Liaw considered two cases for each of
the above five models according to whether a busy input can
generate another request by adding extra outputs to existing
ones. If this is not allowed, the traffic is closed end; otherwise,
it is open end. So, in total, they gave ten sets of necessary and
sufficient conditions.

In this paper, we revise these ten sets of necessary and suffi-
cient conditions. Our method is similar to Hwang and Liaw, but
some intricate points are more carefully analyzed. In particular,
we develop a unifying approach which works for all ten cases,
instead of the case-by-case arguments given in [6]. This system-
atic approach discovers some errors in [6], and allows an easy
check on the correctness of the current results. We also propose
a new WSNB algorithm using the window algorithm (to be de-
fined in Section IV) first proposed by Tscha and Lee [10], and
also studied by Kabacinski and Danilewitz [7] for the multi-

network. We use the unifying approach to derive necessary
and sufficient conditions for to be WSNB
under the window algorithm. Interestingly, models 1 and 2 be-
comes two special cases where the window size is maximum or
minimum.

II. A UNIFYING APPROACH

Our approach gives a more systematic and orderly counting
to the number of blocked middle switches. Let the current
request be from input on switch to outputs on a set of
switches. Then the order is blocking by paths from , blocking
by paths from other input switches, blocking by paths from

. Such an ordered counting allows us to eliminate duplicated
counting. We also highlight the notion of the minimum number
of middle switches required to connect the current requests
when blocking from other paths is ignored. This notion helps
to crystalize the counting. While previous approaches are not
devoid of the above elements, they are usually less explicit and
exact.

Let denote the potential maximum number of middle
switches occupied by paths from which cannot use, while
ignoring the boundary effect from the output side, i.e., there
are only outputs. Then the actual maximum number, after
considering the boundary effect, is

(3)

since each path through these middle switches must end at a
distinct output, but there are only of them available.

Suppose involves outputs on several output switches. In
general, it suffices to consider just one of them, since they do
not compete for links to the middle stage, and the condition
derived for one is the same for another. An exception is when
those output switches involved in are required to be routed
through the same middle switch, as in model 1, then we must
consider the output switches together, because a failure to reach
one output switch is a failure for all.

First consider the case where connections to the switches in
are independent. Let be an output switch containing

outputs in . Then each of the other outputs can occupy
a distinct middle switch, as long as there are enough inputs to
generate requests involving these outputs. Since paths
generated by inputs of are already counted in (3), there are

inputs available. Let denote the potential max-
imum number of middle switches the paths from these
inputs can occupy while ignoring the output side.

Another point to consider is that some of the outlets
may already be used in (3). There are outlets
not in the -request and not from . So if

then

among the outputs from are already consumed in (3).
Hence, only outputs from can generate new
paths, where . Summarizing, the maximum
number of new paths generated by available outputs from is

(4)

Let denote the minimum number of middle switches
required to guarantee the routing of when there is no other
connection. Then to route among other connections, we must
have additional switches not counted in (3) and (4). In the
worst-case scenario, where the switches in (3) and (4) are all
distinct, then a sufficient condition to route is

(5)

obtained by pairing with each term in the second min. Note
that if the first min is , then the second min must be

, and the condition becomes ,
which is same as the last term in (5). A careful examination of
the above arguments reveals that the worst-case scenario gen-
erating (3) and (4) can happen, hence, (5) is also a necessary
condition. For , then , ,
and , (5) is then reduced to ,
the famous Clos result.



HWANG: NECESSARY AND SUFFICIENT CONDITIONS FOR NONBLOCKING MULTICAST 3-STAGE CLOS NETWORKS 1583

To save writing, let denote the number such that
is necessary and sufficient for to be -cast
SNB (WSNB for the no-split model).

Lemma 1: Suppose the routings of to the output switches
in are independent. Then

Corollary 2: If is independent of , then

Lemma 1 applies to models 0, 2, 3, and no-split, while Corol-
lary 2 applies to any model whose output stage has fan-out ca-
pability.

A traffic model is called consistent if every pair of paths from
the same input, if legitimate separately, is a legitimate pair under
the model. None of models 1, 2, or 3 is consistent, since two le-
gitimate paths can go through the same stage- switch and force
a fan-out at that switch. Nor is the no-split model consistent,
since the two paths going to the same output may go through
different middle switches.

Lemma 3: for open-end traffic is same as the closed-end
case for a consistent model.

Proof: It was proved in [6] that if is sufficient for
open-end traffic, then it suffices for closed-end traffic. There-
fore, we only need to prove the converse.

Consider an -cast request from input in open-end traffic
such that is already connected to outputs, .
We modify the traffic by deleting the requests (and connections)
from to these outputs, and add them to the -cast request.
Further, any set of existing requests from an input are
interpreted as one request with the set of connecting paths intact.
Then the modified traffic is closed end, hence, the current

-cast request from is routable.
Back to the original open-end traffic. We route the -cast re-

quest using the same paths as in the modified traffic. Note that
all existing paths, other than those from , are same as in the
modified traffic. So any overlapping of these paths with existing
ones must be with paths from . Since the model is consistent,
all paths from the same input can co-exist.

Although the notion of consistency has limited applicability
in Lemma 3, we will see in the next section that with modifica-
tions, it can apply to various models.

III. NECESSARY AND SUFFICIENT CONDITIONS

FOR TEN MODELS

We apply the results obtained in Section II to the ten models
studied in [6].

Theorem 4: For model 0 under closed-end traffic

Proof: , , and
. By Corollary 2

at

Corollary 5: Open-end traffic has the same .
Proof: Follows from Lemma 3.

Theorem 6: For model 2 under closed-end traffic

Proof: , , and
, since if , additional middle

switches still suffice by routing each such middle switch to a
distinct output switch, and then using the fan-out capability of
the output switches to reach multiple outputs. The reason that

, but not , is in and is because under
the SNB rule, each connection can be routed arbitrarily, as long
as the paths are available. Hence, a connection can use two dif-
ferent paths to reach two inputs on the same output switch, even
if it is a waste. By Corollary 2

at

Theorem 7: For model 2 under open-end traffic

Proof: Unlike the case in Corollary 5, the middle switches
cannot fan out. Hence, cannot use a middle switch already
carrying a path from to route . Since can connect
to a maximum of outputs, while can already have
connected to a maximum of outputs, .

, and are same as the open-end case. By Corollary 2

at any

Note that the conditions for closed-end traffic and open-end
traffic are different, contrary to the conclusion in [4]. We give
an example that in Theorem 6 is not sufficient for open-end
traffic.

Example: Consider with . Then
has inlets , has inlets , and has

outlets for
. Then in Theorem 6 and in

Theorem 7. Let be the ten middle switches.
The current request is , and the existing paths
are , , , ,
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, , , ,
, and . Then none of the can

carry .
Theorem 8: For model 3 under closed-end traffic

Proof: It is easily argued that and
. To derive , note that if involves out-

puts on the same output switch, then these outputs must each be
routed through a distinct middle switch. On the other hand, out-
puts of different output switches can be routed through the same
middle switch. Let denote the maximum number of outputs on
the same output switch. Then , where .
By Lemma 1

at

at

since if , then

Theorem 9: Open-end traffic has the same .
Proof: We use the same method as in the proof of Lemma

3, but with some modification. Note that with the modified
traffic, the paths from to outputs in the same output switch
must go through different middle switches. Further, these
paths can be interchanged without affecting the routability. We
will make necessary interchanges, such that no path from to

goes through a middle switch which routes to
in an existing path in open-end traffic. Then we can route the
current request under open-end traffic by using the paths in the
modified traffic.

Theorem 10: For the no-split algorithm under closed-end
traffic

Proof: An -request can use at most paths to
reach the output stage. Hence, and

, while (since there is
no other connection, any middle switch will do). By Corollary
2

at

Theorem 11: Open-end traffic has the same .
Proof: If the current request from contains an output

from the same output switch , such that there exists a path
from to , then use the same path to route . So we may
assume that the current request contains only outputs whose
output switches are not connected to . Use the same method
as given in the proof of Lemma 3 to route them, since the path
from to these outputs can coexist with existing paths from .

Finally, we deal with model 1. In this model, we need to find
one middle switch which can route to all output switches in .
Therefore, we must replace in (4) by . The
corresponding change in from Lemma 1 is

(6)

Theorem 12: For model 1 under closed-end traffic

where

Proof: Since each -request must go to a single middle
switch, , , and .
Further, outputs in which are on the same must be con-
nected through the same path, and then reached through the
output switch fan-out. Thus we may assume . By
(6)

at the maximum value of

Since the first term is increasing in , and the third decreasing,
the maximum should occur at

which is solved by if the integrability of is ignored. It is
easily verified that the maximum occurs either at or .
Further

For open-end traffic, it was shown in [4] that no is large
enough to guarantee SNB.

IV. WIDE-SENSE NONBLOCKING UNDER

THE WINDOW ALGORITHM

We first describe the window algorithm. Partition the output
switches into sets of (assuming divides ), and call each set
a window. An -request involving outputs in windows will
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be treated as multicast requests, where the th subrequest in-
volves only the outputs in window . Each subrequest must be
routed through one middle switch only, while two subrequests
from the same input are treated as different requests, and hence,
cannot be routed through the same middle switch.

Let denote the sum of . Note that the window algorithm
implies the no-split rule, since two outputs on the same output
switch must be in the same window, and their routes go through
the same middle switch. Clearly, their routes must also go
through the same link between that middle switch and their
output switch. Therefore, in deriving the tightest nonblocking
condition, we may assume that each -request involves at most
one output from an output switch. Hence, is also the number
of output switches in window involved in the -request.
Clearly, , , and

.
Theorem 13: For the -window algorithm under closed-end

traffic

where

Further, if , then

Proof: Suppose the request consists of subrequests.
Note that each subrequest involves a distinct set of outputs.
We compute the maximum number of middle switches needed
to connect subrequest . Since each subrequest is connected
through a single middle switch, the connections of the other

subrequests consume middle switches, regard-
less of the numbers of outputs in these subrequests, as long
as they are positive. Therefore, the worst case for subrequest

occurs when is maximum, with and fixed, i.e.,
. Since the subrequests are interchangeable,

the worst-case number of middle switches that suffices for one
subrequest suffices for all.

Since each subrequest is routed through a single middle
switch, (6) for model 1 can be used to compute the number
of middle switches required to connect subrequest , except
replacing . To compute for connecting
, we also have to maximize over and , and add the

middle switches required to connect the other
subrequests. Since consists of at most
subrequests, we have ,

Fig. 2. Request (u ; y ) is unroutable.

, , and

(7)

by changing the variable from to . Setting equal the
two terms in (7) containing , we obtain the first term of .
The second and third terms represent some boundary conditions
imposed by the other two terms in (7).

Clearly, the maximum is obtained at either or ,
and at . At , we can
drop the third term of (6), as it is larger than the first term. At

, we can drop the first term.
Thus, Theorem 13 follows.
Corollary 14: For , in Theorem 13 is the same as

in Theorem 12.
Proof: For , and

, where was given in
Theorem 12. Corollary 14 is easily verified.

Corollary 14 is not surprising, since if all output switches are
in the same window, then every -cast request must be routed
through the same middle switch, the same constraint as in model
1.

Corollary 15: For ,
.

Proof: For , . Corollary 15 easily follows
from Theorem 13 with .

The in Corollary 15 is same as in model 2, except
is replaced by . This difference is due to the fact
that no-split is forced under the window algorithm, but not in
model 2.

Fig. 2 shows that for open-end traffic under the window algo-
rithm, cannot guarantee WSNB, no matter
how large is. Let and be in the same window. Then,
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TABLE I
RESULTS OF THE FIVE MODELS (FIRST ROW REPRESENTS CLOSED-END, SECOND ROW, OPEN-END, AND � INDICATES EITHER

A NEW RESULT OR A CORRECT PROOF IS NOW PROVIDED)

request is unroutable, since it must be routed through
under the window algorithm, but the link from to is

occupied. Contrasting this example with Theorem 13, we see a
qualitative difference between the closed-end and the open-end
traffic for the window algorithm (just as for model 1).

The window algorithm offers a continuum of choices between
models 1 and 2. It also compares favorably with models in Sec-
tion II. As we said, model 1 corresponds to choosing ,
and model 2 is close to, but dominated by, the choice . For

large (for example, the unconstrained broadcast case, where
), models 0, 2, 3, and the no-split algorithm essentially

require middle switches, while the window algorithm re-
quires by choosing . On the other hand, for

small, we can choose , such that the window algo-
rithm essentially requires the same number of middle switches
as models 0, 2, 3, and the no-split algorithm.

V. CONCLUSIONS

We summarize our results in Table I for easy comparisons.
There are several interesting findings.

1) The network in model 0 is more powerful (and more
costly) than the networks in models 1, 2, 3. Yet in
model 0 is only slightly better than those in models 2
and 3, and not comparable to in model 1. This sur-
prising phenomena, that a more powerful network may
not have better performance, is due to the fact that in the
SNB setup, if you give the routing freedom to do stupid
things, it will.

2) of the no-split is same as model 0 except for replacing
by , an improvement if . The

improvement is not surprising, since the no-split model
guarantees WSNB, while model 0 guarantees SNB.

3) The boundary effect from the output side is uniformly
, except in model 1. This is because only in model

1, the three terms in contain one term increasing in
, and another (the output boundary) decreasing in ,

resulting in an -value which is not an extreme value.

The window algorithm not only provides a continuum of
choices, but also some interesting connections between the
models in Section II. For example, models 1 and 2 correspond
to the two extreme cases of the window algorithm. Also, we
have known that model 1 implies the no-split rule, and model
3 contradicts the no-split rule; now we further know the con-
sequence of combining model 2 and the no-split rule. We have
also shown that the performance of the window algorithm is
about the same as others for small, but can be much better
for large.
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