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Abstract—This paper investigates the effectiveness of a passive
tuned mass damper (TMD) and fuzzy controller in reducing the
structural responses subject to the external force. In general,
TMD is good for linear systems. We proposed here an approach
of Takagi–Sugeno (T-S) fuzzy controller to deal with the non-
linear system. To overcome the effect of modeling error between
nonlinear multiple time-delay systems and T-S fuzzy models, a
robustness design of fuzzy control via model-based approach is
proposed in this paper. A stability criterion in terms of Lyapunov’s
direct method is derived to guarantee the stability of nonlinear
multiple time-delay interconnected systems. Based on the decen-
tralized control scheme and this criterion, a set of model-based
fuzzy controllers is then synthesized via the technique of par-
allel distributed compensation (PDC) to stabilize the nonlinear
multiple time-delay interconnected system and the control
performance is achieved at the same time. Finally, the proposed
methodology is illustrated by an example of a nonlinear TMD
system.

Index Terms—Fuzzy control, modeling error, multiple time
delay, Takagi–Sugeno (T-S) fuzzy model.

I. INTRODUCTION

THE control methods so far have been broadly classified
into passive control and active control. One may dissi-

pates the energy in localized elements in the passive control
methods and they are already finding applications in many de-
sign practice such as noise control and structural control. The ac-
tive control methods, on the other hand, reduce system response
or control undesired disturbance by applying counteracting con-
trol forces externally or by creating reactive internal forces in
systems. In recent years, there are several important works pro-
posed in active control methods and their applications (see, e.g.,
[1]–[7] and the references therein).

The well known installation of passive control in structural
systems is the use of passive tuned mass dampers (TMDs),
also known as dynamic absorbers, which was first proposed by
Frahm in 1909 [8]. Since then, many studies have been done to
investigate the control effectiveness of passive TMDs [9]–[12].
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These articles show that the TMDs are suitable for a linear
resonant system. However, nonlinearities are not negligible in
some cases so that using TMD is not appropriate [13].

During the recent years, a number of research activities have
been concerned with the topic of stability analysis and stabi-
lization of interconnected systems, also called large-scale sys-
tems or composite systems [14]. In practices, due to the infor-
mation transmission between subsystems, time delays naturally
exist in interconnected systems. The existence of time delays
is frequently a source of instability and encountered in various
engineering systems [15], [16]. Hence, the problem of stability
analysis of time-delay systems has been one of the main con-
cerns of researchers wishing to inspect the properties of such
systems and there have been several research efforts [16]–[20]
on this issue.

Recently, fuzzy control has been successfully applied to con-
trol design of nonlinear systems (see [16], [20]–[31]). In most of
these papers, a so-called Takagi–Sugeno (T-S) fuzzy model was
employed to approximate a nonlinear plant, and then a fuzzy
controller was designed to stabilize the T-S fuzzy model. In
[30], Tseng and Chen proposed an H infinity decentralized fuzzy
control scheme to solve the model reference tracking control
problem of nonlinear interconnected systems. Based on LMI
optimization techniques, a simple and systematic algorithm is
developed to solve the fuzzy tracking control problem. Also,
other existing techniques of decentralized control have been ad-
dressed to deal with interconnected systems or time-delay prob-
lems such as Shoulie et al. [32]; Souza and Li [17]–[19], [33].
All of them, however, neglect the modeling error between non-
linear system and fuzzy model. Existence of modeling error
may be a potential source of instability for control designs that
have been based on the assumption that the fuzzy model exactly
matches the plant [34]. Recently, Cao and Frank [34], Kiriakidis
[35], Chen et al. [36], and Cao and Lin [37] have proposed novel
approaches to overcome the influence of modeling error in the
field of model-based fuzzy control for nonlinear systems.

However, a literature search indicates that the effect of mod-
eling error for nonlinear multiple time-delay interconnected sys-
tems has not been discussed yet. Hence, a robustness design of
fuzzy control for nonlinear interconnected systems with mul-
tiple time delays needs further study. Therefore, this paper may
be viewed as a generalization of Tseng et al. [29], [30] to the ro-
bustness design of fuzzy control via model-based approach for
nonlinear multiple time-delay interconnected systems.

In summary, the purpose of this paper is to derive a stability
criterion for model-based fuzzy controller to guarantee the sta-
bility of nonlinear interconnected systems with multiple time
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delays. Accordingly, the T-S fuzzy model is employed to ap-
proximate each nonlinear system. The control design is car-
ried out based on the fuzzy model via the parallel distributed
compensation (PDC) scheme. The idea is that a linear feedback
control is designed for each local linear model. The resulting
overall fuzzy controller, which is nonlinear in general, is a fuzzy
blending of each individual linear controller.

This paper is organized as follows. The system description is
presented and the T-S fuzzy model is briefly reviewed in Sec-
tion II. The concept of PDC is in Section III. In Section IV, the

control performance is described to attenuate the influence
of the external disturbance. In Section V, a stability criterion
is derived to guarantee the stability of nonlinear interconnected
systems with multiple time delays. In Section VI, the fuzzy con-
trol methodology proposed in this study is utilized to stabilize
the nonlinear interconnected TMD system and a numerical ex-
ample of nonlinear TMD systems is given to illustrate the re-
sults.

II. SYSTEM DESCRIPTION

Consider a nonlinear multiple time-delay interconnected
system composed of subsystems , . The
th subsystem is described as follows:

(1)

where and are the nonlinear vector-valued function,
(the th time delay) are positive real num-

bers, and is the nonlinear interconnection between the th
and th subsystems; is
the state vector; is the
input vector; denotes the
unknown disturbances with a known upper bound

.
A fuzzy dynamical model had been developed primarily from

the pioneering work of Takagi and Sugeno [38] to represent
local linear input/output relations of nonlinear systems. This dy-
namical model is described by fuzzy IF-THEN rules and it is
employed here to handle the control design problem of the non-
linear interconnected system . The th rule of this fuzzy model
for the nonlinear interconnected subsystem is proposed as
the following form:

and and

(2)

where and is the number of IF-THEN rules;
, , and are constant matrices with appropriate

dimensions; are the fuzzy sets, and
are the premise variables. The final state of

this fuzzy dynamic model is inferred as follows:

(3)

with

(4)

in which is the grade of membership of in
. In this paper, it is assumed that

and for all

Therefore, and for all .

III. PARALLEL DISTRIBUTED COMPENSATION

According to the decentralized control scheme, a set of
model-based fuzzy controllers is synthesized via the technique
of parallel distributed compensation (PDC) to stabilize the
nonlinear multiple time-delay interconnected system . The
concept of PDC scheme is that each control rule is distributively
designed for the corresponding rule of a T-S fuzzy model. The
fuzzy controller shares the same fuzzy sets with the fuzzy
model in the premise parts [22]. Since each rule of the fuzzy
model is described by a linear state equation, a linear control
theory can be used to design the consequent parts of a fuzzy
controller. The resulting overall fuzzy controller, nonlinear in
general, is achieved by fuzzy blending of each individual linear
controller.

Hence, the th model-based fuzzy controller can be described
as follows:

and and

(5)
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where is a local feedback gain matrix for .
The final output of this fuzzy controller is

(6)

with

(7)

in which is the grade of membership of in
.

IV. CONTROL DESIGN VIA FUZZY CONTROL

Stabilizing the closed-loop nonlinear interconnected systems
and attenuating the influence of the external disturbance
on the state variable [16], [30], [32], [34], [39] is the ob-
jective of this paper. The influence of will worsen the per-
formance of fuzzy control systems. In order to guarantee the
control performance by eliminating the influence of is a
significant problem in the control system. Hence, in this work,
not only the stability of fuzzy control system is advised but also
the control performance is satisfied as follows:

(8)

where denotes the terminal time of the control, are some
positive definite matrices, is a prescribed value which de-
notes the effect of on , and is a positive definite
weighting matrix. The physical meaning of (8) is that the effect
of on must be attenuated below a desired level
from the viewpoint of energy [36].

V. ROBUSTNESS DESIGN OF FUZZY CONTROL

In this section, the stability of the nonlinear interconnected
system is examined under the influence of modeling error.

A. Modeling Error

Substituting (6) into (1) yields the th
closed-loop nonlinear subsystem as follows:

(9)

where

(10)

(11)

(12)

and de-
notes the modeling error between the th closed-loop nonlinear
subsystem (9) and the closed-loop fuzzy model ((3)+(6)).

Suppose that there exist bounding matrices such that

(13)
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for the trajectory , and the bounding matrix can be
described as follows:

(14)

where , for , . From
(13), (14), we have

(15)

Namely, the modeling error is bounded by the spec-
ified structured bounding matrix .

Remark 1 ([36]): The procedures for determining and
are described in the following. Assuming that the possible

bounds for all elements in are

where for some , and
; .

One possible description for the bounding matrix is

where for . It is noticed that can be
chosen by other forms as long as . Then, we check
the validity of (13) in the simulation. If it is not satisfied, we
can expand the bounds for all elements in and repeat the
design procedures until (13) holds.

B. Stability in the Presence of Modeling Error

In the following, a stability criterion is proposed to guarantee
the stability of the closed-loop nonlinear multiple time-delay in-
terconnected system which consists of closed-loop subsys-
tems described in (9). Prior to examination of stability of , a
useful inequality is given below.

Lemma 1 ([33], [40]): For any matrices and with appro-
priate dimensions, we have
where is a positive constant.

Theorem 1: The trajectories of closed-loop nonlinear mul-
tiple time-delay interconnected system in the absence of dis-
turbances are asymptotically stable and
the control performance can be achieved, if there exist sym-
metric positive definite matrices and positive constants , ,

and the feedback gains s shown in (6) are chosen to satisfy

for (16)

Proof: See Appendix.
Remark 2: Equation (16) can be transformed to a linear ma-

trix inequality (LMI) via the following procedure. By intro-
ducing new variables , ,
and , (16) is rewritten as follows:

(17)

for ; . Moreover, based on Schur
complements [20], [30], [36], [41]–[43], it is easy to find that
(17) is equivalent to the inequality (18) at the bottom of the next
page, for , where

and the symbol denotes the transposed elements in the sym-
metric positions, shown in (19) at the bottom of the next page.

Remark 3: Let , and then (18) can be
transformed into the LMI (19). After and being solved
from (19), and can be adjusted in (18) to find a suitable

such that better control performance can be achieved.
Therefore, based on the LMI technique as that in Hu et al.

[43], Theorem 1 can be reformulated into an LMI problem and
efficient interior-point algorithms are now available in Matlab
toolbox to solve this problem.

VI. EXAMPLE

A. TMD System

A passive TMD mounted on a shear structure is modeled as
a two-degree-of freedom structure-TMD system as shown in
Fig. 1 The parameters , and represent mass, damping
and stiffness in the subsystem 1; , and represent mass,
damping and stiffness in the subsystem 2; and represent ex-
ternal force and control input. The equation of motion with no
control input can be written as [9], [44]

(20)

where is natural frequency of primary structure;
is the natural frequency of TMD;

is the damping ratio of primary structure; is
the damping ratio of TMD; denotes mass ratio of
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Fig. 1. Two-DOF structure-TMD system.

TMD to primary structure; is the frequency of external force;
frequency ratio.

Fig. 2 shows the effectiveness of a TMD system in reducing
the response due to an external force with ,

, , , ,
, and initial conditions
. Fig. 3 shows the dynamic magnification factor in 50

s where restoring force is a linear function. Hence, the passive
TMD is appropriate when the frequency of external excitation
is close to the structure. However, the restoring force of spring
stiffness is nonlinear in actual systems. Moreover, TMD does
not work shown in Figs. 4–6 with ,

and initial conditions
. Therefore, a method of fuzzy control is

proposed to guarantee the stability of nonlinear systems in next
subsection.

In the above, a simple structural system without time delays
is addressed. However, due to the information transmission be-
tween subsystems, time delays naturally exist in practical non-
linear interconnected systems. In the following, state-space rep-
resentation is established to deal with stability problem of the

Fig. 2. Effectiveness of a TMD system.

Fig. 3. Effectiveness of a TMD system with linear stiffness k(x).

structural system (20) and multiple time delays are considered
in the meantime for real-world application.

. . .

(18)

. . .

(19)
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Fig. 4. Dynamic magnification factor of a TMD system with nonlinear
stiffness k(x).

Fig. 5. Dynamic magnification factor of a TMD system with nonlinear
stiffness k(x).

Fig. 6. Dynamic magnification factor of a TMD system with nonlinear
stiffness k(x).

B. PDC Fuzzy Controllers

The objective here is to synthesize a set of T-S fuzzy con-
troller to stabilize the nonlinear interconnected system which

is composed of two subsystems with multiple time delays de-
scribed in (21) and (22). Furthermore, the parameters in (20)
are shown as follows:

Subsystem 1:

(21)
Subsystem 2:

(22)
where , , and

.

How do we synthesize two T-S fuzzy controllers to stabilize the
nonlinear TMD system ?

Solution: We can solve this problem according to the fol-
lowing steps.

Step 1) Establish a T-S fuzzy model for each nonlinear in-
terconnected subsystem by the concept of local lin-
earization as that in [21], [36]. To minimize the de-
sign effort and complexity, we try to use as few rules
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as possible. Hence, the subsystems (21), (22) are ap-
proximated with the following fuzzy models:

1) T-S Fuzzy Model of Subsystem 1:

where

(23)

and the membership functions for Rule 1 and Rule 2
are

2) T-S Fuzzy Model of Subsystem 2:

where

(24)

and membership functions for Rule 1 and Rule 2 are

when

when

otherwise

Step 2) In order to stabilize the nonlinear interconnected
system , two model-based fuzzy controllers de-
signed via the concept of PDC scheme are synthesized
as follows.

1) Fuzzy controller of subsystem 1:

(25)

2) Fuzzy controller of subsystem 2:

(26)
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Step 3) In accordance with Remark 1, specified structured
bounding matrices are chosen as

for (27)

Step 4) In order to guarantee the control performance,
the matrices s in (16) must be chosen to be positive
definite. At first, based on (23)–(27) and (18), we can
get the common solutions , , and

via Matlab LMI optimization toolbox with
, and .

Then, the following positive definite matrices
, , s and feedback

gains s can be obtained such that
(16) is satisfied

(28)

Fig. 7. Plots of kf (x (t)) � i = 1 h (t)h (t)(A �
B K )x (t)k (dashed line) and k h (t)h (t)�H x (t)k
(solid line).

Fig. 8. Plots of kf (x (t)) � h (t)h (t)(A �
B K )x (t)k (dashed line) and k h (t)h (t)�H x (t)k
(solid line).

(29)

(30)

(31)
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Fig. 9. State response of subsystem 1.

Fig. 10. State response of subsystem 2.

Furthermore, the assumption of

for

are satisfied from the illustration in Figs. 7 and 8 with initial
conditions, , , , and

.
Therefore, based on Theorem 1, the T-S fuzzy controllers

described in (25) and (26) can stabilize the nonlinear intercon-
nected TMD system . Simulation results of each closed-loop
subsystem are illustrated in Figs. 9 and 10. From
Figs. 9 and 10, we have that the nonlinear interconnected system
is stable because the trajectories of two subsystems starting from
nonzero initial states both approach close to the origin under har-
monic excitation.

VII. CONCLUSION

In this paper, a stability criterion is derived for nonlinear mul-
tiple time-delay interconnected systems via Lyapunov’s direct
method. An example of nonlinear TMDs is given to demon-
strate the validity of the proposed controller design and it shows

TMD is not suitable to reduce responses in nonlinear systems.
A systematic design of fuzzy control is therefore proposed to
ensure the stability of nonlinear multiple time-delay intercon-
nected systems. According to the stability criterion and the de-
centralized control scheme, a set of model-based fuzzy con-
trollers via the technique of PDC is proposed to overcome the
influence of modeling error and stabilize the nonlinear multiple
time-delay interconnected TMD systems. So, the proposed
control performance of fuzzy control can be applied to the robust
control design of nonlinear interconnected systems with mul-
tiple time delays.

APPENDIX

PROOF OF THEOREM 1

Let the Lyapunov function for the closed-loop nonlinear mul-
tiple time-delay interconnected system be defined as

(32)

where the weighting matrices and
. We then evaluate the time derivative of on the trajecto-

ries of (9) to get

(33)
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Based on Lemma 1, (33) and (15), we have

(34)

In view of and , we have

(35)

Based on (16) and (35)

(36)

Based on the concept of interconnection, the matrix ^A is equal to zero.

This demonstrates that the trajectories of the closed-loop system
(9) in the absence of disturbance are asymptotically stable. In-
tegrating (36) from to yields

(37)

From (32), we get

(38)

and then the control performance can be achieved with a
prescribed .
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