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Abstract

This paper proposes a dynamic Bayesian network to represent the cause-and-effect relationships in an industrial

supply chain. Based on the Quick Scan, a systematic data analysis and synthesis methodology developed by Naim,

Childerhouse, Disney, and Towill (2002). [A supply chain diagnostic methodlogy: Determing the vector of

change. Computers and Industrial Engineering, 43, 135–157], a dynamic Bayesian network is employed as a more

descriptive mechanism to model the causal relationships in the supply chain. Dynamic Bayesian networks can be

utilized as a knowledge base of the reasoning systems where the diagnostic tasks are conducted. We finally solve

this reasoning problem with stochastic simulation.
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1. Introduction

Naim et al. (2002) presented a methodology, Quick Scan, to conduct a supply chain oriented business

diagnostics in 20 European automotive supply chain values streams. Quick Scan is a systematic

methodology to collect and synthesize quantitative and qualitative data from a supply chain. One of the

main outputs of Quick Scan is the cause-and-effect diagram of the supply chain. The contributions of the

research mentioned above are:

(1) Data collection and integration. Many important and insightful information were collected and

analyzed through the field studies and case studies.
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(2) Identification of causal relationships in a supply chain. After the thorough analysis and cross-

reference, a cause-and-effect diagram was proposed.

(3) Provide a systematic and integrated view of supply chain diagnostics.

At the same time, we also find some interesting issues worth further discussions:

(1) The strength and uncertainty of the causal relationships in supply chain diagnostics are not identified

and quantified.

(2) The diagnostic reasoning methods are not provided.

In this study, we propose a dynamic Bayesian network (DBN) (Dagum, Galper, & Horvitz, 1992;

Kjærulff, 1992) to elaborate the causal relationships previously extracted by Naim et al. and show how

diagnostic reasoning can be conducted on dynamic Bayesian networks. A numerical example is

illustrated.
2. Dynamic Bayesian networks

A Bayesian network (Castillo, Gutoerrez, & Hadi, 1997; Pearl, 1988) is a probability-based

knowledge representation method, which are appropriate for the modeling of causal processes with

uncertainty. A Bayesian network is a directed acyclic graph (DAG) whose nodes represent random

variables and whose links define probabilistic dependences between variables. These relationships are

quantified by associating a conditional probability table with each node, given any possible

configuration of values for its parents. Diagnosis or prediction with Bayesian networks consists of

fixing the values of the observed variables and computing the posterior probabilities of some of the

unobserved variables.

A dynamic model can be constructed from a set of building blocks that capture the instantaneous

relationships between domain variables, together with a set of temporal dependencies that capture the

dynamic behaviors of the domain variables (Dagum, Galper, & Horvitz, 1992). The building block of a

dynamic Bayesian network is a static Bayesian network. We can extend the static Bayesian network to a

dynamic Bayesian network model by introducing relevant temporal dependencies between

representations of the static network at different times. Two types of dependencies can be distinguished

in a dynamic Bayesian network: contemporaneous dependencies and non-contemporaneous

dependencies. Contemporaneous dependencies refer to arcs between nodes that represent variables

within the same time period. Non-contemporaneous dependencies refer to arcs between nodes that

represent variables at different times. We will illustrate how dynamic Bayesian networks can be used to

formulate the supply chain diagnostic problems and how the participating enterprises in the supply chain

can solve the reasoning problems on the networks.
2.1. A dynamic Bayesian network of supply chain

First of all, we represent the key variables in the supply chain with the nodes and translate this cause-

and-effect diagram in (Naim et al., 2002) into a dynamic Bayesian network as in Fig. 1. All nodes or

variables in this dynamic Bayesian network are defined to be binary. The states and description of



A: product variety
B: product range
C: risk of obsolescence
D: internal stock visibility
E: design spec alterations
F: B.O.M. accuracy
G: F.G. safety stock
H: lack of raw materials when required
I: schedule alterations on suppliers
J: schedule adherence
K: production capacity
    constraint
L: schedule build alterations
M: build capability
N: lack of components
     when required
O: scheduling flexibility
P:  stock control
Q: lost stock at use
R: set-up times/costs
S: batch production

customer

supplier

A

B

C

G

E

F

I

J

N

D H

K O

S R

L

M

P

Q

Fig. 1. A dynamic Bayesian network of supply chain diagnostics.
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the nodes are listed in Table 1. We use the uppercase letters to represent the variables and lowercase

letters for their associated values. For example, Ct2{0, 1} represents the dichotomy between low risk of

obsolescence and high risk of obsolescence at time t. Cct stands for CtZ1 and lct stands for the

negation of Cct. In this paper, we put little attention on how to learn and estimate the parameters in this

dynamic Bayesian network, but concentrate on the diagnostic reasoning methods.

In Fig. 1, a self-enhancing feedback loops exists among I (schedule alterations placed on suppliers), J
(schedule adherence), N (lack of components when required), M (build capability) and L (schedule build

alterations). If we take a time expansion aspect, Fig. 1 can be expended as Fig. 2. We assume that the

relationship and conditional probability distributions among the nodes are deterministic and unchanged

as time varies along, except the relationships between J and N. The joint probability distribution of this

dynamic Bayesian network for time tZ0 to n can be expressed as (2.1)

Pða0; a1;.; an; b0; b1;.; bn;.; s0; s1;.; snÞ

Z Pða0ÞPðb0ja0; e0ÞPðc0jb0ÞPðd0ÞPðe0ÞPðf 0je0ÞPðg0jc0ÞPðh0jd0ÞPði0jf 0; l0ÞPðj0ji0; g0; h0Þ

!Pðk0ÞPðl0jm0ÞPðm0jn0ÞPðn0jo0; q0ÞPðo0js0; k0ÞPðp0ÞPðq0jp0ÞPðr0ÞPðs0jr0Þ

!
Yn

tZ1

½PðatÞPðbtjat; etÞPðctjbtÞPðdtÞPðetÞPðf tjetÞPðgtjctÞPðhtjdtÞPðitjf t; ltÞPðjtjit; gt; htÞ

!PðktÞPðltjmtÞPðmtjntÞPðntjjtK1; ot; qtÞ!Pðotjst; ktÞPðptÞPðqtjptÞPðrtÞPðstjrtÞ�: ð2:1Þ



Table 1

The description of nodes in the dynamic Bayesian network in Fig. 1

Node Description State

Aa Product variety 1: large; 0: small

Bb Product range 1: large; 0: small

Cb Risk of obsolescence 1: high; 0: low

Db Internal stock visibility 1: good; 0: poor

Ea Design specification alterations 1: often; 0: not often

Fa BOM accuracy 1: high; 0: low

Gb Finished goods safety stock 1: high; 0: low

Hb Lack of raw materials when required 1: high; 0: low

Ib Schedule alterations on suppliers 1: often; 0: not often

Jb Schedule adherence 1: high; 0: low

Kb Production capacity constraint 1: high; 0: low

La Schedule build alterations 1: often; 0: not often

Ma Build capability 1: high; 0: low

Na Lack of components when required 1: high; 0: low

Ob Scheduling flexibility 1: high; 0: low

Pa Stock control 1: good; 0: poor

Qa Lost stock at use 1: high; 0: low

Rb Set-up times/costs 1: large; 0: small

Sb Batch production 1: large; 0: small

a Customer.
b Supplier.
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The term P(ntjjtK1,ot,qt) embraces contemporaneous dependencies at time t and non-contempora-

neous dependencies at tK1. We will adopt a commonly used parametric decomposition in time-series

analysis: the additive decomposition (Dagum et al., 1992). The additive decomposition is used

commonly in time-series analysis for integrating predictions based on current observations with

predictions based on historical observations. Additive decompositions are an integral aspect of models
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Fig. 2. A series of connected Bayesian networks of supply chain diagnostics with time expansion.



H.-Y. Kao et al. / Computers & Industrial Engineering 49 (2005) 339–347 343
that purport to forecast future values of time-series. Using likelihood weighting, an expert can specify

the weight of the past versus the present easily. The term P(ntjjtK1,ot,qt) can be decomposed as follows

PðntjjtK1; ot; qtÞ Z uPðntjot; qtÞC ð1KuÞPðntjjtK1Þ; (2.2)

where u denotes the likelihood that nt predicted from the information at period t, and (1Ku) denotes the

likelihood that nt predicted from the information prior to time t. The likelihood weight u can be learned

and estimated from the historical data.
3. Diagnostic reasoning in the dynamic Bayesian network of supply chain

The diagnostic problems in a supply chain can be regarded from the supplier’s aspect, the customer’s

aspects, the central planner’s aspects, or any other possible roles concerning the supply chain. Now, we

hypothesize a case and show how the supplier conducts diagnostic reasoning tasks on this dynamic

Bayesian network of supply chain diagnostics. We assume that all the conditional probabilities have

been learned and given in Table 2. In a living expert diagnostic system, these parameters for the

dependency relationships can be learned and maintained by the knowledge engineers.
Table 2

The conditional probabilities of the DBN in Fig. 1

P(Cat)Z0.7

P(Cdt)Z0.7

P(Cet)Z0.4

P(Ckt)Z0.5

P(Cpt)Z0.3

P(Crt)Z0.5

PðCctjCbtÞZ0:85 PðCctjlbtÞZ0:2

PðCf tjCetÞZ0:15 PðCf tjletÞZ0:9

PðCgtjCctÞZ0:1 PðCgtjlctÞZ0:8

PðChtjCdtÞZ0:05 PðChtjldtÞZ0:9

PðCltjCmtÞZ0:1 PðCltjlmtÞZ0:9

PðCmtjCntÞZ0:1 PðCmtjlntÞZ0:95

PðCntjC jtK1ÞZ0:1 PðCntjljtK1ÞZ0:5

PðCqtjCptÞZ0:1 PðCqtjlptÞZ0:5

PðCstjCrtÞZ0:7 PðCstjlrtÞZ0:3

PðCbtjCat;CetÞZ0:9 PðCbtjlat;CetÞZ0:6

PðCbtjCat;letÞZ0:8 PðCbtjlat;letÞZ0:2

PðCitjC f t ;CltÞZ0:8 PðCitjlf t;CltÞZ1:0

PðCitjC f t ;lltÞZ0:01 PðCitjlf t;lltÞZ0:5

PðCntjCot;CgtÞZ0:01 PðCntjlot;CgtÞZ0:1

PðCntjCot;lgtÞZ0:2 PðCntjlot;lgtÞZ0:6

PðCotjCkt;CstÞZ0 PðCotjlkt;CstÞZ0:7

PðCotjCkt;lstÞZ0:6 PðCotjlkt;lstÞZ0:95

PðCjtjCgt;Cht ;CitÞZ0:2 PðCjtjCgt;lht;CitÞZ0:5

PðCjtjCgt;Cht ;CitÞZ0:6 PðCjtjCgt;lht;litÞZ0:99

PðCjtjlgt;Cht ;CitÞZ0 PðCjtjlgt;lht;CitÞZ0:5

PðCjtjlgt;Cht ;litÞZ0:6 PðCjtjlgt;lht;litÞZ0:8
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Case (Supplier’s viewpoint): The supplier finds some symptoms internal to his company, which might

result from some segments in the supply chain. The supplier observed that, for the preceding periods, the

customer puts large schedule alterations (ItZ1), and as a result, the schedule adherence has been poor

(JtZ0). The supplier starts to investigate and collect relevant data inside the company for problem

diagnosis. The supplier itself has a large product range (BtZ1) and high risk of obsolescence (CtZ1),

and hence keeps limited finished goods (GtZ0). The supplier has maintained good internal stock

visibility (DtZ1), and the raw materials are available when required (HtZ0). The production capacity

constraint is high (KtZ1) and the scheduling flexibility is low (OtZ0). Also, the supplier bears large set-

up times/costs (RtZ1) and has large batch production (StZ1). On the customer side, the supplier has no

extra information in addition to the data shown in Table 2. Given the information on hand, the supplier

wants to compute the posterior probability distributions of every proposition in the system backward for

a few periods, given the evidence set eZ{BtZ1, CtZ1, DtZ1, GtZ0, HtZ0, ItZ1, JtZ0, KtZ1, OtZ0,

RtZ1, St Z1j0% t%n}.

The case is a typical diagnostic reasoning problem in a dynamic environment. There are many

methods to conduct diagnostic reasoning (Castill, Gutoerrez, & Hadi, 1996; Castillo et al., 1997; Pearl,

1988). We will use stochastic simulation (Pearl, 1988) to solve this problem.

First of all, we denote by wX the state of all variables except X, then the value of X will be chosen by

tossing a coin that favors 1 over 0 by a ratio of P(CxjwX) to P(xjwX). We will show that P(xjwX), the

distribution of each variable X conditioned on the values wX of all other variables in the system, can be

calculate by purely local computations. The distributions of P(xjwX) in this network at time t are as

follow

PðatjwAt Þ Z aPðatÞPðbtjat; etÞ; (2.3)

PðetjwEt Þ Z aPðetÞPðbtjat; etÞPðf tjetÞ; (2.4)

Pðf tjwFt Þ Z aPðf tjetÞPðitjf t; ltÞ; (2.5)

PðltjwLtÞ Z aPðltjmtÞPðitjf t; ltÞ; (2.6)

PðmtjwMtÞ Z aPðmtjntÞPðltjmtÞ; (2.7)

PðntjwNt Þ Z a½uPðntjot; qtÞC ð1KuÞPðntjjtK1Þ�PðmtjntÞ; (2.8)

PðptjwPt Þ Z aPðptÞPðqtjptÞ; (2.9)

PðqtjwQt Þ Z aPðqtjptÞ½uPðntjot; qtÞC ð1KuÞPðntjjtK1Þ�; (2.10)

where a is the normalizing constant.

We will simulate for period tZ0–5 and set uZ0.5 for all periods except the starting period (tZ0)

where u is set 1. The value of u can be estimated from the historical data (Dagum et al., 1992). For the

convenience to illustrate, we assume that the evidence set remains unchanged during the simulation.

However, in a real case, the behaviors or symptoms observed in a supply chain may vary in different
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period, which result in various evidence sets for different periods. So this assumption can be released as

applied to the real complex cases. The algorithm of the stochastic simulation is described as follow.

Algorithm 1: (Stochastic simulation)

Loop while simulation not terminated:

Set tZ0, all nodesZ0.

Loop while t is not greater than LastT:

B(t)Z1, C(t)Z1, D(t)Z1, G(t)Z0, H(t)Z0, I(t)Z1, J(t)Z0, K(t)Z1, O(t)Z0, R(t)Z1,

S(t)Z1

Node SetZ{A, E, F, L, M, N, P, Q}

XZFirst Node In Node Set.

Loop while X is not End Of Node Set

S1: X inspects its neighbors, finding their values.

S2: Compute P(X(t)Z1jwX(t))/P(X(t)Z0jwX(t)).

S3: Set X(t) from a random number generator favoring 1 by the ratio P(X(t)Z1jwX(t))

/P(X(t)Z0jwX(t)).

S4: X moves to NextNodeInNodeSet.

EndLoop.

SET tZtC1.

EndLoop.

EndLoop.

Compute the proportion of 1 of every element of every node in NodeSet.

End of Algorithm 1.

This study takes the numbers of iterating runs for 100, 1000 and 10,000. The results of the stochastic

simulation are listed in Tables 3a–c. In Tables 3a–c, the beliefs or posterior probabilities of the unknown

nodes to be true during the simulated horizon (tZ0–5) are computed. As the industrial engineer inspects

these results, he can see clearly the probability distributions of the potential causes of the supply chain

symptoms. Subsequently, the industrial engineer can determine which items need further actions. From

Table 3c, there are three most possible origins of the supply chain inefficiency: AtZ1 (with belief around

0.83), EtZ1 (with belief around 0.60) and LtZ1 (with belief around 0.75). The results imply that
Table 3a

The results of stochastic simulation: P(xtZ1je): 100 runs

X tZ

0 1 2 3 4 5

A 0.86 0.85 0.79 0.90 0.86 0.77

E 0.52 0.64 0.69 0.52 0.50 0.61

F 0.43 0.28 0.23 0.50 0.50 0.39

L 0.73 0.60 0.88 0.92 0.82 0.93

M 0.46 0.53 0.13 0.21 0.28 0.10

N 0.45 0.47 0.87 0.75 0.29 0.84

P 0.26 0.29 0.34 0.40 0.37 0.29

Q 0.41 0.36 0.29 0.23 0.28 0.28



Table 3b

The results of stochastic simulation: P(xtZ1je): 1000 runs

X tZ

0 1 2 3 4 5

A 0.836 0.848 0.828 0.811 0.815 0.818

E 0.630 0.604 0.613 0.629 0.635 0.589

F 0.345 0.373 0.368 0.345 0.332 0.397

L 0.753 0.736 0.792 0.718 0.650 0.817

M 0.325 0.337 0.256 0.330 0.476 0.262

N 0.644 0.653 0.721 0.645 0.513 0.729

P 0.332 0.321 0.316 0.293 0.302 0.352

Q 0.269 0.339 0.316 0.351 0.374 0.285
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the customer needs to review and control its large product variety (AtZ1) and frequent design

specification alterations (EtZ1). Also, the analyst believes that those two causes are influential to the

large schedule build alterations (LtZ1) from the customer, which consequently amplifies the poor

schedule adherence of the supplier.

This simplified scenario shows how the participants in the supply chain make proper inference or

judgment of the problems in a supply chain on dynamic Bayesian networks. More complex and realistic

cases can be extended and solved in a similar way.
4. Discussions and conclusions

This study elaborates the cause-and-effect diagram proposed by Naim et al. into a dynamic Bayesian

network. We illustrate how the diagnostic reasoning is conducted on this network. The dynamic

Bayesian network can be used as the knowledge base of the reasoning systems for the supply chain

diagnostics and prediction, vendor appraisal, customer assessment, evaluation of strategic or technical

alliance, and so on. A diagnostic or decision support system is composed of the data management

subsystem, the model management subsystem, the knowledge engine, the user-interface, and the

knowledge workers (Marakas, 2003; Turban & Aronson, 2001). This paper provides a foundation for
Table 3c

The results of stochastic simulation: P(xtZ1je): 10,000 runs

X tZ

0 1 2 3 4 5

A 0.8311 0.8208 0.8211 0.8288 0.8325 0.8237

E 0.5943 0.6016 0.5975 0.5951 0.5947 0.5870

F 0.3823 0.3739 0.3750 0.3798 0.3843 0.3880

L 0.7540 0.7563 0.7537 0.7504 0.7782 0.7639

M 0.3280 0.3267 0.3155 0.3314 0.2918 0.3138

N 0.6506 0.6549 0.6680 0.6467 0.6879 0.6654

P 0.3400 0.3218 0.3141 0.3250 0.3287 0.3085

Q 0.2567 0.3256 0.3365 0.3271 0.3217 0.3297
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the knowledge bases and computation schema in a reasoning system. When the other subsystems are

designed and the real-world data are available, it is ready for further development of a practical

application of a supply chain diagnostic system.
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