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Abstract-A new efficient LMS adaptive filtering algorithm is 
proposed. The algorithm has comparable performance to that of 
the direct-form LMS algorithm (DLMS), while costs -1-/2 - 1 
fewer multiplications at the expense of -V/2 + 5 more additions 
than the DLMS algorithm, where N is the number of filter taps. 
The new algorithm has one more parameter adaptation than 
the DLMS algorithm. Further, the algorithm was combined with 
sign LMS algorithm (SA), signed regressor algorithm (SRA) and 
zero forcing (ZFA) algorithm for more complexity reduction. 
Simulation results showed that the new combined algorithms 
converge as fast as the direct-form SA, SRA and ZFA algorithms, 
meanwhile still maintain comparable performances. 

I. INTRODUCTION 

HERE have been widespread interests in adaptive signal 
processing. Typical application examples [ 11 of adaptive 

filter include channel equalization, acoustic echo cancella- 
tion, interference cancellation, system identification and so on 
which in many cases require hundreds of taps. As such, low- 
complexity adaptive filtering algorithms are highly desirable. 

The most popular adaptive filtering algorithm is the direct- 
form LMS algorithm (DLMS), due to its simplicity and 
robustness. There are the sign (error) LMS algorithm (SA), 
signed regressor (i.e., signed input) LMS algorithm (SRA) [2], 
and the simplest zero forcing (i.e., both signed error and signed 
input) algorithm (ZFA) [3], which are simplified versions of 
the DLMS algorithm. All the mentioned algorithms differ 
in the ways they adapt coefficients, regardless of how they 
execute convolution operations. 

In order to speed up convolution operation of an adaptive 
filter, many frequency domain and block based adaptive al- 
gorithms [4]-[8] were developed which take advantages of 
FFT. However, generally speaking, frequency domain and 
block based algorithms are more hardware demanding than the 
direct-form LMS type of algorithms. They are most applicable 
to the cases of very large-tap filterings. 

Recently, Benesty and Duhamel [9] proposed an effective 
temporal domain adaptive algorithm, which has comparable 
performance to that of the DLMS algorithm, and at the same 
time reduces the number of multiplications by about 25 % 
with a little increase in the number of additions required of 
the convolution operation. This algorithm takes advantage of 
the fast convolution algorithm based on the decimation and 
decomposition of the input signals and the filter [lo]. 

Alternatively, the fast convolution algorithms described in 
[ 111, [ 121 reduce the number of multiplication by close to 
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5070, at the expense of 50% more additions. The algorithms 
decompose convolution equation into three parts. The first 
part is a function of both input signals and filter coefficients, 
which accounts for almost all the required computation of 
the algorithm. The second and the third parts depend solely 
on the input signals and the filter coefficients respectively. 
The algorithm is well applied to deterministic digital filtering 
applications, where filter coefficients are fixed and therefore 
the third part costs no computation. On the other hand, 
the second part can be realized by a second-order recursive 
equation, which costs only one multiplication. As such, the 
total number of multiplications amounts to only N / 2  + 1, 
instead of N for the DLMS algorithm. However, there is no 
saving in multiplication counts when it is applied to adaptive 
filtering. In such conditions, since the third part is not fixed, 
it has to be computed in each iteration with N / 2  more 
multiplications. 

In order to take advantage of the fast convolution algorithm 
and eliminate the computation burden incurred for the third 
part when it is applied to adaptive filtering, we introduce 
an extra parameter adaptation for the third part estimation. 
Meanwhile, conventional LMS adaptive algorithm for the 
filter coefficient updates is still used. Theoretical analysis and 
simulations results showed that the new adaptive algorithm has 
comparable performance to the DLMS algorithm. Moreover, 
the algorithm is combined with the SA, SRA and ZFA LMS 
algorithms for more complexity reduction. Simulations for 
those algorithms were shown to converge as fast as the DLMS 
algorithms. 

This paper is organized as follows. In Section 11, the fast 
convolution algorithm in [11], [I21 is reviewed. Based on 
this algorithm, a new adaptive algorithm is proposed. In 
Section 111, properties of this algorithm are analyzed and 
discussed. Several design examples are demonstrated in 
Section IV, where the new algorithm and its SA, SRA, and 
ZFA variants were simulated. Finally, Section V draws the 
conclusion and some of the further works to be done. 

11. THE NEW LMS ADAPTIVE ALGORITHM 

A. An Efficient Convolution Algorithm 

algorithm [ l l ] ,  [12] as follows: 
The new adaptive algorithm is based on the fast convolution 

N - l  

k=O 
hr /2-1  

= [.(n - 2 k )  + h(2k + l)] 
k=O 
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Filter part Update part P(n)  = P(n  - 2 )  + z(n)x(n - 1) 
DLMS N - l  N 

N/2-1 Sign DLMS N-1 N 
- .(n - N ) z ( n  - N - 1) (2) -- New algorithm 1.5N+3 N+I 

( 3 )  with SA 1 5 N + 3  N + l  
New algorithm h(2k)h(2k  + 1) = constant 

x [x(n - 2k - 1) + h(2k)I 
N/2-1 

Total 
2N-I 

2 5 N + 4  
2N-I 

2 5 N + 4  

373 

TABLE I 
THE MULTIPLICATION COMPLEXITIES OF THE 

NEW ALGORITHMS AND DLMS ALGORITHMS 

and 

- h(2k)h(2k+ 1) 
k=O 

N/2-1 

- z ( n - 2 k ) z ( n - 2 k -  
k=O 

N/2-1 

x(n - 2k)x(n - 2k - 1) 

0 5 N + 1  

New algorithm 
with SA 0 5 N + l  0 5 N + l  

TABLE I1 

ALGORITHMS AND DLMS ALGORITHMS 
THE ADDITION COMPLEXITIES OF THE NEW 

z ( k )  = 0 for k < 0, and p ( k )  = 0 for k < 0. 

Equation (2) can be computed with one multiplication and two 
additions, and ( 3 )  is a fixed constant once the filter is designed. 
As a result, the overall complexity for the convolution is 
N / 2  + 1 multiplications and 3N/2 + 3 addlitions. 

B. The New Adaptive Algorithm 

Given an adaptive filter with its input sequence z(n) and 
coefficients h k ( n ) ’ s  to be adapted, (1) can be applied to the 
adaptive filter as follows: 

N-1 

k=O 
N/2-I 

k=O 

x [z(n - 2k - 1) + h2&)] - C(n)  

- z(n - 2k)z(n - 21% - 1) (4) 

N/2--1 

k=O 

where 
N/2--1 

C(n)  = h 2 k ( 4 h 2 k + 1 ( 4 .  ( 5 )  
k=O 

Since hk(n)’s are time varying, C(n)  is also time varying 
which has to be computed for every adaptive iteration. Con- 
sequently, there is no advantage in doing such decomposition 
for adaptive convolution. However, we can introduce an extra 
coefficient h ~ ( n )  to be adapted, which in the long run is 
expected to cancel C(n). On the other hand, the conventional 
LMS algorithm is still applied to filter tap updates. Equation 
(6) describes the new adaptive algorithm including both the 
filtering part and the coefficient update part. 

N/2--1 

d (n>  = [.(n - 2k) + b k + l ( 4 ]  
k=O 

x [z(n - 2k - 1) + h&L)] - P(n)  - h N ( R )  

= w(n) - [hN(n) - C(n)l ( 6 4  

h,(n + 1) = h,(n) + 2pe’(n)z(n - j ) ,  

hN(n + 1) = hN(n)  - ae’(n) 
j = 0 , 1 ,  . . . ,  N - 1  (6b) 

(6c) 

where the error signal e’(n) is 

e’ (n)  = d ( n )  - y ’ (n )  

= d ( n )  - 
N/2-1 

[z(n - 2 k )  + hzk+l (n )7  
k=O 

x [z (n - 2k - 1) + h 2 k ( n ) ]  

+ P(n)  + hN(n)  

= d ( n )  - y(n> + [hN(n) - C(n)l 
= 4.1 + [hlV(n) - C(n)l ( 6 4  

d(n) = the desired signal. 
As shown, the computation of C(n) is replaced by its 

estimate h ~ ( n ) ,  which costs only one extra multiplication. 
Therefore, the multiplication saving in the adaptive filtering 
operations is maintained like in the fixed filtering cases. As can 
be seen, the new algorithm is similar to the DLMS algorithm. 
However, it has two major differences from the latter one: 1) 
it needs one more parameter estimation, and 2) it has a slightly 
different error signal. The algorithm can be incorporated with 
LMS SA, SRA and ZFA for further complexity reduction. 
Tables I and II summarize the complexities for the new algo- 
rithm, the new algorithm combined with SA, the conventional 
DLMS algorithm and the SA DLMS algorithm. In these tables, 
we assume that the step sizes cy and p are integer powers of 
2, which contribute no multiplication. 

Despite of the multiplication advantage of the new al- 
gorithm over the DLMS algorithm, the combined addition 
and multiplication complexity of the new algorithm is about 
the same as that of the DLMS algorithm. Therefore, when 
implemented with general-purpose DSP’s (with a single-cycle 
multiply-accumulate operation), the new algorithm does not 
present speed advantage over the DLMS algorithm. However, 
for applications with high speed and small area requirements, 
ASIC realizations of the algorithm is much more effective 
thain its DSP realizations. Still, there are memory overheads 



314 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 43, NO. 5, MAY 1996 

required for storing P(n  - 2) and the product terms r(n - 
l )x(n - 2) through z(n - N ) z ( n  - Ai - 1) for later use by 
(2) ,  which has to be taken into account when implementing 
the algorithm. 

Since by (7) e’/(n) is a linear combination of zero mean signal 
e(7a) and the slowly varying parameter C(n) ,  C(n )  can be 
estimated by averaging e/’(n)’s within a window close to the 
time instant n as follows: 

~ M - l  

111. DERIVATION AND PROPERTIES OF THE NEW ALGORITHM 

The new algorithm is the same as the DLMS algorithm 
except that an additional parameter C(n)  needs to be esti- 
mated, and instead of using e ( n )  = d ( n )  - g ( n ) , e / ( n )  as 
shown in (6d) is used. The key point for the algorithm to 
function properly is the convergence of h~ (n) to C( n) . Under 
such condition, d(n)  can follow e ( n )  closely and eventually 
converge to e(n) as shown in (6d). A formal discussion and 
justification leads to the condition is stated as follows. 

First of all, let’s consider the error signal e”(n)  instead of 
e ( n )  or e’(.) as the error signal to be applied to the DLMS 
coefficient updates, 

(7) 
1 N/2-1 

e y n )  = d(7L) - y(n) + h2k(n)h2k+l(n) [ k=O 

= e(.) - C(n) .  

Since z(n) and hk(n)  are uncorrelated [l], [14], the expecta- 
tion of y(n) is zero if r(n) is a zero-mean signal. In addition, 
the expectation of e(.) is zero if d(n) and z (n)  are zero- 
mean signals. When step size p is small, it is reasonable to 
assume that C ( n )  is slowly time varying. Small step sizes 
are commonly used to assure convergence, small residue 
error, stability and uncorrelatedness of parameters. Under such 
conditions, coefficient adaptations can be considered as a 
DLMS adaptation, but with the desired signal d ( n )  being 
biased with a relatively “constant” C(n) .  If we plug this 
error signal into coefficient update equations and take the 
expectations of both sides as follows: 

E{h,(n + I)} = E{h,(n) + 2pe”(n)z(n - j ) } ,  
j = 0 ,1 . .  . . . N - 1 

= E{h,(n) + 2 p e ( n ) z ( n  - j ) }  - 2p 

1 
(10) M 

This update needs 2 additions, one multiplication and M 
registers for error signal storage. An alternative for h ~ ( n )  
adaptation is by using the popular exponential smoothing 
algorithm as shown below, 

= hx(,n - 1) - -[e/’(n) - d/(n - M ) ] .  

h,v(n) = (1 - cr)hN(n - 1) - ae / / (n  - 1) 
where 0 < CY, < 1. (11) 

And from (I l ) ,  it can be shown that E{e”(n)}  = - E h ~ ( n ) .  
In the adaptation, step size o is a critical factor for the 

convergence of hN(n)  to a desired final constant value. By 
(7), the expectation value of e”(n) can be shown to reflect 
C(n)  as shown in (12). 

1 
= -E h2k(n)h2k+l(n) } . (12) { k=O 

N/2-1 

E ( e l ’ ( 4 )  = E { e ( n ) }  - E hZk(n)h2k+l(n) { k=O 

N / 2 - 1  

Therefore, it is desirable to pick a large a for better tracking 
of C(n) .  Comparable performances as those of the DLMS 
algorithm were obtained when a is in the vicinity of 0.5. Note 
that cy is preferably to be much larger than the step size p. 

From (7), ( l l ) ,  and (12), we expect that e”(n) converges 
to -C(n) .  Hence, if h ~ ( n )  is added to (7), we have the 
error signal e / ( n )  that is used by the new adaptive algorithm 
described in (6c), and 

N - 1 

- 
and assume that C(n)  is uncorrelated with r(n), and the 
mean of r(n) is zero, then (8) is reduced to (9). Note that N/2-1 
the assumption E { z ( n ) }  = 0 is frequently encountered in 
practical applications, and the assumption of uncorrelatedness 

= 4.) - 

= e/’(n) + hN(n)  (13) 

hZk(.)hak+l(n) + h ( n )  
k=O 

is based on the condition that C(n)  is slowly varying in 
comparison with r (n)  as is confirmed by later simulations. 
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Fig. 1. (a) Block diagram for system identification. (b) Mean square errors 
of the new algorithm and DLMS algorithm for Example I .  (c) Leaming curves 
of hp~(71) and Ck=o h ~ k ( n ) h ~ k + ~ ( n )  for Example 1. 

N j 2 - 1  

From (13), we can express (7) in terms of the actual error 
signal e ' (n)  as follows: 

h ~ ( n )  = (I - a)hN(n - I) - a[e'(n - I )  - hN(n - I)] 
= hN(n - I) - ae'(n - 1) (15) 

which ends up with (6c). 

new algorithm. By taking the expectation of (6b), we have 
Next, we discuss the conditions for the convergence of the 

input 
signal delay 

- - MSE of new algorithm 

- MSE of DLMS 

-100 -"I h 

--I60 

Iterations 

(b) 

Fig. 2. 
errors o f  the new algorithm and DLMS algorithm for Example 2. 

(a) Block diagram for inverse system modeling. (b) Mean square 

N - 1  

d ( n )  - hk.(n)z(n - k )  - C(n)  

For (16) to converge, we require that h.iv(n) - C ( n )  be 
uncorrelated with z(n - , j )  and E[z (n ) ]  = 0 or E { h ~ ( n )  - 

C ( n ) }  = 0. Under such condition, (16) is reduced to the same 
form as that of the DLMS algorithm as follows: 

E{h,(n + 1)) 
= E{h, (n) )  + 21.L 

Therefore, for the new algorithm to converge, the required 
constraint of stepsize p is the same as that of the DLMS 
algorithm 

(18) 
1 

- > p > 0  
h" 

where A,,, is the largest eigenvalue of system correlation 
matrix. According to (11), for the convergence of h ~ ( n )  the 
stepsize a must be confined to the range 1 > a > 0. 

IV. SIMULATION EXAMPLES 

E { h j ( n  + I)} = E{hj (n)}  + 2pE{e'(n)z(n - j ) ]  
In this section we simulate the new algorithm and its SA, 

SRA and ZFA versions by applying them to system identifi- 
cation and inverse svstem modeling. examdes. The results are 
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Fig. 3. (a) Mean square errors of the new algorithm and DLMS algorithm 
for Example 3, both combined with SA. (b) Leaming curves of h.\-(n) and 

N / 2 - 1  hzk(n)h2k+l(n)for  Example 3, combined with SA. 

compared with those of their counter DLMS algorithms. All 
the simulation curves are averages of 500 runs. 

The condition of zero-mean x(n) is not a necessary condi- 
tion for the new algorithm to converge as mentioned before 
and verified in the later simulations. The convergence rate 
and mean square error of the new algorithm is dependent on 
stepsizes a and ,u. In some examples (a  is very close to 0.51, 
the convergence rates of the new algorithm are a little faster 
than those of the DLMS in the beginning of adaptations, but 
the final mean square errors are a little worse than those of 
DLMS for the same stepsize p. Generally, the convergence rate 
of this algorithm is very close to that of DLMS algorithm. 

Example I .  System Zdenti5cation: Fig. l(a) shows a block 
diagram for the system identification, with an 8-tap adaptive 
filter. The channel impulse response g ( n )  = 0.33, 0.67, 1.0, 
0.67, 0.33 to be identified is taken from [13]. The input 
samples are assumed statistically independent binary numbers 
having values 1 or - 1 with equal probability, and the additive 
noise is a white Gaussian, zero-mean sequence with variance 

-zol\ 
-60 j0l \ 

-. - MSE of new algorithm 

- MSE of DLMS 

~ 

-7401 

I 
0 1000 2000 3000 4000 5000 6000 7000 8OM) 

-160‘ 

Iterations 

Fig. 4. 
Example 4. both combined with SRA. 

Mean square errors of the new algorithm and DLMS algorithm for 

d = 0.0001. The stepsizes are ,u = 0.005 and a = 0.1. 
Fig. l(b) shows that although the mean square error (MSE) of 
the new algorithm is slower than that of the DLMS algorithm, 
it closely follows the latter one. Fig. l(c) shows that the h ~ ( n )  
converges to C(n) rapidly as expected. 

Example 2. Inverse System Modeling: The block diagram 
for the inverse system modeling is shown in Fig. 2(a). Its input 
sequence is assumed a white Gaussian, zero-mean noise with 
variance d = 1. The impulse response of channel is simply 
described by the raised cosine model given below. 

h(n) = { 1 + cos[2-ir(n - 2)/3.1]}/2 for n = 1 , 2 , 3  
= o  otherwise. 

Here we use 30 taps for both the DLMS algorithm and 
new algorithm, with the stepsizes p = 0.01 and a = 0.2. 
Surprisingly, Fig. 2(b) shows that the MSE curve of the new 
algorithm converges faster than that of the DLMS algorithm. 
Since hl\-(n) curve almost coincides C(n) curve, they are not 
shown here. 

Example 3. The New Algorithm Combined with SA for  Ex- 
ample 2: The simulation conditions are the same as example 
2, except that the coefficients are updated with SA for both 
the new algorithm and DLMS algorithm. The stepsizes are 
assumed p = 0,00025 and a = 0.0005. Fig. 3(a) shows 
a slower (but closely following) MSE curve of the new 
algorithm than that of the DLMS algorithm. Fig. 3(b) shows 
that there is a noticeable deviation between C(n)  and h ~ ( n )  
curves. However, both curves almost converge at the same 
instant. 

Example 4. The New Algorithm Combined with SRA Algo- 
rithm for Example 2: The simulation conditions are the same 
as example 2, except that the coefficients are updated with 
SRA. The stepsizes are assumed p = 0.01 and cr = 0.05. 
Fig. 4 shows that both MSE learning curves overlap. Similarly, 
C(n)  and hhr(n) almost coincide. 

Example 5. The New Algorithm Combined with ZFA for 
Example 2: The stepsizes are assumed p = 0.00025 and cr = 
0.0005. Fig. 5(a) shows two very close MSE curves. Similar 
to example 4, there is a noticeable deviation between C(n)  
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Fig. 5. (a) Mean square errors of the new algorithm and DLMS algorithm 
for Example 5 ,  both combined with ZFA. (b) Learning curves of hLv ( n )  and 

zkzO N/2-1  h,k(n)hZk+l(n)for Example 5, combined with ZFA. 

TABLE I11 
THE EXCESS MEAN SQUARE ERRORS (IN dB) AND THE 
CORRESPONDING RELATIVE dB DIFFERENCES, (IN %) OF 

THE NEW ALGORITHM AND CONVENTIONAL PLLGORITHMS 

and h ~ ( n )  curves as shown in Fig. 5(b). However, both MSE 
curves almost settle at the same time instaint. 

Example 6. The New Algorithm with Nonzero-Mean Input 
for Example 2: This is a worse case than the mentioned 
examples. Here, the input signal is assumed to be a normal 

20 

0.1, 

-0.3 

-. -.  The curve of h,(n) 

- The curveof Chak(n)h,,,(n) 
Nil-! 

k 0  

distribution random signal, with an expected value of 0.5 and 
variance of 1. The stepsizes are assumed p = 0.005 and o = 
0.4. Very similar results to the previous two examples are 
obtained as shown in Fig. 6(a) and (b). However, there is 
larger excess mean square error for the new algorithm than 
those of the previous examples. 

Table I11 summarizes the excess mean square errors (in 
dB), and the corresponding relative dB differences (in %) 
for the new and conventional algorithms. As can be seen, 
all the relative dB differences are around 1%. In addition, 
the new algorithm has been successfully applied to the HDSL 
equalization [ 151. 

V. CONCLUSION 

Due to its nonlinear nature, the MSE analysis of the new 
algorithm remains to be precisely characterized with more 
efforts. Meanwhile, although the introduced compensation 
parameter is considered to converge faster than the direct- 
form coefficients in some examples and therefore has little 
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need to be characterized‘ The when the 
input signal has zero mean, as expected. When inputs are not 

Englewood Cliffs, NJ: 

zero mean, the algorithm also converges to optimal solutions, 
except in rare occasions. This phenomenon is also left to 
be further investigated. Moreover, theoretical analysis of the 
effect of stepsizes to the convergence of the new algorithm 
especially to its sA, SRA, and zFA versions is required 
further investigation. On the other hand, the mentioned fast 
convolution algorithm [ 1 11 can be directly combined with 
the block LMS algorithms. Doing this way, there is no need 
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