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Abstract. In the vibration analysis of high speed trains arises such a palindromic quadratic
eigenvalue problem (PQEP) (λ2AT + λQ + A)z = 0, where A, Q ∈ Cn×n have special structures:
both Q and A are m ×m block matrices with each block being k × k (thus n = m × k), and Q is
complex symmetric and tridiagonal block-Toeplitz, and A has only one nonzero block in the (1,m)th
block position which is the same as the subdiagonal block of Q. This PQEP has eigenvalues 0 and
∞ each of multiplicity (m− 1)k just by examining A, but it is its remaining 2k eigenvalues, usually
nonzero and finite but with an extreme wide range in magnitude, that are of interest. The problem
is notoriously difficult numerically. Earlier methods that seek to deflate eigenvalues 0 and ∞ first
often produce eigenvalues that are too inaccurate to be useful due to the large errors introduced in
the deflation process. The solvent approach proposed by Guo and Lin in 2010 changed the situation
because it can deliver sufficiently accurate eigenvalues. In this paper, we propose a fast algorithm
along the line of the solvent approach. The theoretical foundation of our algorithm is the connection
we establish here between this fast train PQEP and a k×k PQEP defined by the subblocks of A and
Q without any computational work. This connection lends itself to a fast algorithm: solve the k× k
PQEP and then use its eigenpairs to recover the eigenpairs for the original fast train PQEP. The
so-called α-structured backward error analysis that preserves all possible structures in the fast train
PQEP to the extreme is studied. Finally numerical examples are presented to show the effectiveness
of the new fast algorithm.

Key words. palindromic quadratic eigenvalue problem, PQEP, fast train, nonlinear matrix
equation, solvent approach, doubling algorithm
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1. Introduction. The palindromic quadratic eigenvalue problem (PQEP) [10,
11, 16] is to find scalars λ and nonzero vectors z such that

(1.1) P (λ)z ≡ (λ2AT + λQ+A)z = 0,

where A and Q are n×n (real or complex) matrices and QT = Q (complex symmetric).
When (1.1) holds for a scalar λ and a vector z 6= 0, we call λ a quadratic eigenvalue,
z a corresponding quadratic eigenvector, and (λ, z) a quadratic eigenpair.
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FAST TRAIN PALINDROMIC QEP A3411

Sometimes, we may also ask for left quadratic eigenvectors of P ( · ). By a left
quadratic eigenpair (w, λ) of scalar λ and nonzero vector w, we mean

(1.2) wTP (λ) ≡ wT(λ2AT + λQ+A) = 0.

If both (1.1) and (1.2) hold, we call (w, λ, z) a quadratic eigentriplet of P ( · ). The
word “quadratic” before eigenvalue, eigenvector, eigenpair, and eigentriplet is often
dropped for convenience when no confusion arises.

In this paper, we are interested in those PQEPs (1.1) that arise from the vibration
analysis of high-speed trains [3, 8, 13, 17], where the coefficients A and Q often have
additional structures beyond QT = Q. In fact in the case of high-speed trains, Q is
also tridiagonal block-Toeplitz, and the subblocks in A partitioned in the same way
as Q are all 0 except one subblock in the upper-right corner. Specifically, without
going into too much detail, n = mk, and

P (λ)z ≡ (λ2AT + λQ+A)z = 0 with(1.3a)

Q =



k k k ··· k

k H0 HT
1

k H1 H0 HT
1

k H1
. . .

. . .
...

. . .
. . . HT

1

k H1 H0

, A =


k ··· k k

k 0 . . . 0 H1

k 0 . . . 0 0
...

...
...

...
k 0 . . . 0 0

.(1.3b)

Both have m block-rows and columns. Also H0 is complex symmetric, i.e., HT
0 = H0.

For future references, we will call PQEP (1.3) a fast train PQEP.
This fast train PQEP was first raised in a study in Germany by Hilliges, Mehl, and

Mehrmann [10, 11]. There are numerous numerical difficulties in solving it: (1) most
eigenvalues are 0 and ∞ and in fact, by examining A, we see that it has eigenvalues 0
and ∞ each with multiplicity (m− 1)k; (2) the problem size n can range from 103 to
105; (3) most seriously the problem is badly scaled with finite eigenvalue magnitudes
ranging from 10−50 to 1050 or to an even greater extreme; and (4) all finite nonzero
eigenvalues and eigenvectors are to be computed. Systematical studies into more
general palindromic eigenvalue problems including linear and polynomial ones such as
PQEP (1.3) started with Mackey et al. [18, 19] and the research for efficient and robust
methods remains active today. Numerically some structure-preserving algorithms
were developed in [3, 12, 14, 15], and theoretically some structured backward error
analysis was established in [9, 16]. Earlier methods which typically start by deflating
out the known eigenvalues 0 and∞ for the sake of efficiency do not perform as well as
needed in dealing with so many eigenvalues 0 and∞ and in particular the wide range of
the eigenvalue magnitude. The key reason is due to that the deflation process involves
the inverses of potentially ill-conditioned matrices (see, e.g., [3]) and consequently
introduces large error into the data for the deflated eigenvalue problem from which
the rest of the eigenvalues are computed. The situation, however, changed with the
emergence of the solvent approach proposed in [8] and its modification in [17]. Strong
numerical evidence suggests that both solvent approaches can satisfactorily handle
numerous eigenvalues 0 and ∞ and the wide range of the eigenvalue magnitude in
particular.

In applying their solvent approach to the fast train PQEP, Guo and Lin [8] clev-
erly exploited most of the inherent subblock structures in A and Q and significantly
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A3412 L. LU, T. WANG, Y.-C. KUO, R.-C. LI, AND W.-W. LIN

reduced the cost per doubling iterative step for solving the n × n nonlinear matrix
equation

X +ATX−1A = Q

which the solvent approach depends on. Recently, Lu, Yuan, and Li [17] discovered a
way to get around this nonlinear matrix equation by solving, instead, another matrix
equation of the same form but only of k×k. Despite successful structural exploitations
for much computational gain in [8, 17], the fact that Q is tridiagonal block-Toeplitz
is not numerically explored in both works, not to mention that the top-right corner
block in A relates to the subdiagonal block of Q. The goal of this paper is to fully
exploit the structures of A and Q in (1.3b) in the best possible way. As a result, we
obtain a new fast algorithm which compares favorably to the solvent approaches of
[8, 17] in speed and accuracy. In fairness, the existing solvent approaches, however,
have wider applicability.

The rest of this paper is organized as follows. In section 2, we review briefly
the doubling algorithm used in [8] for computing the stabilizing solution Φ of (2.1).
In section 3, we present our main theoretical results and devise our fast algorithm
for the fast train PQEP (1.3). In section 4, we explain the advantages of our new
fast algorithm in section 3 over the existing structure-preserving doubling algorithm
(SDA) based solvent approaches. Section 5 presents our numerical results. Finally
concluding remarks are given in section 6.

Notation. Cn×m is the set of all n × m complex matrices, Cn = Cn×1, and
C = C1. In (or simply I if its dimension is clear from the context) is the n × n
identity matrix, and ej is its jth column. We usually use lowercase letters for vectors
and capital letters for matrices and use λ, µ, and τ for eigenvalues. The superscripts
“·T” and “·H” take the transpose and complex conjugate transpose of a matrix or
vector, respectively. We shall also adopt MATLAB-like convention to access the
entries of vectors and matrices. Let i : j be the set of integers from i to j inclusive.
For a vector u and a matrix X, u(j) is u’s jth entry, X(i,j) is X’s (i, j)th entry; X’s
submatrices X(k:`,i:j), X(k:`,:), and X(:,i:j) consist of intersections of row k to row `
and column i to column j, row k to row `, and column i to column j, respectively.
X1 ⊕ · · · ⊕ Xk := diag(X1, . . . , Xk) is the block-diagonal matrix with the diagonal
blocks X1, . . . , Xk. ‖X‖2 and ‖X‖F are the spectral and Frobenius norms of X,
respectively.

2. The doubling algorithm. The solvent approach in [8] depends on the so-
called stabilizing solution of

(2.1) X +ATX−1A = Q.

By the stabilizing solution, we mean the solution X that satisfies ρ(X−1A) < 1, where
ρ( · ) is the spectral radius of a matrix. In [7, 8], it is shown that the stabilizing solution
exists if =(Q) + λ[=(A)]T + λ−1=(A) is positive definite for all λ on the unit circle,
where =(Q) and =(A) are the entrywise imaginary parts of Q and A, respectively.

Given the prominent role of the stabilizing solution of (2.1) and to distinguish
it from other solutions, we designate the symbol Φ for it, i.e., we will use Φ for the
stabilizing solution of (2.1). It is complex symmetric, i.e., ΦT = Φ.

The stabilizing solution Φ (as well as any other solutions of (2.1) called the solvent
matrices) gives rise to the following factorization for P ( · ):

(2.2) P (λ) = λ2AT + λQ+A = (λAT + Φ)Φ−1(λΦ+A).
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FAST TRAIN PALINDROMIC QEP A3413

Algorithm 2.1. The doubling algorithm for solving (2.1).

Input: A,Q = QT ∈ Cn×n;
Output: A solution of (2.1);

1: A0 = A, X0 = Q, Y0 = 0.
2: for i = 0, 1, . . . , until convergence do
3: Ai+1 = Ai(Xi − Yi)−1Ai;
4: Xi+1 = Xi −AT

i (Xi − Yi)−1Ai;
5: Yi+1 = Yi +Ai(Xi − Yi)−1AT

i ;
6: end for
7: return Xi as the computed solution at convergence.

In summary, the solvent approach consists of two steps:
1. Compute the stabilizing solution, if it exists, of the nonlinear matrix equation

(2.1) with the doubling algorithm.
2. Solve the (linear) eigenvalue problems for matrix pencils λAT +Φ or λΦ+A.

Note the eigenvalues of λAT + Φ and those of λΦ + A satisfy the reciprocal
relation: if µ is an eigenvalue of one, then 1/µ is an eigenvalue of the other.

Guo and Lin [8] used SDA [2] to solve the matrix equation (2.1) for its stabilizing
solution Φ (see also [3]). For convenience we outline SDA here in Algorithm 2.1. Once
Φ is computed, the QZ algorithm [20] implemented in LAPACK [1] and in MATLAB
as eig(· · · ) is applied to solve the eigenvalue problem1 for λAT+Φ or λΦ+A. Finally,
the n eigenvalues of P ( · ) inside the unit circle are the n eigenvalues of λΦ+ A, and
the other n eigenvalues which are outside the unit circle are their reciprocals. The
eigenvectors of λΦ+ A are also the eigenvectors of P ( · ), but those of λAT + Φ need
to be processed to yield the corresponding eigenvectors of P ( · ). Similarly, the left
eigenvectors of λAT + Φ are the left eigenvectors of P ( · ), and those of λΦ + A have
to be processed to yield the corresponding left eigenvectors of P ( · ).

It is shown in [8] that Xi generated by Algorithm 2.1 converges to the stabilizing
solution Φ quadratically, and

(2.3) lim sup
i→∞

2i
√
‖Xi − Φ‖ ≤ [ρ(Φ−1A)]2,

where ‖ · ‖ is any matrix norm. Because of the quadratic convergence, as argued in
[17], a reasonable stopping criteria for Algorithm 2.1 to use at line 2 is

(2.4)
‖Xi+1 −Xi‖
‖Xi‖

≤ rtol,

where rtol is a given relative tolerance which, in our numerical tests, was set to a
modest multiple of u = 2−52, the unit machine roundoff of IEEE double precision,
since our tests were carried out within MATLAB.

The solvent approach in [17] follows the same framework as outlined above but
instead of mk ×mk equation (2.1), it devises another nonlinear matrix equation,

(2.5) X̃ + Ã
T
X̃−1Ã = Q̃,

which takes the same form as (2.1) but is only of k × k . The newly devised nonlin-
ear matrix equation (2.5) is again solved by Algorithm 2.1. It was proved that the

1By exploiting the sparsity structure of A, Guo and Lin [8] showed how the mk×mk eigenvalue
problems can be solved via two eigenvalue problems of only k × k in size.
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approximations by Algorithm 2.1 converge at the same rate for both (2.1) and (2.5).
We point out in passing that Guo and Lin [8] cleverly exploited the structures of A
and Q in their implementation of Algorithm 2.1 to solve (2.1).

3. The fast algorithm. In this section, we consider the fast train PQEP (1.3).
Structurally, it always has the eigenvalue 0 and ∞, each of multiplicity n − k =
(m− 1)k. In fact, if P (0)z = 0, which is the same as Az = 0, then H1z(n−k+1:n) = 0
immediately yielding n − k linearly independent eigenvectors e1, e2, . . . , en−k. Simi-
larly by considering the PQEP λ2P (1/λ)z = 0, we find n − k linearly independent
eigenvectors ek+1, ek+2, . . . , en associated with the eigenvalue ∞. When H1 is non-
singular, these are the only linearly independent eigenvectors associated with the
eigenvalue 0 and ∞, respectively. Therefore without any computational effort, we
already know 2(n − k) eigenvalues and their corresponding eigenvectors: 0 and ∞,
each of multiplicity n − k = (m − 1)k. There are 2k remaining eigenvalues and, if
needed, their associated eigenvectors, to be found.

Owing to this observation, instead of straightforwardly applying the solvent ap-
proach as we outlined in section 1, we will skip computing these zero and infinite
eigenvalues by establishing a theoretical result that exposes a k × k PQEP whose
solution leads to the remaining 2k eigenvalues and eigenvectors. We introduce k × k
PQEP:

(3.1) P̂ (λ)y := (λ2HT
1 + λH0 +H1)y = 0,

where H0 and H1 are the same as the ones in (1.3b). We further assume that

(3.2) P ( · ) and P̂ ( · ) are regular,

i.e., detP (λ) 6≡ 0 and det P̂ (λ) 6≡ 0, which are true for real test problems and thus

reasonable to have. Since P̂ ( · ) is assumed regular, by [5, Theorem 7.3] P̂ ( · ) has a
decomposable pair:

(3.3)
(

(J0 ⊕ J1)⊕ J∞,
[ k0 k1 k∞

[Y0 Y1] Y∞
])

with k0 = k∞ and k0 + k1 + k∞ = 2k, where
1. the matrix

(3.4)

[
Y0 Y1 Y∞J∞
Y0J0 Y1J1 Y∞

]
∈ C2k×2k

is nonsingular; and
2. HT

1 Y∞ + H0Y∞J∞ + H1Y∞J
2
∞ = 0, and HT

1 YiJ
2
i + H0YiJi + H1Yi = 0 for

i = 0, 1 which are equivalent to

HT
1 [Y0 Y1](J0 ⊕ J1)2 +H0[Y0 Y1](J0 ⊕ J1) +H1[Y0 Y1] = 0;

3. J0 corresponds to the eigenvalue 0, J1 corresponds to all nonzero finite eigen-
values, and J∞ corresponds to the eigenvalue ∞. Thus J0 ⊕ J1 corresponds
to all finite eigenvalues. J0 and J∞ appear if and only if H1 is singular.

In (3.3) both J0 and J∞ are nilpotent matrices,

Jk0 = Jk∞ = 0k0×k0 .
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Theorem 3.1. Consider the fast train PQEP (1.3) and define P̂ ( · ) by (3.1) and

assume (3.2) with P̂ ( · ) having the decomposable pair (3.3). Let

(3.5) Z0 =

[ n−k k0

n−k I 0
k 0 Y0

]
, Z1 =


Y1

Y1J1

...
Y1J

m−1
1

 , Z∞ =

[ k∞ n−k

k Y∞ 0
n−k 0 I

]
.

If 2

(3.6) J0 = J∞ = 0k0×k0 ,

then P ( · ) has the decomposable pair

(3.7a)
(
JJJfinite ⊕ JJJ∞, [ZZZfinite Z∞]

)
,

where

JJJfinite = (0(n−k)×(n−k) ⊕ 0k0×k0)⊕ Jm1 , JJJ∞ = 0k∞×k∞ ⊕ 0(n−k)×(n−k),(3.7b)

ZZZfinite =
[ n−(k−k0) 2(k−k0)

Z0 Z1

]
.(3.7c)

That is to say,
1. the matrix

(3.8)

[
Z0 Z1 0
0 Z1J

m
1 Z∞

]
∈ C2n×2n

is nonsingular;
2. AZ0 = 0, ATZ1J

2m
1 + QZ1J

m
1 + AZ1 = 0, and ATZ∞ = 0. Together, they

are equivalent to

ATZZZfiniteJJJ
2
finite +QZZZfiniteJJJfinite +AZZZfinite = 0,(3.9a)

ATZ∞ +QZ∞JJJ∞ +AZ∞JJJ
2
∞ = 0;(3.9b)

3. JJJfinite corresponds to the finite eigenvalues, and JJJ∞ corresponds to the eigen-
value ∞.

Proof. Through elimination among its columns, we see that the matrix in (3.8)
is nonsingular if and only if

In−k ⊕
[
Y0 Y1J

m−1
1 0

0 Y1J
m
1 Y∞

]
⊕ In−k

is nonsingular. This matrix is nonsingular if and only if

[
Y0 Y1J

m−1
1 0

0 Y1J
m
1 Y∞

]
=

[
Y0 Y1 0
0 Y1J1 Y∞

]Ik0 Jm−1
1

Ik∞


2That k0 = k∞ = 0 is allowed. This happens when H1 is nonsingular. As a result, Y0 and Y∞

are empty matrices and thus Z0 = (In)(:,1:n−k) and Z∞ = (In)(:,k+1:n) in (3.5).
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is nonsingular. The last matrix is nonsingular because J1 has only nonzero eigenvalues
and thus nonsingular and

[
Y0 Y1 0
0 Y1J1 Y∞

]
is nonsingular because it is the same as (3.4)

due to J0 = J∞ = 0 by assumption. This proves item 1.
For item 2, we note H1Y0 = 0, and HT

1 Y∞ = 0 again due to J0 = J∞ = 0 by
assumption. Thus AZ0 = 0 and ATZ∞ = 0 follow from the structure of A in (1.3b).
We now prove ATZ1J

2m
1 + QZ1J

m
1 + AZ1 = 0. Expand this equation by block-rows

to get

H0Y1J
m
1 +HT

1 Y1J
m+1
1 +H1Y1J

m−1
1 = 0,(3.10a)

H1Y1J
m+i−2
1 +H0Y1J

m+i−1
1 +HT

1 Y1J
m+i
1 = 0 for 2 ≤ i ≤ m− 1,(3.10b)

HT
1 Y1J

2m
1 +H1Y1J

2m−2
1 +H0Y1J

2m−1
1 = 0.(3.10c)

It suffices to show (3.10), instead. To this end, we recall HT
1 Y1J

2
1 +H0Y1J1+H1Y1 = 0.

Now for (3.10a), we have

H0Y1J
m
1 +HT

1 Y1J
m+1
1 +H1Y1J

m−1
1 = (HT

1 Y1J
2
1 +H0Y1J +H1Y1)Jm−1

1

= 0.

For (3.10b), we have

H1Y1J
m+i−2
1 +H0Y1J

m+i−1
1 +HT

1 Y1J
m+i
1 = (H1Y1 +H0Y1J1 +HT

1 Y1J
2
1 )Jm+i−2

= 0.

Finally for (3.10c), we have

HT
1 Y1J

2m
1 +H1Y1J

2m−2
1 +H0Y1J

2m−1
1 = (H1Y1 +H0Y1J1 +HT

1 Y1J
2
1 )J2m−2

= 0.

This proves (3.10). To see that AZ0 = 0, ATZ1J
2m
1 + QZ1J

m
1 + AZ1 = 0, and

ATZ∞ = 0 together are equivalent to (3.9). We notice that (3.9b) is the same as
ATZ∞ = 0 because JJJ∞ = 0. Equation (3.9a) is two equations in one:

ATZ0J
2m
0 +QZ0J

m
0 +AZ0 = 0,

ATZ1J
2m
1 +QZ1J

m
1 +AZ1 = 0,

where J0 = 0(n−k)×(n−k). Both have been proven.
Item 3 follows from items 1 and 2.

Besides the key assumption (3.2), (3.6) is another one that makes the construction
of the decomposable pair (3.7) work. The latter means that all Jordan blocks, if any,

of P̂ ( · ) corresponding to its eigenvalues 0 and ∞ are 1-by-1. Both (3.2) and (3.6)
hold for all the test problems in section 5, where in fact H1 is nonsingular to yield
k0 = k∞ = 0. What this theorem says, under the key assumptions, is that all nonzero
and finite eigenvalues3 of the n × n fast train PQEP (1.3) come from the nonzero
and finite eigenvalues of the k × k PQEP (3.1). In particular, all nonzero and finite
eigenpairs of P ( · ) are given by

(3.11)

µm,

y
yµ

...
yµm−1


 ,

3By a nonzero and finite eigenpair, we mean the associated eigenvalue is nonzero and finite.
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Algorithm 3.1. Fast algorithm for fast train PQEP (1.3).

Input: A and Q as in (1.3b);
Output: all nonzero and finite eigenpairs of fast train PQEP (1.3);

1: use Algorithm 2.1 with input A ← H1 and Q ← H0 to compute the stablizing
solution Φ̂ of (3.13) and, as a result, P̂ (λ) = (λHT

1 + Φ̂)Φ̂−1(λΦ̂+H1).

2: solve the eigenvalue problem for matrix pencil λΦ̂+H1;
3: for each nonzero and finite eigenpair (µ, y) of λΦ̂ + H1 (i.e., H1y = µ Φ̂y and
µ 6= 0), construct an eigenpair as in (3.11) of the fast train PQEP (1.3);

4: if desired, for each nonzero and finite left eigenpair (ŵ, µ) of λΦ̂+H1 (i.e., ŵTH1 =

µ ŵTΦ̂ and µ 6= 0), solve wT(µHT
1 +Φ̂) = ŵTΦ̂ for w and construct a left eigenpair

as in (3.12) of the fast train PQEP (1.3);
5: return all constructed eigenpairs (3.11), and, if desired, all constructed left

eigenpairs (3.12).

where (µ, y) is a nonzero and finite eigenpair of P̂ ( · ). Correspondingly, it is not
hard to introduce the notation of the left decomposable pair and develop a version of
Theorem 3.1 about the left decomposable pair of the fast train PQEP (1.3) constructed
from that of PQEP (3.1). We omit the details, but we will say that all nonzero and
finite left eigenpairs of P ( · ) are given by

(3.12)



wµm−1

...
wµ
w

 , µm
 ,

where (w, µ) is a nonzero and finite left eigenpair of P̂ ( · ). We are now ready to present
our fast algorithm, Algorithm 3.1, in which the k × k nonlinear matrix equation

(3.13) X̂ +HT
1 X̂

−1H1 = H0

needs to be solved instead of the n× n equation (2.1).
For the eigenvalue 0 and ∞, we have, according to Theorem 3.1, that each eigen-

triplet (ŵ, 0, y) of λΦ̂+H1 (i.e., H1y = 0 and ŵTH1 = 0) leads to two eigentriplets,

(3.14)

([
ŵ
0

]
, 0,

[
0
y

])
,

([
0
y

]
,∞,

[
ŵ
0

])
,

for P ( · ), where each vector in (3.14) lies in Cn, provided both (3.2) and (3.6) hold.

Remark 3.1. There are several comments in order.
1. As mentioned before, the eigenvalues of λΦ̂ + H1 are inside the unit circle,

and those of λHT
1 + Φ̂ are outside of the unit circle.

2. At line 2, we can solve the eigenvalue problem for matrix pencil λHT
1 +

Φ̂ instead. This is because the eigenvalues of λΦ̂ + H1 and those of the
eigenvalues of λHT

1 +Φ̂ satisfy the reciprocal relationship: if µ is an eigenvalue

of λΦ̂+H1, then 1/µ is an eigenvalue of λHT
1 + Φ̂ and vice versa. Also their

eigenvectors are related, too.
3. At line 4 for recovering the left eigenvectors of P ( · ) from those of λΦ̂ + H1

via

(3.15) wT(µHT
1 + Φ̂) = ŵTΦ̂
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which, upon taking transpose and noting that Φ̂ is complex symmetric, be-
comes

(3.16) (Φ̂+ µH1)w = Φ̂ŵ.

Straightforward computations by (3.16) cost O(k4) for all k eigenpairs. That’s
too costly. But there is a more efficient way. Recall that at line 2 in solving
the eigenvalue problem for matrix pencil λΦ̂+H1 by, e.g., the QZ algorithm,
H1 and Φ̂ are first reduced to an upper Hessenberg matrix and an upper
triangular matrix, respectively,

(3.17) UHH1V = G and UHΦ̂V = T,

where U, V ∈ Ck×k are unitary, and G and T are upper Hessenberg and upper
triangular, respectively. Utilizing (3.17) which has already been computed at
line 2, we propose to solve (3.16) as follows:

solve (µG+ T )g = T (V Hŵ) for g and then w = V g.

This incurs a total cost of 16k3/3 flops for recovering all k left eigenvectors
of P ( · ).

4. Although at line 3 and optionally at line 4, only the eigenvectors of P ( · )
associated with its eigenvalues within the unit circle are explicitly constructed,
the eigenvectors associated with the eigenvalues outside the unit circle can be
made readily available, too. Recall that the reciprocals of all eigenvalues of
λΦ̂+H1 yield all eigenvalues of PQEP (1.3) outside the unit circle. It follows

from H1y = µ Φ̂y and ŵTH1 = µ ŵTΦ̂ that

(3.18) yTΦ̂ = µ−1yTHT
1 , Φ̂ŵ = µ−1HT

1 ŵ

for each nonzero eigentriplet (ŵ, µ, y) of λΦ̂ + H1. The equations in (3.18)

imply that (y, µ−1, ŵ) is an eigentriplet of λHT
1 + Φ̂. Consequently, by (3.11)

and (3.12),

(3.19)



yµ−(m−1)

...
yµ−1

y

 , µ−m,

w
wµ−1

...
wµ−(m−1)




is an eigentriplet of P ( · ), where w solves (3.16). Essentially, no additional
work is needed after the left and right eigenvectors associated with the eigen-
values within the unit circles are known.

4. Compare to existing doubling-based solvent approaches. Previously,
there were two variations of solvent approaches to solve (1.3) based on the doubling
algorithm:

• sda gl [8]. It uses the doubling iteration to solve (2.1) and then cleverly
solve the eigenvalue problems for matrix pencils λAT + Φ and λΦ + A by
reducing them to two k × k eigenvalue problems.

• sda lyl [17]. It also uses the doubling iteration but to solve some k × k
nonlinear matrix equation [17, (3.6)],

(4.1) X̃ + Ã
T
X̃−1Ã = Q̃
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derived from A and Q, and then to solve the PQEP for P̃ (λ) ≡ λ2ÃT+λQ̃+Ã

through the eigenvalue problems for k×k matrix pencils λÃT +Φ̃ and λΦ̃+Ã.
Our approach here in Algorithm 3.1 can also be categorized as a solvent approach:

• sda lwkll (Algorithm 3.1). It uses the same doubling iteration but to
solve (3.13) instead. There is an essential difference between sda lyl and
sda lwkll: sda lyl doesn’t really need to solve the eigenvalue problem for
P̃ ( · ) but rather the stabilizing solution Φ̂ of (4.1) and use it to recover the
stabilizing solution Φ of (2.1), while sda lwkll does compute the eigenvalues

of P̂ ( · ) and then raises them to their mth powers to recover the eigenvalues
of P ( · ).

All three approaches share a common feature: after the doubling iteration converged,
two k × k linear eigenvalue problems will have to be solved. The two eigenvalue
problems are related in that the eigenvalues of one are inside the unit circle and their
reciprocals give all eigenvalues of the other.

The numerical solution of a dense linear eigenvalue problem are now considered
standard and solved, e.g., by the QZ algorithm [6, 20]. Therefore we will not delve into
that part in all three approaches. What we will discuss among the three are (1) the
rates of convergence in the doubling iterations, (2) the flop counts, (3) the structured
backward errors in computed eigenpairs of the fast train PQEP (1.3) to preserve either
simply the palindromic form in (1.1) or additionally all the finer subblock structures
in (1.3), and (4) accuracy in the computed eigenvalues for P ( · ).

4.1. Rate of convergence for doubling iterations. Adopt the notation con-
vention of using Xi, X̃i, and X̂i for the ith approximations by the doubling algorithm
on (2.1), (4.1), and (3.13), respectively, whose stabilizing solutions are denoted by Φ,

Φ̃, and Φ̂, respectively.
Recall our discussion on the rate of convergence of the doubling algorithm in the

second half of section 2. It was shown [17, Theorem 4.1] that the doubling iterations
converge at the same rate for (2.1) and for (4.1) [17, (3.6)]:

(4.2) ‖Xi − Φ‖, ‖X̃i − Φ̃‖ / γ2i+1

with γ = ρ
(
Φ̃−1Ã

)
= ρ(Φ−1A),

where, and in what follows, “/” means the upper bound holds modulo some constant
factor that is independent of iterative index i. But on (3.13), we have

(4.3) ‖X̂i − Φ̂‖ / γ2i+1/m

because γ = ρ(Φ−1A) = [ρ(Φ̂−1H1)]m by Theorem 3.1. So the doubling algorithm
is slower on (3.13) than on (2.1) and (4.1). But exactly how much slower? Roughly
speaking, (4.2) and (4.3) imply that

(4.4)
for the same accuracy, (3.13) needs about log2m more doubling
iterative steps than (2.1) and (4.1) do.

We now substantiate this claim. For simplicity, let us ignore the constant factors
hidden in the notation /. To reduce the norm error between each approximation by
the doubling algorithm and their target to below some tolerance ε < 1, for (2.1) and
(4.1) we need by (4.2) that

γ2i+1

≤ ε ⇒ i+ 1 ≥ log2

log2 ε

log2 γ
,
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Table 1
Comparison of flop counts (m ≥ 2).

Before DA iteration Each DA iteration Finding eigenpairs

sda gl [8] 113
3
mk3 154

3
k3 14mk3 + 214

3
k3

sda lyl [17] 113
3

(m− 1)k3 32
3
k3 14mk3 + 214

3
k3

sda lwkll 0 32
3
k3 2mk2 + 214

3
k3

and for (3.13) we need by (4.3)

γ2i+1/m ≤ ε ⇒ i+ 1 ≥ log2

log2 ε

log2 γ
+ log2m,

yielding the claim.

4.2. Flop counts. We begin by estimating the flop counts in Table 1, where
those for sda gl and sda lyl are taken from [17, Table 6.1] but with the cost 214

3 k3

flops (in the fourth column of Table 1), for one QZ run (including forming the Q- and
Z-matrices in the QZ algorithm and solving (3.15) as outlined in item 3 of Remark 3.1)
[6, p. 385] on one of the two k × k linear eigenvalue problems from factorizing P ( · )
and P̃ ( · ) for their eigenvalues and corresponding left and right eigenvectors. The
costs incurred by the QZ runs are not negligible, especially for m not too big. The
expression 2mk2 in the fourth column for sda lwkll is for forming left and right
eigenvectors as in (3.11) and (3.12). Evidently, sda lwkll uses the fewest flops. In
particular, its cost does not contain the term O(mk3), but just O(mk2). This makes
sda lwkll particularly attractive when k is not small. In particular, if m and k
are comparable, then both sda gl and sda lyl cost O(k4), whereas it is O(k3) for
sda lwkll.

Now what does the claim (4.4) mean to the overall cost for solving PQEP (1.3)?
Recalling Table 1, we see that the extra doubling steps taken by sda lwkll will cost

32

3
k3 log2m

flops, which is far fewer than the cost terms O(mk3) in the flop counts for sda gl
and sda lyl.

Suppose that it takes i doubling iterative steps to solve (2.1) and (4.1). Our
analysis above says that it will take i+ log2m doubling iterative steps to solve (3.13).
With the help of Table 1, we can calculate the needed flops by sda gl, sda lyl, and
sda lwkll for solving PQEP for P ( · ) in terms of i. Consequently, we can calculate
the speedups of sda lwkll over sda gl and sda lyl again in terms of i. Previously
in [8, 17], it was observed that it would take about 7 to 10 doubling iterative steps
to solve (2.1) and (4.1) for various fast train PQEPs there. So it is reasonable for
us to look at the speedups for i, say, from 5 to 12, in order to get some idea of the
effectiveness of sda lwkll compared to sda gl and sda lyl. In Figure 1, we plot
these speedups. What we can see is that sda lwkll is at least 3 times faster than
sda lyl and at least 5 times faster than sda gl.

Last, we must put this flop comparison in perspective. Both sda gl and sda lyl
have much wider applicability than sda lwkll, namely, sda gl and sda lyl do not
need the block-Toeplitz structure in Q to work so long as it is block-tridiagonal, not
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Fig. 1. Left plot: speedup of Algorithm 3.1 over sda lyl; right plot: speedup of Algo-
rithm 3.1 over sda gl. Algorithm 3.1 is at least 3 times faster than sda lyl and at least 5
times faster than sda gl.

to mention that there is no need to require that the upper-right block in A is the same
as the subdiagonal block in Q, either. It is just that in the case of (1.3), sda lwkll
performs the best, as a trade-off for being so specialized.

4.3. Structured backward errors. In [16], the authors investigated backward
errors for four kinds of palindromic polynomial eigenvalue problems, one of which is
PQEP (1.1), where A and Q do not necessarily have the finer subblock structure as
displayed in (1.3b) for the so-called fast train PQEP. While the main results in [16]
are stated in a more general setting, in what follows we shall specify them to PQEPs
in the form of (1.1).

Let (τ, z) be a computed eigenpair of PQEP (1.1) and set

r = (τ2AT + τQ+A)z.

Ideally r should be 0, in which case (τ, z) is an exact computed eigenpair, but in general
r 6= 0. The structured backward error analysis [16] is about seeking perturbations
∆A and ∆Q to A and Q such that

(4.5)
[
τ2(A+ ‖A‖F∆A)T + τ(Q+ ‖Q‖F∆Q) + (A+ ‖A‖F∆A)

]
z = 0

subject to (∆Q)T = ∆Q. In other words, (τ, z) is an exact eigenpair of the perturbed
PQEP for

(4.6) P∆(λ) ≡ λ2(A+ ‖A‖F∆A)T + λ(Q+ ‖Q‖F∆Q) + (A+ ‖A‖F∆A).

Usually there exist infinitely many ∆A and ∆Q for this purpose, but we are interested
in the smallest perturbations in the certain sense. Theorem 4.1 of [16] says that the
optimal backward error is

ε : = min
∆A,∆Q

√
‖∆A‖2F + ‖∆Q‖2F subject to (4.5) and (∆Q)T = ∆Q

=

√
δ2
1

‖A‖2|1 + τ2|2 + ‖Q‖2|τ |2
+

δ2
2

‖A‖2(1 + |τ |4) + ‖Q‖2|τ |2/2
,(4.7a)
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where

(4.7b) δ1 =
|zTr|
‖z‖22

, δ2 =

√
‖r‖22‖z‖22 − |zTr|2

‖z‖22
,
√
δ2
1 + δ2

2 =
‖r‖2
‖z‖2

.

We caution the reader that the perturbations∆A and∆Q in (4.5) honor (∆Q)T = ∆Q
only, but when applied to (1.3) it disregards the subblock patterns presented in A and
Q of (1.3b). In particular, A + ‖A‖F∆A is no longer with just one nonzero block in
the upper-right corner, not to mention the tridiagonal block-Toeplitz structure in Q.
We argue that the indiscriminate fill-ins in A by ‖A‖F∆A to all subblock positions
are the most damaging because they structurally destroy the eigenvalues 0 and ∞,
each of multiplicity n− k = (m− 1)k, of the fast train PQEP (1.3).

It would be interesting if we could enforce the perturbations ∆A and ∆Q to
respect all the finer structures in (1.3b):

(4.8)
A+‖A‖F∆A and Q+‖Q‖F∆Q take the same form as A and Q but
with H1 and H0 changed to H1+‖H1‖F∆H1 and H0+‖H0‖F∆H0,
respectively, and (∆H0)T = ∆H0.

To distinguish this kind of extremely structured backward perturbation error analysis,
we call it the α-structured backward error analysis, and accordingly

√
‖∆A‖2F+‖∆Q‖2F

is called the α-structured backward error.
Theorem 3.1 allows us to establish the α-backward error analysis for the fast

train PQEP. Consider a computed eigenpair (τ, z), in the form (3.11), of PQEP (1.3),
where4

(4.9a) (µ, y) := (τ1/m, z(1:k))

is an approximate eigenpair of P̂ ( · ). Let

(4.9b) r̂ = (µ2HT
1 + µH0 +H1)y.

First we seek perturbations ∆H1 and ∆H0 to H1 and H0 such that

(4.10)
[
µ2(H1 + ‖H1‖F∆H1)T + µ(H0 + ‖H0‖F∆H0) + (H1 + ‖H1‖F∆H1)

]
y = 0

subject to (∆H0)T = ∆H0. In other words, (µ, y) is an exact eigenpair of the per-
turbed PQEP for

(4.11) P̂∆(λ) ≡ λ2(H1 + ‖H1‖F∆H1)T + λ(H0 + ‖H0‖F∆H0) + (H1 + ‖H1‖F∆H1).

As before we are interested in the smallest perturbations ∆H1 and ∆H0. By Theorem
4.1 of [16], we conclude the optimal backward error is

ε̂ : = min
∆H1, ∆H0

√
‖∆H1‖2F + ‖∆H0‖2F subject to (4.10) and (∆H0)T = ∆H0

(4.12a)

=

√
δ̂2
1

‖H1‖2|1 + µ2|2 + ‖H0‖2|µ|2
+

δ̂2
2

‖H1‖2(1 + |µ|4) + ‖H0‖2|µ|2/2
,(4.12b)

4Since not every mth root of τ is an eigenvalue of P̂ ( · ), here we use τ1/m to stand for the one

that is an eigenvalue of P̂ ( · ).
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where

(4.12c) δ̂1 =
|yTr̂|
‖y‖22

, δ̂2 =

√
‖r̂‖22‖y‖22 − |yTr̂|2

‖y‖22
,

√
δ̂2
1 + δ̂2

2 =
‖r̂‖2
‖y‖2

.

As a consequence, we have the following theorem.

Theorem 4.1. Let (τ, z), in the form (3.11), be an approximate eigenpair of
PQEP (1.3), where (µ, y) is the corresponding approximate eigenpair as defined by
(4.9a) of PQEP (3.1) with residual r̂ by (4.9b). Assume the conditions of Theo-
rem 3.1. If ‖r̂‖2 is sufficiently tiny,5 then (τ, z) is an exact eigenpair of a perturbed
PQEP (4.6) subject to (4.8), and the optimal α-structured backward error

εα : = min
∆A,∆Q

√
‖∆A‖2F + ‖∆Q‖2F subject to (4.8)

≤

√
1 +

(2m− 2)‖H1‖2F
m‖H0‖2F + (2m− 2)‖H1‖2F

ε̂,(4.13)

where ε̂ is the optimal structured backward error to PQEP (3.1) satisfying (4.12).

Proof. We have (4.9)–(4.12). Let ∆H0 and ∆H1 be the optimal ones in the sense
of (4.12a), and let A + ‖A‖F∆A and Q + ‖Q‖F∆Q take the same form as A and Q
in (1.3b) but with H1 and H0 changed to H1 + ‖H1‖F∆H1 and H0 + ‖H0‖F∆H0,

respectively. We have perturbed PQEPs for P∆( · ) and P̂∆( · ) in (4.6) and (4.11),
both of which are regular if ‖r̂‖2 is sufficiently tiny. Suppose this is the case. We
then apply Theorem 3.1 to conclude the proof for all except (4.13), which we shall
now prove. We have ‖A‖F = ‖H1‖F and ‖∆A‖F = ‖∆H1‖F and

‖Q‖2F = m‖H0‖2F + (2m− 2)‖H1‖2F,
‖Q‖2F‖∆Q‖2F = m‖H0‖2F‖∆H0‖2F + (2m− 2)‖H1‖2F‖∆H1‖2F.

Therefore

‖∆A‖2F + ‖∆Q‖2F = ‖∆H1‖2F +
m‖H0‖2F‖∆H0‖2F + (2m− 2)‖H1‖2F‖∆H1‖2F

m‖H0‖2F + (2m− 2)‖H1‖2F

≤
(

1 +
(2m− 2)‖H1‖2F

m‖H0‖2F + (2m− 2)‖H1‖2F

)(
‖∆H1‖2F + ‖∆H0‖2F

)
,

which, together with (4.12), yield (4.13) immediately.

All approximate eigenpairs (τ, z) of PQEP (1.3) solved by Algorithm 3.1 are
naturally in the form (3.11). It is reasonable to expect that they should be accurate

enough to satisfy “‖r̂‖2 is sufficiently tiny” to ensure P∆( · ) and P̂∆( · ) in the proof
are regular. On the other hand, all approximate eigenpairs (τ, z) of PQEP (1.3) solved
by existing methods such as sda gl and sda lyl are not in the form (3.11) because

the eigenvalues τ are not produced as µm for some eigenvalues µ of P̂ ( · ). However,

one can always recover µ as one of the mth roots of τ by, say, checking P̂ (τ1/m)z(1:k)

for each mth root τ1/m and picking one that minimizes ‖P̂ (τ1/m)z(1:k)‖2, at a cost of
4k2 + 4mk for each eigenpair (τ, z).

5This condition is made clear in the proof: with the optimal ∆H0 and ∆H1 in the sense of
(4.12a), P∆( · ) and P̂∆( · ) are regular.
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4.4. Accuracy of computed eigenvalues of P ( · ). We argue that Algo-

rithm 3.1, through solving the eigenvalue problem for P̂ ( · ), produces more accurate
eigenvalues for P ( · ) than all previous methods, including the ones in [8, 17], through
solving the eigenvalue problem for P ( · ) directly. We shall now explain. Hypotheti-

cally, suppose that we have the exact stablizing solutions Φ and Φ̂ to (2.1) and (3.13).
Then in theory the eigenvalues τ of λΦ+A are precisely those of P ( · ) inside the unit
circle, but numerically their computed counterparts will suffer absolute errors of O(u)
in the best scenario but often bigger, which means in general at best

(4.14) τcomputed = τexact +O(u) = τexact

[
1 +O

(
u

|τexact|

)]
,

where τexact is the corresponding exact eigenvalue of P ( · ), where u is the machine unit

roundoff. On the other hand, in theory the eigenvalues µ of λΦ̂+H1 are precisely those
of P̂ ( · ) inside the unit circle. Let us assume that numerically the eigenvalue problem

from λΦ̂+H1 is solved equally accurately as the one for λΦ+A, i.e., computed µ also
suffers an absolute error of O(u). Consequently, eigenvalues µ inside the unit circle
recovered in Algorithm 3.1 via the relation τ = µm will have various degree of relative
accuracy. In fact, write µcomputed = µexact + O(u), where µexact is the corresponding

exact eigenvalue of P̂ ( · ). Then the computed τcomputed satisfies

(4.15) τcomputed = µmexact[1 +O(u/µexact)]
m = τexact

[
1 +O

(
m

u

|τexact|1/m

)]
.

The estimates in (4.14) and (4.15) are very far apart even for a modest m. For exam-
ple, with m = 10 the estimate (4.15) means all eigenvalues of P ( · ) with magnitudes
10−80 < |τ | ≤ 1 are computed with at least eight correct decimal digits in the IEEE
double precision! On the other hand, the estimate (4.14) says all eigenvalues of P ( · )
with magnitudes |τ | ≤ 10−16 will likely have no correct decimal digits at all.

5. Numerical experiments. Previously in [8], it was demonstrated that sda gl
produced results with much better accuracy than earlier existing methods and that
in [17], sda lyl generated equally accurate results. For this reason, we will only nu-
merically compare sda lwkll to sda lyl in this article. All numerical experiments
are carried out within MATLAB with machine unit roundoff u = 2−53 ≈ 1.11×10−16.
We use (2.4) with rtol = 10−16 to stop all doubling iterations.

As in [17], we will report numerical results on three sets of test data, generated
by a finite element method, with

(5.1) (k,m) = (159, 11), (303, 19), (705, 51),

respectively. The finite element method generates real k × k matrices Ki and Mi to
give

Hi = Ki + ιωDi − ω2Mi with Di = c1Mi + c2Ki

for i = 0, 1, where ι is the imaginary unit, ω > 0 is the frequency of the external
excitation force, and c1 and c2 are two positive parameters. For more detail on these
examples, see [3, 8, 13, 17]. Table 2 displays the spectral radii

γ̂ := ρ(Φ̂−1H1), γ := ρ(Φ−1A) = ρ(Φ̃−1Ã) = γ̂m

for the three pairs (k,m) in (5.1). These radii determine the rates of convergence by
the doubling algorithms on the respective nonlinear matrix equations (2.1), [17, (3.7)],
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Table 2
(γ, γ̂) for various (k,m) and ω.

PPPPPP(k,m)
ω

100 1000 3000 5000

(159, 11) (0.959, 0.996) (0.875, 0.988) (0.793, 0.979) (0.741, 0.973)

(303, 19) (0.931, 0.996) (0.793, 0.988) (0.669, 0.979) (0.595, 0.973)

(705, 51) (0.962, 0.999) (0.883, 0.998) (0.806, 0.996) (0.757, 0.995)
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Fig. 2. Convergence of doubling iterations. Top:
‖X̃i+1−X̃i‖2
‖X̃i‖2

(sda lyl); bottom:

‖X̂i+1−X̂i‖2
‖X̂i‖2

(sda lwkll). X̂i needs about log2m more doubling steps to converge that X̃i.

and (3.13). Unfortunately, the degradation from γ to γ̂ = γ1/m in terms of their close-
ness to 1 from below is substantial, but the good news is, because of the quadratically
convergent behavior, the degradation delays the convergence by only about log2m
(which are 3.5, 4.2, and 5.7 for m = 11, 19, and 51, respectively) doubling steps.
For illustrating the convergence history of the doubling iterations, Figure 2 plots the
ratios

(5.2)
‖X̃i+1 − X̃i‖2
‖X̃i‖2

,
‖X̂i+1 − X̂i‖2
‖X̂i‖2
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for the first and last pairs of (k,m) in (5.1). What we can see from the figure are that

(1) both X̃i and X̂i converge very fast to their respective targets, and (2) for m = 11

it takes about log2m ≈ 4 more doubling steps for X̂i to be regarded as converged

than for X̃i and for m = 51 it is about log2m ≈ 6, as predicted by our earlier analysis.
Although not plotted here, the same can be said for m = 19.

To measure the accuracy of an approximate eigenpair (τ, z) of P ( · ), we use two
relative residuals [17]:

RRes :=
‖τ2ATz + τQz +Az‖2

(|τ |2‖A‖F + |τ |‖Q‖F + ‖A‖F)‖z‖2
,(5.3)

RResnew :=
‖τ2ATz + τQz +Az‖2

|τ |2‖H1‖F‖z1‖2 + |τ |‖Q‖F‖z‖2 + ‖H1‖F‖zm‖2
,(5.4)

where the Frobenius norm ‖ · ‖F is chosen for easy computation but it could be
replaced by any other matrix norm, and z is partitioned into an m-block vector:
z = [zT

1 , z
T
2 , . . . , z

T
m]T with zi ∈ Ck. Some comments are in order. RRes is generic

and is commonly used. Usually the best one could hope for RRes is to reduce it to
about O(u) = O(10−16). But as analyzed and argued in [17], this RRes for the current
problem is not suitable. The more appropriate one is RResnew due to the special sub-
block structure in A that alters rounding error characteristics in evaluating P (τ)z. In
fact, RRes can uncharacteristically reach down to O(10−35) or smaller.

Similarly to (5.3), the relative residual for an approximate eigenpair (µ, y) of P̂ ( · )
in (3.1) is

(5.5) RRes :=
‖µ2HT

1 y + µH0y +H1y‖2
(|µ|2‖H1‖F + |µ|‖H0‖F + ‖H1‖F)‖y‖2

.

In Figure 3, we use the first and last pairs of (k,m) in (5.1) as examples and also for
ω = 1000 only. We plot RRes (5.3) and RResnew (5.4) for all approximate eigenpairs of

P ( · ) and also RRes (5.5) for all approximate eigenpairs of P̂ ( · ) in (3.1). As it shows,

RRes (5.5) for P̂ ( · ) is always about O(u) for the computed eigenpairs, regardless
of its eigenvalue magnitudes. But for P ( · ), RResnew (5.4) is always about O(u),
while RRes (5.3) for τ with tiny or huge magnitude are skewed up to even O(10−160).
The reason behind it is that for tiny |τ |, ‖zm‖2/‖z‖2 is also tiny, while for huge |τ |,
‖z1‖2/‖z‖2 is tiny.

Last, for each computed eigenpair (τ, z) of PQEP (1.3), we check the structured
backward errors (4.7) and the α-structured backward errors (4.13). This is done in
Figure 4, where in calculating (4.7) for quite many largest |λi|, the denominators in
(4.7a) overflow to ∞ and thus the corresponding ε are computed to 0. Consequently,
these ε do not show up in the log-log plots but they would continue the trend if
overflows hadn’t happened. It is interesting to see how tiny ε of (4.7a) can get if
backward perturbations are allowed in every possible position in A and Q. On the
other hand, the α-structured backward errors always hover around O(u).

6. Conclusion. The fast train PQEP for P (λ) = λ2AT + λQ + A in (1.3) has
additional structures in its coefficient matrices A and Q beyond the usual “palin-
dromic” appearance, namely, both A and Q are partitioned block matrices, Q is
complex symmetric and tridiagonal block-Toeplitz, and A has only one nontrivial
block in its upper-right corner and that block is the same as the subdiagonal block of
Q (see (1.3)). In previous SDA-based solvent approaches [8, 17], these rich structures
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Fig. 3. Relative residuals. Top row: RRes (5.5) for approximate eigenpairs of P̂ ( · ) =
λ2HT

1 + λH0 + H1 in (3.1); bottom row: RRes (5.3) and RResnew (5.4) for approximate
eigenpairs of P ( · ) = λ2AT + λQ+A in (1.3).
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quite many largest |λi| for the case k = 705, the denominators in (4.7a) overflow to∞ to give
ε = 0. These ε do not show up. But they would continue the trend in the plot if overflows
hadn’t happened.
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were taken advantage of but not to their fullest, namely, the block-Toeplitz property
and that the nontrivial block of A is the same as the subdiagonal block of Q went
unused. In this article, we take advantage of all that we know. In fact, our main
theoretical results in Theorem 3.1 that relate the eigen-information of P (λ) to that of

P̂ (λ) = λ2HT
1 + λH0 +H1 are the direct consequences of these additional structural

properties previously unused. Based on the results, we propose a new fast algorithm
sda lwkll to find all interesting eigenpairs of P (λ) through solving the PQEP for

P̂ (λ). In terms of flops, sda lwkll is at least 5 times faster than sda gl [8] and 3
times faster than sda lyl [17]. Nonetheless, sda gl and sda lyl have much wider
applicability than sda lwkll in that the first two methods do not require that Q be
tridiagonal block-Toeplitz as in (1.3) but just block-tridiagonal.

We also explored the α-structured backward error analysis that precisely honors
all possible subblock structures in A and Q displayed in (1.3b). It is so named in
order to distinguish the previous structured backward error analysis in [16] for general
palindromic polynomial eigenvalue problems.

Acknowledgment. The authors wish to thank two anonymous referees for their
constructive suggestions and comments that considerably improve the presentation
of the article. We are especially indebted to one of the referees for reminding us the
availability of (3.17) at the time of solving (3.16), leading to a more efficient way than
what we previously had in mind.
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