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Wavelength tunable InGaN/GaN 
nano-ring LEDs via nano-sphere 
lithography
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In this research, nano-ring light-emitting diodes (NRLEDs) with different wall width (120 nm, 80 nm and 
40 nm) were fabricated by specialized nano-sphere lithography technology. Through the thinned wall, 
the effective bandgaps of nano-ring LEDs can be precisely tuned by reducing the strain inside the active 
region. Photoluminescence (PL) and time-resolved PL measurements indicated the lattice-mismatch 
induced strain inside the active region was relaxed when the wall width is reduced. Through the 
simulation, we can understand the strain distribution of active region inside NRLEDs. The simulation 
results not only revealed the exact distribution of strain but also predicted the trend of wavelength-
shifted behavior of NRLEDs. Finally, the NRLEDs devices with four-color emission on the same wafer 
were demonstrated.

GaN-based LEDs have been widely used in our daily life, such as light communication, lighting and display. 
However, the efficiency still suffers from the poor internal quantum efficiency (IQE) and low light extraction 
efficiency (LEE). The quantum confined Stark effect (QCSE), which rises from built-in field in the strained 
wurtzite materials and leads to spatial separation of electrons and holes, can seriously deteriorate the IQE of the 
GaN-based multiple quantum well devices1–5. Therefore, eliminating the QCSE becomes an important issue for 
high efficiency applications. Many method, such as GaN growth on the semi-polar or non-polar crystal planes, 
can effectively solve the problem, however, this important can come with a high price tag and much difficult 
growth parameters to be tuned6–9.

Nano-LEDs based on InGaN/GaN multiple quantum wells (MQWs) has been identified as a viable solution 
to unravel long pending issues in solid state lighting such as QCSE, inefficient light extraction and efficiency 
droop10–12. Especially for QCSE, any modification in the internal field and strain can affect its magnitude, and 
thus effective bandgap13,14. The tiny sizes of the nano-LEDs set up a perfect condition for such change and, it 
should be noted that the level of strain can be managed by the size of nano-LEDs due to the relaxation brought 
by tiny volume with lattice mismatch. Consequently, the emission wavelength can be tuned by adjusting the 
surface to volume ratio of nano-LEDs due to the different level of screening of QCSE15,16. Based on this feature, 
multi-color emission on a LED wafer can be realized by fabricating the different sizes of a nano-structure. Most 
of previous studies reported the nano-rod LEDs with strain relaxation and improved light extraction efficiency 
(LEE)17–19. However, controlling the conventional nano-rod LED via nano-sphere lithography is not easy. First, 
we have to overcome the non-uniform distribution of the nano-sphere, especially for the smaller diameter sizes 
(< 200 nm)20. Second, the nanorod could have very different strain distribution because of the localized difference 
between the center and the edge21,22.

In this study, nano-ring LEDs were fabricated by nano-sphere lithography. The improved IQE was achieved by the 
reduced QCSE due to nano-scaled strain relaxation. Importantly, the effective bandgap of nano-ring LEDs can be pre-
cisely tuned through modifying the wall width during the fabrication process. Consequently, the emission wavelength 
tuning capability of nano-ring LEDs through strain engineering can be realized, the color of LEDs can be tuned from 
green to blue (535 nm to 480 nm). This result presents the possibility to obtain the different color LEDs on one LED epi-
taxial wafer, which can be utilized to micro display pixel and multi-channel visible light communication (VLC) system.
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Results
The GaN-based LED was grown on a c-plane sapphire substrate by metal–organic chemical vapor deposition 
(MOCVD). Depositing low-temperature GaN nucleation layer of 30 nm, a 2 μ m-thick u-GaN layer as a buffer 
layer, and followed by 7 periods of In0.28Ga0.72N/GaN (3 nm/10 nm) MQWs sandwiched by a 2 μ m-thick Si-doped 
n-GaN layer and a 120 nm Mg-doped p-GaN layer. After growing the InGaN/GaN MQW LEDs, the nano-ring 
process was applied to achieve the strain management in InGaN/GaN MQW. We applied nano-sphere lithog-
raphy to fabricate the nano-ring structure in InGaN MQW LEDs, which exhibits the advantages of low cost, 
large-area fabrication, controllable wall width and to tune emission wavelength of nano-rings. First, spin coat-
ing polystyrene (PS) nano-spheres whose diameter is approximately 900 nm on the GaN LED epitaxy surface, 
as shown in Fig. 1a. Then, inductively coupled plasma reactive ion etching (ICP-RIE) was utilized to etch the 
GaN-based material, forming a nano-rod array with residual nano-spheres, as shown in Fig. 1(b). Next, the diam-
eter of the nano-spheres can be reduced via oxygen plasma treatment, and through this step, it is possible to 
control the final wall width of the nano-ring. Using the electron beam evaporator system, the nickel (Ni) metal 
was deposited on the nano-rod with the residual nano-spheres, as shown in Fig. 1c. Ultrasonic cleaning machine 
was applied to remove the nano-spheres, as shown in Fig. 1d. The residual Ni can protect a part of nano-rod dur-
ing the second etching process and further form the nano-ring structure, as shown in Fig. 1e. Finally, the Ni was 
removed by HCl solution and the complete nano-ring template was achieved, as shown in Fig. 1f. The GaN LED 
epitaxy wafer without the nano-ring process is Reference LED. After the nano-ring process, three difference wall 
widths NRLED as compared with Reference LED. The Reference LED sample has the same epitaxial structure as 
the NRLEDs, but only go through the standard LED process.

Starting the bare nano-ring wafers (Fig. S1a), in order to avoid the short circuit happened, depositing 200 
nm-thick SiO2 by plasma-enhanced chemical vapor deposition (PECVD) on the nano-ring LED as preservation 
layer to isolate p-and n-GaN layer (Fig. S1b). Then, photoresist was coated to fill the gap between nano-ring 
LEDs and the center of nano-ring LEDs. Its thickness must be over the height of nano-ring (Fig. S1c). Afterward, 
an etch-back treatment was applied to the photoresist layer until the SiO2 at the top of nano-ring structure was 
revealed, using ICP-RIE to etch the top SiO2 of nano-ring until the p-GaN was revealed (Fig. S1d). Following 
above fabrication method, the nano-ring LED template with revealing p-GaN (Fig. S1e) was made. Finally, the 
Indium Tin Oxide (ITO) was deposited (Fig. S1f), the standard LED wafer can be produced and we can follow 
the face-up standard process of LED to make the LED device with Ni/Au (10 nm/50 nm) metal as the electrode.

To investigate the characteristics of nano-rings LED, we fabricated three nano-ring LEDs with fixed the out-
side diameter and height in about 800 nm and 400 nm, as shown in Fig. 2a,b. Our approach is powerful to create 
large nano-rings array on the LED wafer, as shown in Fig. 2c. The wall width we fabricated 120 nm (Fig. 2d), 
80 nm (Fig. 2e) and 40 nm (Fig. 2f). Through high-resolution transmission electron microscopy (HRTEM), to 
confirm our active region is still complete after the nano-ring process, as shown on Fig. S2. The interface of 

Figure 1. Process flow of nano-ring LEDs. (a) Spin coating polystyrene (PS) nano-spheres homogeneously on 
the Reference LED wafers. (b) Generated nano-rods arrays through the ICP-RIE process. The insert presents 
SEM image of nano-rods LED. (c) Reducing the diameter of nano-spheres via oxygen plasma treatment and 
depositing the nickel metal on nano-rods LED with nano-spheres. (d) Nano-rods LED with the nickel metal 
as protected layer. The insert presents SEM image of nano-rods LED with nickel. (e) After the ICP-RIE etching 
process, nano-ring LEDs template were produced. (f) Removing the nickel by acid solution, the nano-ring LEDs 
was produced. The insert presents SEM image of nano-rings LED.
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MQWs is smooth and the quality of epitaxy is very good. In addition, after the nano-ring process, the edge of 
active region is still sharp, and without dislocations and pits.

The active region consisted of InGaN and GaN thin film. Therefore, there is a larger strain inside the active 
region because of the lattice mismatch of InGaN and GaN. Piezoelectric field-induced QCSE can lead to the 
significant blue-shifting of photoluminescence (PL) emission peak on power-dependent measurement due to 
the stronger screening effect under the higher carrier density in the active region23 and reduce the hole and 
electron wave-functions overlap24, which would increase the radiative recombination time. Figure 3 presents the 
PL spectrum of each sample. There is a significant blue-shifting of emission peak with deceasing the wall width 
of nano-ring LEDs from 120 nm to 40 nm under the excitation power of 10 mW, as shown in Fig. 3a. Compared 
to previously nano-rod-typed studies22, the nano-ring structure can maintain highly monochromatic spectrum 

Figure 2. Scanning electron microscope image of nano-ring LEDs. Every single ring, (a) the outside diameter 
and (b) the height of a nano-ring is approximately 800 nm and 400 nm, respectively. (c) In this approach, it was 
able to create a larger nano-ring array. Besides, to compare wavelength-shifting behavior, we altered different 
wall widths of nano-ring which is (d) 120 nm, (e) 80 nm and (f) 40 nm.

Figure 3. Spectral analysis. (a) The PL spectrum with excitation power of 10 mW. (b) PL emission peak 
shifting of nano-ring LED with different wall widths as a function of excitation power. The magnitude of blue-
shifted of Reference LEDs, NRLEDs (120 nm), NRLEDs (80 nm) and NRLEDs (40 nm) is 25.2 nm, 19.8 nm, 
20.5 nm and 9.9 nm, respectively. (c) TRPL measurement and the fitting curves for Reference LEDs and 
NRLEDs.
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since the nano-ring structure has a more uniform strain distribution in the active region (we will discuss below), 
the full width at half maximum (FWHM) of Reference LEDs, 120 nm, 80 nm and 40 nm (NRLEDs) were 37 nm, 
42 nm, 52 nm and 51 nm, respectively. From our previously study25, the increase of carrier in the active region can 
lead to the screening of the built-in field existing in the device. This screen can reduce the QCSE and move the 
emission wavelength towards shorter side26. So the amount of this blue-shift can be an indicator of the original 
magnitude of the built-in field. The internal strain in the device is the direct source of the QCSE and thus we can 
correlate the internal strain with the amount of the blue-shift in our experiment. As shown in Fig. 3b, the amount 
of blue-shift drops as the width drops, and thus the 40 nm device has a much less strain inside the ring compared 
to the 120 nm case. According to coulomb screening effect theory, we can know the QCSE of NRLEDs are exactly 
smaller than Reference LEDs, moreover, the NRLEDs with the wall width of 40 nm has the smallest blue-shifting 
behavior. The internal quantum efficiency (IQE) behavior also be improved as decreased the wall width, as shown 
in Fig. S5 (see Supplementary Note 1).

Additionally, the strain relaxation process would decrease the radiative recombination time due to improving 
hole and electron wave-functions overlap and further increasing radiative recombination rate. Time-resolved PL 
(TRPL) measurements performed at 300 K for ensembles of nano-rings. Figure 3c shows the PL decay time at 
the PL emission peak of each sample. The radiative recombination lifetime of LEDs were 14.28 ns, 9.8 ns, 6.87 ns 
and 5.49 ns for Reference LEDs, NRLEDs (120 nm), NRLEDs (80 nm) and NRLEDs (40 nm) indicated that the 
radiative recombination rates are enhanced by factor of 1.5, 2.1, and 2.6, respectively, the NRLEDs have the faster 
decay time, which mean the NRLEDs have a larger hole and electron wave-functions overlap than Reference 
LEDs27,28. On a planar active region situation, the piezoelectric field-induced strain affect will result in band-titled 
phenomenon in the active region.

From our spectral analysis, the strain released process can suppress the QCSE and cause a significant blue-shift 
of PL emission peak. Therefore, in order to further understand the strain distribution of active region inside 
nano-ring LEDs, we simulated the strain relaxation with the wall width reduction of a nano-ring structure by 
the finite elemental method. To follow the actual etching process, we enlarge the inner circle of a nano-ring step 
by step but fixed the outer diameter, as shown in Fig. 4a. In this simple model, a 3-nm-thick In0.28Ga0.72N was 
sandwiched in between two GaN barriers. The strain tensors ε x at the cross section of x− z plane of nano-ring 
LEDs with wall width of 300 nm (Fig. 4b), 120 nm (Fig. 4c), 80 nm (Fig. 4d) and 40 nm (Fig. 4e) were calculated. 
The strain tensors on both outer and inner peripheral areas show considerable relaxations at the sidewall of a 
nano-ring structure. With decreasing the wall width of a nano-ring, the strain magnitude in the central region 
(Black dash line in Fig. S3a) was reduced from − 2.3% to − 1.7% (Fig. S3b). Therefore, the better strain-relaxation 
characteristic of nano-ring structures can be expected as compared to the nano-rods structure with the same 
diameter (Fig. S3a,b) and the strain magnitude in active region of nano-rod and nano-ring is − 2.4% and − 1.7%, 
respectively (Fig. S4d). In a third case, a nano-scale rod with the same diameter (40 nm) compared to the width 
of the nano-ring was set up for strain calculation. In this case, the relaxation of the strain in the active region is 
similar to the nano-ring case (as shown in Fig. S4c,d). As a short summary on these simulations, we found that 
the rod with the same outer diameter as the nano-ring definitely bear higher strain after the etch process due to 
solid nature of the structure which can preserve the difference between lattice constants of different materials. 
Meanwhile much less materials are left in the nano-ring case, and this can facilitate the strain relaxation just like 
the nano-rod with similar scale of material in radial direction. It can be clearly observed that the strain tensor in 
the whole InGaN quantum well were reduced as the wall width of nano-ring deceases, which is attributed to the 
ratio of strain-relaxed active region to the strained region size becomes larger as the diameter decreases. With 
the reduced strain tensors, the suppression of QCSE can be expected. Corresponding to experimental results, 
the trend of both results are similar, as shown in Fig. 4f. In Fig. 4g, the Raman peaks shift toward a lower value, 
the strain is relieved in active region. Compared to the E2 phonon peak of strain-free GaN (566.5 cm−1), 1.99 and 
0.73 cm−1 of the Raman peak shift correspond to 0.89 and 0.32 GPa of stress for the Reference LED and NRLED 
with 40 nm wall width, respectively. According to Hooke’s law, the stress is positive correlation with strain so the 
strain tendency of experiment is similar to our simulation result, as shown in Table 1 (see Supplementary Note 2).  
From the simulation results, the blue-shifting behavior is not a linear tendency and it has a reverse point which 
appear on roughly 100 nm. The strain relaxation here would slow down. That can explain why the blue-shifting of 
our PL experimental results on 120 nm and 80 nm is almost the same in Fig. 3b.

Figure 5a shows the electroluminescence (EL) spectrum of reference LED and the NRLEDs with the wall 
width of 120 nm, 80 nm and 40 nm. The EL spectrum of nana-ring LEDs would have a significant blue-shift as the 
wall width of the ring reduces. The measured widest shift is 55 nm. The emission wavelength tuning capability 
of nano-ring LEDs through strain engineering can be clearly observed and the color of LEDs can be tuned from 
green to blue (535 nm to 480 nm), as shown in Fig. 5b. This result presents the possibility to obtain the LEDs with 
different emission colors on one LED epitaxial wafer, which can be applied to micro or nano-display pixel and 
multi-channel visible light communication (VLC) system.

Conclusion
In summary, we demonstrated how to fabricate the nano-ring structure with three kinds of wall widths of 120 nm, 
80 nm and 40 nm. According to spectral analysis, we discovered the emission wavelength of nano-ring LEDs have 
a significant shift from green to blue and the magnitude of blue-shifted was increased with decreasing the wall 
width of nano-ring LEDs. Furthermore, via the TRPL measurement, when wall width of a nano-ring is decreased, 
the carrier radiative recombination lifetime time was decreased due to the suppressed QCSE and increasing hole 
and electron wave-functions overlap. Through the simulation of strain distribution, the results showed the strain 
in the active region is relaxed. That means the reducing wall width can powerfully suppress the QCSE and modify 
the emission wavelength of nano-ring LEDs. We believe this nano-ring LED design can provide a feasible solution 
for the future realization of monolithic integration of RGB LEDs in nano-meter scale.
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Methods
Growth GaN-based materials. First, the p-type dopant in this device is Mg and carried into growth cham-
ber by Cp2Mg precursor. As we finished the growth of p-GaN, a 20 minutes of post-growth annealing will be 
carried out the dopant activation. The post growth annealing was kept at 650 °C and only in N2 ambient until the 
dopant was activated. The doping level is [Si] = 1 ×  1019 cm−3 for n-GaN and [Mg] =  1 ×  1019 cm−3 for p-GaN, 
respectively. The Si dopant can be nearly 100% activated but only 3% of Mg can be activated, which means that 
the hole concentration is only 3 ×  1017 cm−3.

ICP-RIE. A planar type ICP-RIE system is SAMCO ICPRIE 101iPH. The ICP and bias power source with RF 
frequency of 13.56 MHz. The ICP system has reactor and load-lock chambers. The reaction gases of Cl2 and Ar 
were introduced into reactor chamber through independent electronic mass flow controllers (MFCs) that can 
precisely control the gas flow rate of each gas with about 1 standard cubic centimeter min (sccm). The etching rate 
is approximately 6000 Å/min and a gas mixture condition of Cl2 and Ar is 50 and 20 sccm, respectively. During 
the etching process, the ICP and bias power were maintained at 200 W with chamber pressure of 0.33 Pa.

Figure 4. Simulating the strain variation of nano-ring active region with decreasing wall width of a ring. 
The strain distribution of active region of (b) Reference LEDs and the nano-ring with (c) 120 nm (d) 80 nm and 
(e) 40 nm wall width. (f) The wavelength-shifting behavior trend of simulated and experimental results. (g) 
Raman spectra of Reference LED and NRLED with different wall widths.

Reference LED NR LED (120 nm) NRLED (80 nm) NRLED (40 nm)

Raman peak (cm−1) 568.49 568.10 567.42 567.23

Stress (Gpa) 0.89 0.71 0.41 0.32

Table 1.  Raman shift and stress of Reference LED and NRLEDs.
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EL measurement. The light of the sample can be collected by a fiber. The power supplies (Keithley 2400) 
can supply different currents to the sample and the spectrometer can analyze the intensity of each wavelength in 
the sphere.

Numerical simulation. The electromechanical equations of nitride-based piezoelectric materials included 
both the direct and the reverse piezoelectric effects. We adopt the finite element method to analyze the electro-
mechanical equations29. Since the optical properties of InGaN/GaN nanostructures depend heavily on the strain 
field and the electric potential in and around MQWs, the single particle state energies of electron and hole were 
calculated by using the four-band k·p Hamiltonian which includes the coupling tween the conduction band and 
three valence bands29.
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