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All-electric spin pumping in quantum channels with a single finger-gate capacitor
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In this paper, we show that a single finger-gate capacitor (FGC) can generate pure spin pumping in a quantum
channel (QC). Two dynamic fields, ac spin-orbit interaction and ac potential energy, both induced by the FGC
onto the QC, are the agents driving the spin pumping. Smooth spatial profiles of the two ac fields are taken into
account both perturbatively and full numerically for the nonadiabatic spin pumping. Our perturbative approach
reveals that the spin-pumping mechanism is resonant sideband processes associated with simultaneous coupling
of the two ac fields with traversing carriers. Full sideband-process treatment is carried out numerically by a
time-dependent scattering matrix method. The same spin-pumping mechanism holds also for the case of a single
finger-gated QC, albeit with smaller pumping amplitudes.
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I. INTRODUCTION

Spintronics aim to generate, manipulate, and detect spin
current for both application and fundamental arenas [1,2].
Spin current injection in metallic heterostructures involving
ferromagnetic components is well established, and more
recent developments include, among others, spin pumping at
a ferromagnetic/paramagnetic interface, where a precessing
magnetization on the ferromagnetic side induces spin currents
on the paramagnetic side [3–5]. Spin current injection at a
ferromagnetic/semiconducting interface, however, remains a
challenge [6,7] subjecting to further advancement in interface
physics and technology. In the presence of Tesla-scale mag-
netic fields, spin current injection in all-semiconductor nanos-
tructures was demonstrated [8–10], where quantum point con-
tacts (QPC) transmit spin-polarized currents in the presence of
the magnetic field. External magnetic field was also invoked for
spin pumping driven by electric dipole spin resonance in all-
semiconductor devices [11,12], when gate-induced oscillating
electric fields in parallel with a static magnetic field are both
in plane [11] or out of plane [12] to the same device region
where spin-orbit interaction (SOI) [13–17] is at work.

At the heart of spintronics, however, is all-electric spin cur-
rent generation in all-semiconductor devices [18–32], where
no ferromagnetic materials and magnetic fields are involved.
Configurations with two spatially separated time-modulated
regions for spin pumping were proposed. These were adiabatic
quantum (charge) pumping [33–36] configurations extended,
for instance, to include SOI to a mesoscopic quantum dot
(QD) acted upon by two dot-confinement-modulating gates
[18], to replace one of the two potential-modulating gates
in a quantum channel (QC) by a SOI-modulating gate [19],
or to replace, also in a QC, the pair of potential-modulating
gates by two SOI-modulating finger-gate capacitors (FGC)
oriented orthogonally to each other [26]. The proposals were
prompted by the recently demonstrated electric modulation
of the Rashba SOI in structure inversion asymmetric quantum
wells [37,38]. Other adiabatic spin-pumping proposals involve
time-modulating SOI quantum dots in both their energy levels
and the coupling between the QD and the leads [27,29].

Aside from pumping, spin-polarized current schemes for
QC of high intrinsic SOI had been studied. It is by imposing
a highly asymmetric lateral QC confinement [25], a potential
barrier located at and along the QC central line [30], or a
transverse lead, as in a mesoscopic spin Hall effect configura-
tion, for spin current extraction when a charge current passes
through the source and drain leads [31]. These spin-polarized
current schemes, however, operate with a finite source-drain
bias. We thus opt to consider spin pumping, which has the
added advantage of zero source-drain bias. Our focus is upon
the simplest gated QC, namely, a single finger-gated QC.

Consensus has not been reached on whether a single
finger-gated QC generates spin pumping. On the one hand,
nonadiabatic spin pumping for one ac gate-induced field case
had been demonstrated [21,23]. The ac field is a SOI field,
which is gate induced and was assumed to have a stepwise
spatial profile. Besides, the QC has uniform and static SOI,
which is Rashba SOI in Ref. [21], and Rashba and Dresselhaus
SOIs in Ref. [23]. The nonadiabatic spin-pumping results have
left concerns about the simplified profile for the ac SOI field
[12], and the possible effects of the ac gate-induced potential
field, which was not considered in [21,23]. On the other hand,
spin pumping was not found in two ac gate-induced fields
case [12]. The ac fields are the gate-induced SOI and potential
fields; both are of smooth spatial profiles. Besides, the QC
has static gate-induced SOI and potential fields (both having
smooth spatial profiles), but no uniform static SOI. Including
only up to ±1 sidebands in their calculations, no spin pumping
was found [12]. Thus, a comprehensive study is needed to fully
explore and to understand the spin-pumping nature in a single
finger-gated QC. Issues including spatial profiles of the ac
fields, the case for two ac fields, and many sideband effects
need to be studied in detail.

On the spatial profile issue, we show that a single finger-
gated QC can generate spin pumping, regardless of the spatial
profiles of the gate-induced ac fields. To obtain a transparent
physical picture, we develop a time-dependent perturbation
theory that has incorporated the smooth induced-field-profile
feature. Expressions for spin-dependent transmissions are
obtained, up to the lowest (second) order in the gate bias.
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FIG. 1. Schematic illustration of the finger-gate-capacitor quan-
tum channel. The quantum channel, depicted by the dashed lines
(channel width d), is formed in the two-dimensional electron gas
(2DEG) layer due to split-gate (dark gray colored cross section traced
by the dashed lines) biases. The single finger-gate capacitor consists
of an aligned gate pair (orange) of longitudinal length L at z = zB and
z = zA. Indicated also are the ac biases of the finger-gate capacitor
for the spin pumping.

Higher-order treatment is found to become important when
states near the subband bottom are involved due to resonant
inelastic processes. We thus perform also a full high-order
numerical calculation by extending a time-dependent scatter-
ing matrix method [39] to the present problem. The QCs that
we consider have gate-induced ac SOI and potential energy
fields but no static SOI fields. Nonzero difference in the
spin-dependent transmissions leads to spin pumping.

The perturbation expression that we obtain for the trans-
mission difference has the induced-field profiles entered in the
form of spatial integrals. This in turn shows that variations
in the spatial profiles should only have quantitative rather
than qualitative effects on the spin-pumping characteristics.
We note that, in this work, a single finger-gate-capacitor
configuration is considered instead of a single finger-gate con-
figuration. The finger-gate-capacitor configuration provides an
additional knob for the tuning of the relative strengths between
the induced SOI and the potential energy fields. It is by way
of symmetric or asymmetric sandwiching of the QC by the
finger-gate capacitor, as is shown in Fig. 1.

Our perturbation results also exhibit clearly the mechanisms
for the spin pumping. In the absence of a static and uniform
SOI, the spin pumping is resulted from simultaneous coupling

of the ac gate-induced SOI and potential energy fields to
the traversing electrons. In the presence of a static and
uniform SOI, additional spin-pumping mechanism arises from
simultaneous coupling of the ac gate-induced SOI and the
static SOI with the electrons.

We have shown that these spin-pumping mechanisms and
the resonant inelastic nature in a QC together contribute
appreciably to spin pumping. The inelastic processes are
sideband processes where the traversing electrons have their
energy μ changes to μ ± nh̄�, where � is the frequency of the
ac gate bias, n is an integral sideband index, and μ is measured
from the subband bottom. The sideband processes become
resonant when states around the subband bottom are involved,
and the resonant condition is μ = nh̄� [21,23,39–41]. It is
due to the singular density of states at a QC subband bottom.
The resonance typically features a dip structure in the energy
dependence of the transmission [21,23,39–41] which, in a way,
exhibits the temporal trapping characteristics of the electron
by the time-modulated agent [40].

This paper is organized as follows. In Sec. II, we present our
time-dependent perturbation method. This serves to illustrate
the physical mechanisms of the spin pumping. Time-dependent
scattering matrix method is presented in Sec. III. This is for the
treatment of general pumping parameters. Numerical results
and discussions are presented in Sec. IV, and, finally, presented
in Sec. V is our conclusion.

II. PERTURBATION METHOD

This section presents our time-dependent perturbation
method that has incorporated the smooth induced-field-profile
feature of the ac fields. We have included, for the sake of
completeness, a static and uniform Rashba SOI in the QC.
The perturbation will treat the static Rashba SOI, the ac
SOI, and the ac potential energy fields all on the same
footing. The perturbation scheme here provides a framework
to treat systematically terms that involve both spatial and time
dependencies simultaneously, to extract from the framework
useful quantities such as scattering coefficients, and to see
explicitly the effects of the density of states from the
derived expressions. In particular, the need for higher-order
perturbation, as is prompted by the density of states relevant
to sideband processes, becomes transparent in our expressions
in, for instance, Eq. (24). For simplicity, we consider QC with
sufficiently narrow widths such that only the lowest subband
is needed for our considerations [12,21–23,26]. The purpose
of this section is to show that spin-dependent transmission
difference [Eq. (24)] is nonzero for any given incident energy.
This finding leads to nonzero net spin pumping, where all
incident states with energies below the Fermi energy contribute
[Eq. (40)], and is shown numerically in Sec. IV.

The Hamiltonian of the QC is given by

H = H0 + H 0
SO + U (x,t) + HSO(t), (1)

where H0 = p2/(2m) + Uc(y) with Uc(y) the confinement
potential; H 0

SO = α0 (ẑ × σ ) · p is the static uniform Rashba
SOI [16,17]; and σ is the vector of Pauli matrices (σx,σy,σz)
for the electron spin. Both electric field E(x,t) and potential
energy U (x,t) are induced from the same ac-biased gate
structures (see Fig. 1). The ac SOI term HSO(t) = λ

2 {(σ × p) ·
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E(x,t) + [E(x,t) × σ ] · p} [13]. The SOI coupling constants
are α0 and λ. By focusing on one-dimensional QCs where only
the lowest subband is involved, SOI terms in H that contain py ,
the transverse momentum, can be neglected. Subsequently, the
only spin component that appears in H is σy . We then choose
the wave function |�η(x,t)〉χη to be spin eigenstates where
σyχη = η χη and η = ±. The Schrödinger equation becomes

Hη|�η(x,t)〉 = ih̄
∂

∂t
|�η(x,t)〉, (2)

where

Hη =
(

ε0 − 1

2
mα2

0

)
+ H 0

η + λη

2
{Ez(x,t),px} + U (x,t)

(3)
and

H 0
η = 1

2m
[px + mηα0]2. (4)

Here, ε0 is the lowest subband energy, η = −η, and the third
term in Eq. (3) is an anticommutator. It is convenient that we
absorb the constant energy term in Eq. (3) by considering H ′

η

instead in the following, where

H ′
η = Hη − (

ε0 − 1
2mα2

0

)
. (5)

The finger-gate capacitor and the bias, as shown in Fig. 1,
generates electric potential V (x,z,t) [12,42], given by

V (x,z,t) = V1 cos(�t)[ξ (x,z − zA) − ξ (x,z − zB)], (6)

where

ξ (x,z) = 1

π

[
tan−1

(
L/2 + x

|z|
)

+ tan−1

(
L/2 − x

|z|
)]

. (7)

The potential in the vicinity of the QC is uniform in y as
long as the length of the finger gate along ŷ is much greater
than zA, |zB |, and d. This potential form, given by Eq. (7),
is valid in the quasielectrostatic regime, when the relevant
wavelength of the ac field, given by  = 2πc/�, is much
larger than all length scales in the system. For f = �/(2π ) =
1 THz, the  = 300 μm justifies the choice of the potential
form. Here, c is the speed of light. We point out also that
ξ (x,z) = (φL + φR)/π where φL (φR) is the azimuthal angle
between the (x,z) point and the line (parallel to ẑ) passing
through the left (right) edge of the gate. The sign convention
is that φL = φR = π/2 at the origin of the x-z plane, and the
satisfaction of ξ (x,z) to the Laplace equation is self-evident.

The induced electric field acting upon the QC, located at
z = 0, is

Ez(x,t) = V1 cos(�t) [ξ ′(x,zA) − ξ ′(x,zB )], (8)

where ξ ′(x,z) ≡ ∂ξ/∂z. The induced potential energy acting
on the QC is U (x,t) = −eV (x,0,t) where −e is an electron
charge.

For the following time-dependent perturbation treatment,
it is convenient to cast H ′

η = H 0
η + H

so

η (t) + U (x,t) and to
introduce dimensionless field profile functions f (x) and g(x)
for, respectively, the ac SOI and potential energy terms such
that

H ′
η = H 0

η + α1η

2
cos(�t){f (x),px} + U1cos(�t)g(x), (9)

with

f (x) = h0[ξ ′(x,zA) − ξ ′(x,zB)],
(10)

g(x) = ξ (x,zA) − ξ (x,zB),

where h0 = zA + |zB | is the vertical gate separation of the
finger-gate capacitor, α1 = λV1/h0, and U1 = −eV1. The
form of H ′

η as defined in Eqs. (9) and (5) has the time
dependence shown explicitly while the SOI coupling constants
α1 and α0 are in the same dimension.

Starting from Eq. (9) and going to the interaction picture,
where |�η〉 = e−iH 0

η t/h̄ |ψη〉, we have

ih̄
∂

∂t
|ψη〉 = α1η

2
cos(�t) eζ t {fI(x,t),px} |ψη〉

+U1cos(�t) eζ t gI(x,t) |ψη〉, (11)

where fI(x,t) = eiH 0
η t/h̄f (x,t)e−iH 0

η t/h̄, and gI(x,t) is defined
similarly. Adiabatic factors eζ t are introduced in Eq. (11) to
facilitate our perturbation in the following.

A right-going incident wave |ψ0
η 〉 = |kηR〉 of energy μ

satisfies H 0
η |kηR〉 = μ|kηR〉, where kηR = K − mα0η/h̄, μ =

h̄2K2/(2m), and 〈x|kηR〉 = eikηRx/
√

Lx . Here, Lx is a repre-
sentative system size along x which we will take Lx = 1 in
the following for presentation sake.

The first-order correction, in V1, to the wave function
|ψη〉 = |kηR〉 + |ψ (1)

η 〉 has taken the expansion form∣∣ψ (1)
η

〉 =
∑
k′

′
C

(1)
k′ (t) |k′〉, (12)

where the primed summation has excluded the case k′ = kηR .
Substitution of Eq. (12) into Eq. (11) gives

dC
(1)
k′

dt
= − i

h̄
cos(�t) eζ t eiω

η

K′K t 〈k′|Fη

K ′K (x)|kηR〉. (13)

Here, K ′ = k′ + mα0η/h̄,

ω
η

K ′K = h̄(K ′2 − K2)/(2m), (14)

and

F
η

K ′K (x) = α1ηh̄

2

(
K ′ + K − 2mα0η

h̄

)
f (x) + U1 g(x). (15)

It is noted that α0 appears in Eq. (15) through the wave vectors
kηR and k′, whereas the corresponding wave vectors K and
K ′, respectively, directly associate to their group velocities
and energies, in the conventional way. Integrating Eq. (13)
gives

C
(1)
k′ (t) = −F

η

K ′K

2h̄

[
ei(ωη

K′K+�−iζ )t

ω
η

K ′K + � − iζ
+ ei(ωη

K′K−�−iζ )t

ω
η

K ′K − � − iζ

]
(16)

for k′ �= kηR and F
η

K ′K = 〈K ′|Fη

K ′K (x)|K〉.
We substitute Eq. (16) into Eq. (12) to obtain ψ (1)

η (x,t).
More importantly, our interest is to extract from the integral
form of ψ (1)

η (x,t) the reflection coefficients rηn for n = ±1.
On the left-hand side of the finger-gate capacitor, and far from
the gate-induced fields, we impose the expected form

ψ (1)
η (x,t) =

∑
n=±1

rηn eikn
ηLx, (17)
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where kn
ηL = −Kn − mα0η/h̄ is the wave vector for left-

going state at energy μn = μ + nh̄� = h̄2K2
n/(2m). In short,

ψ (1)
η (x,t) in Eq. (17) is for the reflection waves. The fact that the

reflection waves do not depend on t , even though C
(1)
k′ (t) does,

should not cause any alarm. It is because the appropriate time
dependencies will be recovered in the Schrödinger picture, and
are in accordance to the sideband-process picture.

Conversion of ψ (1)
η (x,t) in Eq. (12) into the form given by

Eq. (17) is facilitated by writing in C
(1)
k′ (t) the factor F

η

K ′K in
its integral form, and keeping x to locate on the left-hand side
of all locations involved in the spatial integral. The reflection
waves expression is given by

ψ (1)
η = −

∑
n=±1

e−i
mα0
h̄

ηx

4πh̄

∫ ∞

−∞
dx ′ eiKx ′

∫ ∞

−∞
dK ′

×F
η

K ′K (x ′)
e−iK ′ |x−x ′ | ei(ωK′K−n�)t

ωK ′K − n� − iζ
, (18)

where superscript η is dropped from ωK ′K when K ′ becomes
the integration variable, and the relevant range of x ′ is
determined by the field’s range even though the integration
is over the formal full range of x ′.

Performing the K ′ integral gives

ψ (1)
η = −

∑
n=±1

mi

2h̄2 e−i
mα0
h̄

ηx

∫ ∞

−∞
dx ′ eiKx ′

× eiKn|x−x ′ |

Kn

F
η

−Kn,K
(x ′), (19)

where K±1 =
√

K2 ± 2m�/h̄. For the case when K− becomes
imaginary, the convention K− = i

√
2m�/h̄ − K2 is used. It is

straightforward to see that Eq. (19) is of the form in Eq. (17).
The reflection coefficients are then obtained to give

rηn = − mi

2h̄2Kn

∫ ∞

−∞
dx ′ Fη

−Kn,K
(x ′) ei(K+Kn)x ′

. (20)

Substituting Eq. (15) into Eq. (20) gives

rηn = imη

4h̄

[
α1

(
1 − K

Kn

+ 2mα0

h̄Kn

η

)
FnK − 2U1η

h̄Kn

GnK

]
,

(21)

where

FnK =
∫ ∞

−∞
dx ′ f (x ′) ei(K+Kn)x ′

,

(22)

GnK =
∫ ∞

−∞
dx ′ g(x ′) ei(K+Kn)x ′

are the integrals involving the spatial profiles of, respectively,
the ac SOI and potential energy fields. Terms inside the
square brackets of Eq. (21) that contain the η factor contribute
to genuine spin-dependent transmissions. In addition, terms
inside the parentheses contain the breaking of spin symmetry
by α0 during reflection in the sideband processes. This is due
to the anticommutator in Eq. (9), which will be proportional
to the sum of the incident wave vector (K − mα0η/h̄) and
the reflection wave vector (−Kn − mα0η/h̄) in a n-sideband
process. The magnitude of the wave-vector sum, given by

(K − Kn) − 2mα0η/h̄, becomes spin dependent as long as
n �= 0. Moreover, that the resonant sideband nature weighs
more on n = −1 process guarantees its breaking of the spin
symmetry by a nonzero α0.

The total dc spin-dependent transmission T
η

RL, from the
left to right electrodes, is given by T

η

RL = ∑
n
′
T

η

RL(n). Here,

T
η

RL(n) = |tηn|2
√

μn

μ
, the primed summation sums over n

where μn � 0, and the factor
√

μn/μ is the group velocity
ratio [40,43]. The calculation of T

η

RL is more easily done than
its direct calculation, through using the current conservation
relation

T
η

RL + R
η

RL = 1, (23)

where R
η

RL = ∑
n
′ |rηn|2

√
μn

μ
.

Furthermore, our interest is on the difference in the total
spin-dependent transmission T

↑
RL − T

↓
RL. For presentation

sake, we have replaced η = 1 (−1) by η = ↑ (↓). Substituting
the first-order rηn expressions (21) into Eq. (23), we obtain,
after some algebra, the lowest- (second-) order results for
the dc spin-dependent transmission difference, as is presented
below:

�T s
RL = T

↑
RL − T

↓
RL

=
∑
n=±1

′ 1

2

(m

h̄

)2 mα1

h̄K

(
1 − K

Kn

)

×
[
α0α1|FnK |2 − U1

m
Re(F∗

nKGnK )

]
. (24)

Equation (24) is our key result. First of all, it shows that
�T s

RL is nonzero. It remains nonzero even when α0 = 0. The
K−1 factor in mα1/(h̄K) comes from the incident density
of states, and in (1 − K/Kn) the factor K−1

n is reckoned to
represent the corresponding density of states for the n = ±1
sidebands.

In a spin-pumping situation, when incident states come
from both electrodes, the total charge current, which is related
to (T ↑

RL + T
↓
RL) − (T ↑

LR + T
↓
LR), is zero. This is because of the

time-reversal-symmetry result, given by

T ±
RL = T ∓

LR. (25)

On the other hand, the total spin current, which is related to
(T ↑

RL − T
↓
RL) − (T ↑

LR − T
↓
LR), becomes related to 2�T s

RL.
Two mechanisms that contribute to �T s

RL are shown in
Eq. (24). The term that involves α1 and U1 corresponds to
the simultaneous coupling of the ac SOI and potential energy
fields with the electrons. The term that involves α1 and α0

corresponds to the simultaneous coupling of the static SOI
and ac SOI fields with the electrons.

Resonant nature of the mechanisms is shown also in
Eq. (24). It is through the factor K−1

n , or the corresponding
sideband density of states, for n = −1. When K−1 → 0+ (or
μ − h̄� → 0+), the n = −1 sideband process will hit the
subband bottom. Contribution from this sideband process is
large due to the singular density of states. In the vicinity of this
resonant sideband regime, high-order processes are important
and a full sideband numerical treatment is provided by our
time-dependent scattering matrix method (Sec. II). It is worth
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pointing out that our numerical results are found (not shown)
to match those given by Eq. (24) in small-U1 cases.

The induced-field profiles entering Eq. (24) through FnK

and GnK , in Eq. (22), show that our nonzero �T s
RL finding

should hold regardless of the profiles. The induced-field
profiles could only affect our finding quantitatively and not
qualitatively. We drive this finding home by showing, in the
following, that Eq. (24) has covered the perturbation results
in [21] as a special case. Setting U1 = 0 while keeping
nonzero α1, which can be achieved for a symmetric finger-gate
capacitor (zA = |zB |), and choosing f (x) = �(L/2 − |x|) and
α0 finite, we get from Eq. (20)

ra
ηn = α1mnηi

2h̄Kn

sin

[
(K + Kn)

L

2

][
n + h̄kηR

m�
(K − Kn)

]
.

(26)

Here, n = ±1, �(x) is a step function, and superscript “a”
denotes the case for a steplike profile for the ac SOI. The
expression in Eq. (26) equals that in [21]. The essential spin
dependence in ra

ηn enters through kηR in Eq. (26).

III. SCATTERING MATRIX METHOD

The time-dependent scattering matrix method is to dis-
cretize the induced-field region into small slices of ac

potentials, each has a width � along x. The reflection and
transmission coefficients of each such slice is then calculated.
The scattering properties of neighboring pieces will be
convoluted to obtain the scattering matrix of a finite width
of such an ac potential. This convolution procedure will stop
when the entire range of the induced fields is covered. The
scattering matrix method aims to provide a decent numerical
scheme for the handling of the evanescent waves. The present
method has included the SOI to an earlier work, in Ref. [39],
of one of the author.

The Hamiltonian describing an ac potential slice, located
within |x − xj | � �/2, is taken from Eq. (9) except that a
slicelike envelope �(�/2 − |x − xj |) is imposed upon the
field profile functions f (x) and g(x), to give

H ′
ηj = H 0

η + U1cos(�t)g(x) �(�/2 − |x − xj |)

+ α1η

2
cos(�t){f (x) �(�/2 − |x − xj |),px}. (27)

We further approximate g(x) by g(xj ) and f (x) by f (xj ) after
the evaluation of the anticommutator. Consider a right-going
state |kni

ηR〉 incident upon the slice potential (H ′
ηj − H 0

η ) in
Eq. (27), the total scattering state, represented by reflection
coefficients rηj (n,ni) and transmission coefficients tηj (n,ni),
are given by the form

ψηj (x,t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
n

[
eik

ni
ηRxδnni + rηj (n,ni)e

ikn
ηLx

]
e−iμnt/h̄ for x < xj−,

e− i sin(�t)
h̄�

[( α1η

2 )[2f (xj )px+ h̄
i
f ′(xj )]+U1 g(xj )] ∑

n′

[
Aηj (n′,ni)e

ikn′
ηRx + Bηj (n′,ni)e

ikn′
ηLx

]
e−iμn′ t/h̄ for |x − xj | < �

2 ,∑
n

[
tηj (n,ni)e

ikn
ηRx

]
e−iμnt/h̄ for x > xj+,

(28)

where xj± = xj ± �. The wave-function form in the |x −
xj | < �

2 region of Eq. (28) can be shown, by direct substitu-
tion, to satisfy the time-dependent Schrödinger equation for
the Hamiltonian in Eq. (27). The slicelike envelope in the
anticommutator contributes to the wave-function matching
conditions, given by

∂ψηj

∂x

∣∣∣∣
xj±+0

+

xj±−0+
± mα1η

ih̄
cos(�t) f (x) ψηj

∣∣∣∣
xj±

= 0. (29)

By invoking the relation eiz sin(�t) = ∑
n Jn(−z)e−in�t , we

separate different time dependencies to obtain, after some
algebra, the equations for coefficients Aηj (n,ni) and Bηj (n,ni)
inside the potential slice. Here, Jn(z) is Bessel function
of the first kind. The equations for the coefficients are
given by

[
M11 M12

M21 M22

][
Aηj (ni)
Bηj (ni)

]
=

[
Cηj (ni)

0

]
. (30)

Here, Aηj (ni), Bηj (ni), and Cηj (ni) are column vectors
of (2NSB + 1) × 1 dimensions, and 2NSB + 1 is the number
of sidebands used. Typically, in this work, we have NSB ∼
30. At x = xj−, the matrices and their matrix elements

are

(M11)nn′ = (−1)n−n′
Jn−n′

(
Zn′

jR

)
eikn′

ηRxj−

×
[
kn
ηL − kn′

ηR − mα1η(n − n′)
h̄ Zn′

jR

f (xj−)

]
,

(
M12

)
nn′ = (−1)n−n′

Jn−n′
(
Zn′

jL

)
eikn′

ηLxj−

×
[
kn
ηL − kn′

ηL − mα1η(n − n′)
h̄ Zn′

jL

f (xj−)

]
. (31)

At x = xxj+ , the matrix elements are

(M21)nn′ = (−1)n−n′
Jn−n′

(
Zn′

jR

)
eikn′

ηRxj+

×
[
kn
ηR − kn′

ηR − mα1η(n − n′)
h̄ Zn′

jR

f (xj+)

]
, (32)

(M22)nn′ = (−1)n−n′
Jn−n′ (Zn′

jL) eikn′
ηLxj+

×
[
kn
ηR − kn′

ηL − mα1η(n − n′)
h̄ Zn′

jL

f (xj+)

]
. (33)

The column vector (Cηj )
n

= δnni [k
n
ηL − kn

ηR]eikn
ηRxj− and

Zn
jR = 1

h̄�
[α1ηf (xj )h̄kn

ηR + α1ηh̄

2i
f ′(xj ) − U1g(xj )].

075406-5



L. Y. WANG AND C. S. CHU PHYSICAL REVIEW B 95, 075406 (2017)

Solving Eq. (30) for Aηj (ni) and Bηj (ni), the reflection and transmission coefficients can then be calculated from the following
equations:

rηj (n,ni) =
∑
n′

(−1)n−n′[
Jn−n′

(
Zn′

jR

)
ei(kn′

ηR−kn
ηmL)xj− Aηj (n′,ni) + Jn−n′

(
Zn′

jL

)
ei(kn′

ηL−kn
ηL)xj− Bηj (n′,ni)

] − δnni e
i(kn

ηR−kn
ηL)xj− (34)

and

tηj (n,ni) =
∑
n′

(−1)n−n′[
Jn−n′

(
Zn′

jR

)
ei(kn′

ηR−kn
ηR)xj+ Aηj (n′,ni) + Jn−n′

(
Zn′

jL

)
ei(kn′

ηL−kn
ηR )xj+ Bηj (n′,ni)

]
.

We consider also left-going incident state |kni
ηL〉 and obtain

the reflection r̃ηj (n,ni) and transmission t̃ηj (n,ni) coefficients
with the same procedure above. All these coefficients are used
in our transmission calculation through the entire ac induced
fields with smooth spatial profiles.

In the total transmission calculation, the total waves
between the j th and (j + 1)th potential slices are denoted by
coefficients aηj (n) and bηj (n) for, respectively, right- and left-
going waves in the nth sideband. The scattering matrix Sη(j −
1,j ), of dimensions (4NSB + 2) × (4NSB + 2), connecting the
waves on the two sides of the j th potential slice is given by

Sη(j − 1,j ) =
[

tηj r̃ηj

rηj t̃ηj

]
, (35)

where [
aηj

bη,j−1

]
= Sη(j − 1,j )

[
aη,j−1

bηj

]
. (36)

For the convolution of the scattering matrices to obtain
Sη(0,N ), when N is the total number of potential slices, we
need to use an inverse transfer matrix Iη(j ), given by

Iη(j ) =
[

t−1
ηj −t−1

ηj r̃ηj

rηj t−1
ηj t̃ηj − rηj t−1

ηj r̃ηj

]
, (37)

where [
aη,j−1

bη,j−1

]
= Iη(j )

[
aηj

bηj

]
. (38)

Finally, the scattering matrix Sη(0,j ) can be expressed in terms
of Iη(j ) and Sη(0,j − 1) [39], given by

Sη(0,j )11 = [Iη(j )11 − Sη(0,j − 1)12 Iη(j )21]−1

× Sη(0,j − 1)11,

Sη(0,j )12 = [Iη(j )11 − Sη(0,j − 1)12 Iη(j )21]−1

× [Sη(0,j − 1)12 Iη(j )22 − Iη(j )12],

Sη(0,j )21 = Sη(0,j − 1)21

+ Sη(0,j − 1)22Iη(j )21Sη(0,j )11,

Sη(0,j )22 = Sη(0,j − 1)22Iη(j )22

+ Sη(0,j − 1)22Iη(j )21Sη(0,j )12. (39)

Iterating Eq. (39) leads us eventually to Sη(0,N ).
Now, for the case of right-going state |kηR〉 incident upon the

smooth-profiled ac induced fields bηN = 0 and aη0(n) = δn0.
Then, the transmission and reflection coefficients are given,
respectively, by tη = Sη(0,N )11 aη0 and rη = Sη(0,N )21 aη0.
On the same token, we have t̃η = Sη(0,N )12 bηN and r̃η =

Sη(0,N )22 bηN for the left-going incident case. Here, bηN (n) =
δn0 and aη0 = 0.

The net spin current I s
RL, in units of h̄/2, due to right-going

incident carriers is given by

I s
RL =

∑
η

η

h

∫ μ

0
T

η

RL(E) dE, (40)

and the net pumped spin current

I s
p = I s

RL − I s
LR = 2I s

RL. (41)

Subsequently, the net pumped spin per cycle N s
p = 2π

�
I s

p .

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results for the spin-
pumping characteristics in a quantum channel due to a single
finger-gate capacitor (FGC). Modulated by ac biases, the FGC
induces both ac potential and SOI in the quantum channel,
which has no static SOI (α0 = 0). The general spin-pumping
characteristics of our interest are exhibited in their dependence
on both μ and �.

Material parameters for the numerical calculations are the
same as for InSb, with effective mass m = 0.0139 me and SOI
coupling constant h̄λ = 5.23 e · nm2 [13]. Here, me and e are,
respectively, the electron mass and charge (magnitude). We
define physical quantity units out of typical electron density
ne = 1012 cm−2, with wave vector unit k∗ = √

2πne = 2.5 ×
108 m−1, length unit l∗ = 1/k∗ = 4 nm, and frequency unit
f ∗ = E∗/h = 41 THz, where E∗ = h̄2k∗2/(2m) = 171 meV.

For the numerical examples below, the FGC parameters are
chosen to be L = 12 l∗, zA = 6 l∗, and zB = −3 l∗. The ac bias
parameters, in Eq. (6), are chosen to be V1 = 0.15 V for the
bias amplitude, and � ranges between 0.01�∗ ∼ 0.03 �∗ for
the bias angular frequency. Here, �∗ = 2πf ∗.

Presented in Fig. 2 is �T s
RL and its μ and � characteristics.

The most important result is that the �T s
RL are quite significant

in their values. For instance, peak values �T s
RL ≈ 0.12, near

μ = 0.0065 for � = 0.013, and �T s
RL ≈ −0.08, near μ =

0.055 for � = 0.02. Equally important is that for the patches
of positive, or negative, �T s

RL in the μ-� plane, the positive
�T s

RL patches appear to dominate over their counterparts in
both their �T s

RL magnitudes and their areal sizes. This is
crucial for the net spin pumping, as will be presented in
Fig. 3. The patches of positive, or negative, �T s

RL also exhibit
two other features. First, smaller-sized (larger-sized) patches
occur in the smaller (larger) � region. On the one hand, the
resonant sideband processes introduce a natural energy scale
h̄�, which tends to bring forth smaller μ structures in the
smaller � region. We indicate, as a guide, the sideband-process
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µ (h̄Ω ∗)

Ω
(Ω

∗ )
T ↑

RL− T ↓
RL

µ
/

h̄
Ω

=
1

µ/
h̄Ω

=
2

µ/
h̄Ω

=
3

µ/ h̄Ω
= 4

0.01 0.02 0.03 0.04 0.05 0.06
0.01

0.015

0.02

0.025

0.03

−0.08

−0.04

0

0.04

0.08

0.12

FIG. 2. Colored contours for T
↑
RL − T

↓
RL as a function of incident

energy μ and pumping frequency �. The finger-gate parameters are
L = 12l∗, zA = 6l∗, zB = −3l∗, with l∗ = 4 nm, and pumping bias
amplitude V1 = 0.15 V. Indicated by dashed lines are cases for μ =
nh̄�. Frequencies depicted by black arrows are selected for further
analysis in Figs. 4– 6.

conditions μ = nh̄� by black dashed lines. On the other hand,
as is shown in Figs. 4 and 5, smaller (larger) � has a larger
(smaller) sideband effect which, in turn, causes modifications
to the patch structures. Second, �T s

RL shows nonmonotonic
variations in either increasing μ, for a given �, or increasing
�, for a given μ. We will look into the nonmonotonic variation
along μ in Fig. 5 for three � values depicted by black arrows
in Fig. 2. The nonmonotonic variation along the vicinity of
μ = � will be shown in Fig. 6.

The net spin pumped per cycle N s
p and its characteristics

in the μ-� plane are presented in Fig. 3. This is a direct
integration of Fig. 2, over energy and up to μ, for a given �, as
is given by Eqs. (40) and (41). That N s

p > 0 in the entire μ-�
plane, shown in Fig. 3, reflects the dominance of the positive
�T s

RL patches over its counterparts in Fig. 2. The optimal N s
p

does not necessarily occur at where �T s
RL is peaked, such as at

µ (h̄Ω ∗)

Ω
(Ω

∗ )

Np
 s

0 0.01 0.02 0.03 0.04 0.05 0.06
0.01

0.015

0.02

0.025

0.03

0

0.1

0.2

0.3

0.4

FIG. 3. Colored contours for net spin N s
p pumped per cycle as a

function of μ and �. Positive N s
p corresponds to N s

p net spin-up (along
ŷ) electrons being pumped from left to right electrodes. Pumping bias
amplitude V1 = 0.15 V. Finger-gate parameters are the same as in
Fig. 2.

FIG. 4. μ characteristics of T
η

RL, the right-going spin-dependent
transmission, for some ac potential field strength γU1. Pumping
frequencies fixed at (a) � = 0.011 �∗, (b) � = 0.013 �∗, and (c)
� = 0.025 �∗ are indicated in Fig. 2 by arrows. The finger-gate and
pumping parameters are as in Fig. 2 except that the ac potential field
strength has γ = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. Vertical dashed lines
indicate μ = nh̄�.

� = 0.013. Rather, whether �T s
RL could manage to maintain

the same sign over a large-μ region is another important factor.
It turns out that the optimal spin pumping occurs at � = 0.011,
or f = 0.45 THz, for μ = 0.06. The optimal pumped spin
per cycle is N s

p = 0.45. This would be equivalent to an electric
current of N s

pef = 32 nA, had each pumped spin been given
a charge e. The spin-pumping effect is thus significant.

Resonant sideband origin for the spin pumping shown in
Fig. 2 is identified through our analysis in Figs. 4 and 5. The
μ characteristics of T

η

RL and �T s
RL are presented for various

values of the ac potential field strength γU1 in, respectively,
Figs. 4 and 5. For analysis purposes, the parameter γ is
introduced artificially to help tune only the coupling strength
of the ac potential U1 while keeping that of the ac SOI α1

constant. Cases for γ = 1 correspond to those shown in Fig. 2.
Presented in Fig. 4 (Fig. 5) is T

η

RL (�T s
RL) in incremental

order of γ between [0, 1]. For the clarity of presentation, a
relative upward shift of 0.3 between curves of consecutive γ is
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FIG. 5. μ characteristics of �T s
RL = T

↑
RL − T

↓
RL for some ac

potential field strength γU1. Pumping frequencies are fixed at
(a) � = 0.011 �∗, (b) � = 0.013 �∗, and (c) � = 0.025 �∗

(indicated in Fig. 2). The finger-gate and pumping parameters
are as in Fig. 2 except that the ac potential field strength has
γ = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. Vertical dashed lines indicate
μ = nh̄�.

adopted in Fig. 5. Selected pumping frequencies �, indicated
in Fig. 2 and presented in Figs. 4 and 5, are of values (a) 0.011,
(b) 0.013, and (c) 0.025.

Typical resonant sideband features, the dip structures in T
η

RL

at μ = h̄�, are shown in Fig. 4 for γ = 0 and γ = 0.2 cases.
It is associated with the temporal trapping, or the forming of
a quasibound state just beneath the subband bottom, of the
electron in the vicinity of the ac field [40]. The dip structures
are small for the γ = 0 case, showing weak time-modulation
effects of the ac SOI, and T

↑
RL = T

↓
RL shows that there is no

spin pumping, as is expected according to Eq. (24) when
α0 = 0. Deeper and broader dip structures for the γ = 0.2
case show an increase in the time-modulation effects. Of
the three frequencies (for γ = 0.2) shown, the dip structures
in Fig. 4(c) (� = 0.025�∗) bear the resonant characteristics
closest to typical low sideband processes [21], namely, with
the dip occurring at μ = h̄� while T

η

RL recovers to high values,
less than but close to unity, on both sides of the μ = h̄�

FIG. 6. μ characteristics of T
↑
RL − T

↓
RL along h̄� = μ+ for fixed

ac potential field strength γU1. The finger-gate and pumping
parameters are as in Fig. 2 except that the ac potential field strength
has γ = 0, 0.2, 0.4, 0.6, 0.8, and 1 denoted by, respectively, the brown
(thin solid), red (dotted-dashed), orange (dashed), green (dotted), gray
(medium solid), and black (thick solid) curves. μ+ = μ + 10−6.

position. As � decreases, from � = 0.013�∗ in Fig. 4(b)
to � = 0.011�∗ in Fig. 4(a), the progressively lowering in
T

η

RL in the μ < h̄� region shows that more sideband processes
are involved in the establishment of the resonance. This more
sideband-processes interpretation is further confirmed by the
fact that the dip structures are more leftward shifted in Fig. 4(a)
than in 4(b) away from the μ = h̄� position for γ = 0.2.
This is corroborated with the lowering of the quasibound
state by the increasing in the time-modulation field strengths
[40]. That lower frequency tends to bring forth more sideband
processes is also consistent with the �−1 dependence in the
dimensionless strengths Zn

jR and Zn
jL in Eq. (31). For higher

γ values in Fig. 4, even more sideband processes come into
play, the resonant sideband features thus evolve from simple
dip structures to diplike or peaklike or kinklike structures at
μ = nh̄�. In our numerical calculation, we have included up
to 2NSB + 1 sidebands, for NSB = 30.

The �T s
RL curves obtained from Fig. 4 are presented in

Fig. 5. Two key features are observed. The energy structures
in �T s

RL are essentially given by h̄�, which is a manifestation
of the resonant sideband features, the μ = nh̄� structures we
obtained in Fig. 4. As γ increases toward unity, the negative
�T s

RL regions are either being suppressed to much smaller
magnitudes, such as the trend shown in Fig. 5(a), or being
pushed towards larger μ, such as the trend shown in Figs. 5(b)
or 5(c). Both trends are important for spin pumping. Thus, we
have established that resonant sideband processes contribute
significantly to the spin pumping. On the other hand, one
should be cautioned that too large an ac potential field might
not be a favorable choice for spin pumping. Towards this end,
we consider the case of a single-finger gate, when the zB gate of
the single-gate capacitor is removed. The ac potential field in
the QC is increased while the ac SOI is decreased. Indeed,
our calculation shows that N s

p, though remaining within a
reasonable range, is much reduced. Specifically, for a pumping
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frequency of � = 0.011�∗ (or f = 0.45 THz.), zA = 7 l∗,
L = 14 l∗, V1 = 0.09 V, and NSB = 36, we obtain N s

p = 0.02.
Finally, we present in Fig. 6 the characteristics of �T s

RL

along the μ = � line for various ac potential field strength
γU1. To focus on the μ < h̄� regime, we have chosen a
slightly larger h̄� = μ+. Our results show that as γ increases,
or more sidebands are involved, the μ dependence of �T s

RL

evolves from flat-out zero (γ = 0) to monotonic decreasing
(γ = 0.2) to oscillatorylike (or nonmonotonic). Furthermore,
the oscillatorylike characteristics (for γ � 0.4 in Fig. 6) have
the number of �T s

RL undulations increasing with γ . This shows
unequivocally that the nonmonotonic behavior in �T s

RL, along
� in Fig. 2, arises from large sideband processes.

In our calculations, we have included only the lowest
subband for the QC. The subband energy spacing �ε, when
estimated by a hard wall of width d = 5 l∗ (200 Å), gives
�ε = 3(π/5)2 h̄�∗ ≈ 200 meV. On the other hand, the ac SOI
term that we have neglected is λV1[ξ ′(x,zA) − ξ ′(x,zB )]h̄〈ky〉
where 〈ky〉 is taken to be zero for intrasubband processes.
For intersubband processes, we replace 〈ky〉 ≈ π/(5 l∗) and,
using the same pumping parameters in this work, we estimate
the intersubband transition amplitude from the above ac SOI
term (setting x = 0) to be of order 4 meV. This is much
smaller than �ε and thus validates our one-subband treatment.
Here, we have |ξ ′(0,zA) − ξ ′(0,zB)| ≈ 0.138/l∗. We would
also like to comment on the possible effect of Dresselhaus SOI
(DSOI) on our results. The form of DSOI to be considered
is H 0

D = −β〈k2
z 〉σxkx [13], where for 〈k2

z 〉 ≈ [π/(5 l∗)]2 and

β = 761 eV Å
3

gives us H 0
D ≈ −(0.187 eV Å)σxkx . This could

cause the rotation of the spin onto ẑ in the presence of the ac
SOI term in Eq. (9). However, from our other calculations
(not shown) of including α0, or H 0

SO, into our spin pumping,
we find its fractional contribution to be quite small, of
order 5% of our spin-pumping results. As H 0

SO = h̄α0 σykx ≈
(0.523 eV Å)σykx , when an interface normal electric field of
order Ez ≈ 105 V/cm is assumed [37], it is larger than H 0

D
magnitudewise. Thus, we reckon that the contribution from
the H 0

D, though differing in the spin directions, should be at
best only of comparable order of magnitudes as that from H 0

SO.
As a result, the correction from DSOI is expected to be small.

V. CONCLUSION

Through this work, we come to realize that adiabatic spin
pumping cannot be invoked by only one gate. It is obvious if
the gate gives rise to only one ac field to the system. It cannot
be invoked even when the gate gives rise to two ac fields, if
the two fields differ only by a phase of either 0 or π [see
Eq. (9)]. On the other hand, this work has firmly established

that nonadiabatic spin pumping can be invoked by only one
gate. This includes cases of one ac field, when a uniform static
SOI is needed, and two ac fields, when a uniform static SOI is
not needed. The key is the coherent sideband-processes nature
of the nonadiabatic spin pumping.

It is worth putting our finite spin-pumping results in the
perspectives of symmetry in our system. We focus on the two
ac fields case (α0 = 0). The time-reversal symmetry (TRS)
in Eq. (9) is clearly seen when we restore σy in place of
η. Furthermore, the x → −x symmetry in the dimensionless
field profile functions f (x) and g(x) [see Eqs. (10), (6), and
(7)] leads to T

η

RL(n) = T
η

LR(n), and to Eq. (25). A consequence
of Eq. (25) is that dc charge pumping is zero, as is expected for
nonadiabatic pumping when both TRS and spatial symmetry
are conserved [44]. On the other hand, for a given η, the SOI
term (due to α1) in Eq. (9) causes the breaking of the x → −x

symmetry in H ′
η. Since the other time-dependent term, namely,

the U1g(x)cos(�t) term, has the x → −x symmetry, thus we
must have T

η

RL(n) �= T
η

LR(n) [44], or, summing over sidebands,
to give

T
η

RL �= T
η

LR. (42)

The net pumped spin current I s
p , given by

I s
p = 2

h

∫ μ

0
dE[T ↑

RL − T
↑
LR], (43)

is hence nonzero.
In conclusion, we have shown that significant spin pumping

can be achieved in quantum channels with a single finger-
gate capacitor. Resonant sideband processes are the major
contributors to the spin pumping. Simultaneous couplings of
the traversing electrons to both the ac SOI and ac potential
fields provide the mechanisms to the spin pumping. Our
perturbation theory has demonstrated clearly the physical
mechanisms and the nonadiabatic nature for the spin pumping
in this work. Our time-dependent scattering matrix approach
provides an efficient numerical scheme for the calculations.
The same spin-pumping mechanism holds also for a single
finger gate, giving rise to smaller yet discernible spin-pumping
results. These results should be of interest to the all-electric
spin-pumping research, in particular, and to the spintronics
research, in general.
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[44] M. Moskalets and M. Büttiker, Floquet scattering theory of
quantum pumps, Phys. Rev. B 66, 205320 (2002).

075406-10

https://doi.org/10.1103/PhysRevLett.116.096602
https://doi.org/10.1103/PhysRevLett.116.096602
https://doi.org/10.1103/PhysRevLett.116.096602
https://doi.org/10.1103/PhysRevLett.116.096602
https://doi.org/10.1103/PhysRevB.62.R4790
https://doi.org/10.1103/PhysRevB.62.R4790
https://doi.org/10.1103/PhysRevB.62.R4790
https://doi.org/10.1103/PhysRevB.62.R4790
https://doi.org/10.1103/PhysRevB.89.075301
https://doi.org/10.1103/PhysRevB.89.075301
https://doi.org/10.1103/PhysRevB.89.075301
https://doi.org/10.1103/PhysRevB.89.075301
https://doi.org/10.1103/PhysRevLett.89.266602
https://doi.org/10.1103/PhysRevLett.89.266602
https://doi.org/10.1103/PhysRevLett.89.266602
https://doi.org/10.1103/PhysRevLett.89.266602
https://doi.org/10.1103/PhysRevLett.91.258301
https://doi.org/10.1103/PhysRevLett.91.258301
https://doi.org/10.1103/PhysRevLett.91.258301
https://doi.org/10.1103/PhysRevLett.91.258301
https://doi.org/10.1103/PhysRevLett.102.116802
https://doi.org/10.1103/PhysRevLett.102.116802
https://doi.org/10.1103/PhysRevLett.102.116802
https://doi.org/10.1103/PhysRevLett.102.116802
https://doi.org/10.1143/JPSJ.77.034707
https://doi.org/10.1143/JPSJ.77.034707
https://doi.org/10.1143/JPSJ.77.034707
https://doi.org/10.1143/JPSJ.77.034707
https://doi.org/10.1103/PhysRevB.88.115302
https://doi.org/10.1103/PhysRevB.88.115302
https://doi.org/10.1103/PhysRevB.88.115302
https://doi.org/10.1103/PhysRevB.88.115302
https://doi.org/10.1103/PhysRevB.38.1806
https://doi.org/10.1103/PhysRevB.38.1806
https://doi.org/10.1103/PhysRevB.38.1806
https://doi.org/10.1103/PhysRevB.38.1806
https://doi.org/10.1103/PhysRevB.81.075303
https://doi.org/10.1103/PhysRevB.81.075303
https://doi.org/10.1103/PhysRevB.81.075303
https://doi.org/10.1103/PhysRevB.81.075303
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1103/PhysRevLett.91.166801
https://doi.org/10.1103/PhysRevLett.91.166801
https://doi.org/10.1103/PhysRevLett.91.166801
https://doi.org/10.1103/PhysRevLett.91.166801
https://doi.org/10.1103/PhysRevB.68.155324
https://doi.org/10.1103/PhysRevB.68.155324
https://doi.org/10.1103/PhysRevB.68.155324
https://doi.org/10.1103/PhysRevB.68.155324
https://doi.org/10.1103/PhysRevB.68.233307
https://doi.org/10.1103/PhysRevB.68.233307
https://doi.org/10.1103/PhysRevB.68.233307
https://doi.org/10.1103/PhysRevB.68.233307
https://doi.org/10.1103/PhysRevB.73.085304
https://doi.org/10.1103/PhysRevB.73.085304
https://doi.org/10.1103/PhysRevB.73.085304
https://doi.org/10.1103/PhysRevB.73.085304
https://doi.org/10.1103/PhysRevB.75.035312
https://doi.org/10.1103/PhysRevB.75.035312
https://doi.org/10.1103/PhysRevB.75.035312
https://doi.org/10.1103/PhysRevB.75.035312
https://doi.org/10.1103/PhysRevB.78.245312
https://doi.org/10.1103/PhysRevB.78.245312
https://doi.org/10.1103/PhysRevB.78.245312
https://doi.org/10.1103/PhysRevB.78.245312
https://doi.org/10.1140/epjb/e2009-00144-1
https://doi.org/10.1140/epjb/e2009-00144-1
https://doi.org/10.1140/epjb/e2009-00144-1
https://doi.org/10.1140/epjb/e2009-00144-1
https://doi.org/10.1038/nnano.2009.240
https://doi.org/10.1038/nnano.2009.240
https://doi.org/10.1038/nnano.2009.240
https://doi.org/10.1038/nnano.2009.240
https://doi.org/10.1103/PhysRevLett.104.196601
https://doi.org/10.1103/PhysRevLett.104.196601
https://doi.org/10.1103/PhysRevLett.104.196601
https://doi.org/10.1103/PhysRevLett.104.196601
https://doi.org/10.1103/PhysRevB.82.041309
https://doi.org/10.1103/PhysRevB.82.041309
https://doi.org/10.1103/PhysRevB.82.041309
https://doi.org/10.1103/PhysRevB.82.041309
https://doi.org/10.1103/PhysRevB.82.161303
https://doi.org/10.1103/PhysRevB.82.161303
https://doi.org/10.1103/PhysRevB.82.161303
https://doi.org/10.1103/PhysRevB.82.161303
https://doi.org/10.1103/PhysRevB.87.075305
https://doi.org/10.1103/PhysRevB.87.075305
https://doi.org/10.1103/PhysRevB.87.075305
https://doi.org/10.1103/PhysRevB.87.075305
https://doi.org/10.1103/PhysRevB.89.035436
https://doi.org/10.1103/PhysRevB.89.035436
https://doi.org/10.1103/PhysRevB.89.035436
https://doi.org/10.1103/PhysRevB.89.035436
https://doi.org/10.1103/PhysRevLett.114.206601
https://doi.org/10.1103/PhysRevLett.114.206601
https://doi.org/10.1103/PhysRevLett.114.206601
https://doi.org/10.1103/PhysRevLett.114.206601
https://doi.org/10.1103/PhysRevB.93.045309
https://doi.org/10.1103/PhysRevB.93.045309
https://doi.org/10.1103/PhysRevB.93.045309
https://doi.org/10.1103/PhysRevB.93.045309
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1007/BF01307664
https://doi.org/10.1007/BF01307664
https://doi.org/10.1007/BF01307664
https://doi.org/10.1007/BF01307664
https://doi.org/10.1103/PhysRevB.58.R10135
https://doi.org/10.1103/PhysRevB.58.R10135
https://doi.org/10.1103/PhysRevB.58.R10135
https://doi.org/10.1103/PhysRevB.58.R10135
https://doi.org/10.1103/PhysRevB.66.035329
https://doi.org/10.1103/PhysRevB.66.035329
https://doi.org/10.1103/PhysRevB.66.035329
https://doi.org/10.1103/PhysRevB.66.035329
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1103/PhysRevLett.84.6074
https://doi.org/10.1016/S0921-4526(00)00502-0
https://doi.org/10.1016/S0921-4526(00)00502-0
https://doi.org/10.1016/S0921-4526(00)00502-0
https://doi.org/10.1016/S0921-4526(00)00502-0
https://doi.org/10.1103/PhysRevB.46.15329
https://doi.org/10.1103/PhysRevB.46.15329
https://doi.org/10.1103/PhysRevB.46.15329
https://doi.org/10.1103/PhysRevB.46.15329
https://doi.org/10.1103/PhysRevB.53.4838
https://doi.org/10.1103/PhysRevB.53.4838
https://doi.org/10.1103/PhysRevB.53.4838
https://doi.org/10.1103/PhysRevB.53.4838
https://doi.org/10.1063/1.359446
https://doi.org/10.1063/1.359446
https://doi.org/10.1063/1.359446
https://doi.org/10.1063/1.359446
https://doi.org/10.1103/PhysRevLett.57.1761
https://doi.org/10.1103/PhysRevLett.57.1761
https://doi.org/10.1103/PhysRevLett.57.1761
https://doi.org/10.1103/PhysRevLett.57.1761
https://doi.org/10.1103/PhysRevB.66.205320
https://doi.org/10.1103/PhysRevB.66.205320
https://doi.org/10.1103/PhysRevB.66.205320
https://doi.org/10.1103/PhysRevB.66.205320



