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Inhomogeneous Cellular Automata Modeling for 
Mixed Traffic with Cars and Motorcycles 

Lawrence W. Lan 
Chiung- Wen Chang 

This paper develops inhomogeneous cellular automata 
models to elucidate the interacting movements of cars and 
motorcycles in mixed traffic contexts. The car and motorcycle 
are represented by non-identical particle sizes that respectively 
occupy 6x2 and 2x1 cell units, each of which is 1.25~1.25  
meters. Based on the field survey, we establish deterministic 
cellular automata (CA) rules to govern the particle movements 
in a two-dimensional space. The instantaneous positions and 
speeds for all particles are updated in parallel per second 
accordingly. The deterministic CA models have been 
validated by another set of field observed data. To account for 
the deviations of particles’ maximum speeds, we further 
modifL the models with stochastic CA rules. The relationships 
between flow, cell occupancy (a proxy of density) and speed 
under different traffic mixtures and road (lane) widths are then 
elaborated. 

Keywords: car, inhomogeneous cellular automata, mixed traffic, motorcycle 

1. Introduction 

Conventional traffic flow models are generally divided into two 
branches: macroscopic and microscopic models. The macroscopic traffic 
stream models, single-regime or multiple-regime, are mostly devoted to 
elucidating the relations between speed, density and flow in various 
traffic conditions (e.g., free flow, capacity flow, jammed flow) and 
roadway environments (e.g., tunnel, freeway, urban arterial) [May, 19901. 
The macroscopic fluid-dynamical models analogize vehicular flows to 
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fluids by assuming the aggregate homogeneous behavior of drivers. 
Lighthill and Whitham [ 19551 and Richards [ 19561 developed the most 
well-known first-order fluid-dynamical models and other researchers 
such as Payne [1971], Liu, et al. [1998] and Zhang [1998] derived 
similar but higher order models. Wong and Wong [2002] formulated a 
multi-class traffic flow model as an extension of LWR model with 
heterogeneous drivers. Daganzo [ 19941 developed cell transmission 
model in which the highway is partitioned into small cells and vehicles 
move in and out of these cells over time. Daganzo [2002a, 2002bl further 
proposed a macroscopic behavioral theory to explain the traffic dynamics 
in homogeneous multi-lane freeways. The microscopic traffic flow 
models, on the other hand, describe the interrelationship of individual 
vehicle movements with other vehicles. Car-following models are the 
most pertinent ones to explicate the one-dimensional movements in a 
longitudinal lane such that the following vehicle adjusts its speed to 
maintain desirable or safe spacing (distance headway) with the lead 
vehicle. The types of car-following models are in general divided into 
four categories: stimulus-response [e.g., Herman, et al. 1959; Bierley, 
1963; Pipes, 1967; Rockwell and Treiterer, 1968; Brackstone and 
McDonald, 19991, safety distance [e.g., Kometani and Sasaki, 1959; 
Gipps, 19811, action point [e.g., Michaels and Cozan, 1963; Evans and 
Rothery, 19771, and fuzzy logic based [e.g., Lan, et al. 1994; 
Chakroborty and Kikuchi, 1999; Wei and Lin, 1999; Lan and Yeh, 20011. 
Among these four categories, stimulus-response type is the most famous 
one that was developed in the 1950s and 1960s by the General Motors 
(GM) research group. Five generations of the GM car-following models 
are recognized and nowadays they are still applied in various aspects, 
including traffic stability and safety study, level of service and capacity 
analysis, driver’s reaction times, etc. However, Lan and Chang [2004b] 
constructed motorcycle-following models of General Motors and adaptive 
n e u r o - m  inference system (ANFIS) and found that ANFIS was far superior 
to GM models in capturing the nature of motorcycle-following behavim in a 
mixedtraffic. 

Recently, different cellular automata (CA) models have been 
developed to simulate the microscopic traffic flows according to some 
designated parallel updating rules. For instance, Krug and Spohn [ 19881 
derived a simultaneous moving model for particles with maximum speed 
defaulted as 1 dsec .  This model is also called CA-184 rule because it 
corresponds to rule 184 in Wolfram’s classification [Wolfram, 19861. If 
the CA model controls only one particle’s movement in random at each 
time step, it is called asymmetric stochastic exclusion process (ASEP). 
The NaSch model, proposed by Nagel and Schreckenberg [1992], 
combined the behaviors of ASEP and CA-184. Nagel [1996, 19981 
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employed the concept of stochastic traffic cellular automata (STCA) and 
treated each particle with randomized integer speed between zero and 
maximum speed. Rickert et al. [1996] examined a simple two-lane CA 
model and pointed out important parameters defining the shape of the 
traffic fundamental diagram. Chowdhury et al. [1997] generalized the 
NaSch model by introducing a particle hopping model for two-lane 
traffic with two speed types (fast and slow) of vehicles. Nagel et al. 
[ 19981 proposed different CA approaches for the vehicle lane changing. 
Hermann and Kerner [ 19981 applied CA technique and self-organization 
process to explore the formation of traffic congestion. Knospe et al. 
[ 19991 dealt with the effect of slow cars in two-lane systems and found 
that even few slow cars could initiate the formation of platoons at low 
densities. Wolf [ 19991 employed a modified NaSch model to address the 
meta-stable states at the jamming transition in detail. Wang et al. [2000] 
introduced NaSch model and Fukui-Ishibashi (FI) model to investigate 
the asymptotic self-organization phenomena of one-dimensional traffic 
flow. Helbing [2001] considered the empirical data and then reviewed 
the main approaches including microscopic (particle-based), mesoscopic 
(gas-kinetic) and macroscopic (fluid-dynamic) models to modeling 
pedestrian and vehicle traffic. Further attention was also paid to the 
formulation of a micro-macro link, to aspects of universality and to other 
unifiring concepts. Pottmeier et al. [2002] studied the impact of localized 
defect in a CA model for traffic flow exhibiting meta-stable states and 
phase separation. More recently, Bham and Benekohal [2004] developed 
a traffic simulation model based on CA and car-following concepts, 
which had been satisfactorily validated at the macroscopic and 
microscopic levels using two sets of field data. 

Both the aforementioned conventional traffic flow models and recent 
CA traffic models are developed only for cars. None of them have been 
devoted to mixed traffic flows with motorcycles and cars. Unlike cars 
that normally move along a specific longitudinal lane and occasionally 
change lanes while overtaking or turning, motorcycles do not necessarily 
move within a specified lane. One can easily find that motorcycles in 
effect move in a rather irregular manner. Sometimes they may follow the 
lead vehicles; but more than often they just shift into the adjacent lanes 
erratically or even “sneak in” between two adjacent neighboring cars 
where no lane is marked. In other words, conventional traffic flow 
models and recent CA traffic models may not correctly elucidate such 
motorcycle moving behaviors, nor can they accurately reflect the true 
characteristics of mixed traffic in which motorcycles are involved. In 
many Asian countries such as China, Indonesia, Malaysia, Taiwan, 
Thailand and Vietnam, motorcycles are ubiquitous and mixed traffic 
flows with motorcycles and cars are also prevailing, particularly in the 
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urban areas. For the purpose of transportation system planning, design 
and control, it is always important to gain deep insights into the 
motorcycle behaviors by developing appropriate traffic flow models that 
can represent the vehicle movements in mixed traffic contexts. 

This paper attempts to develop inhomogeneous CA models to 
describe the behaviors of vehicular movements in a mixed traffic 
environment. By inhomogeneous, we mean that different types of 
vehicles (car and motorcycle) occupy non-identical numbers of cell units, 
according to their required spaces for movements. Deterministic CA 
rules, based on the field observation, are proposed to govern the 
instantaneous positions and speeds of all particles. The CA models are 
validated by another set of field observed data. To account for the 
deviations of maximum speeds among individual particles, we further 
develop stochastic CA rules to analyze the mixed traffic characteristics 
with different traffic mixtures and roadway widths. The remaining parts 
are organized as follows. Section 2 details the development of 
deterministic CA rules and Section 3 presents the simulation results. 
Section 4 demonstrates the validation of results. Section 5 further 
introduces the stochastic CA rules by considering the deviations of 
maximum speeds among particles. Finally, the conclusions and 
directions of future study are addressed. 

2. Models 

To develop the inhomogeneous CA models, we need to define the 
dimensions of particles and cells and the rules of particle moving to 
comply with the real situations. A field survey was conducted on the 
southbound section of Tunhua South Road between Padeh Road and 
Civil Boulevard in Taipei City. The observed road section is a divided 
slow traffic lane of ten-meter width, traffic flow on which contains only 
two vehicle types, car and motorcycle, without any interrupted sink or 
source traffic from alleyways; curb parking is also prohibited. We used a 
video camera to record the traffic scenes, covering a longitudinal 
distance over 30 meters, during 8:00-9:30am and 16:00-17:30pm. The 
videotape was imposed with a synchronal timer so that the details of 
vehicular data could be measured to 0.01 second. The two-dimensional 
X- and Y-coordinates of all vehicles, i.e., the particles’ longitudinal and 
lateral positions over time, were traced at least 30 meters so that the 
related characteristics including gaps, speeds, accelerations and 
decelerations could be calculated. It was found that the minimum gaps 
for a moving motorcycle and car were, respectively, 0.8 and 1.9 meters 
to the lead vehicle, 0.45 and 0.95 meters to the left neighboring vehicle, 
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and 0.4 and 0.82 meters to the right neighboring vehicle. The majority of 
the vehicles’ maximum speeds were less than 55 kph with acceleration 
(deceleration) less than 1 meter/sec2 during these two observation 
periods. 

2.1 Definition of cells andparticle sizes 

A cellular automaton has a number of identical cells, each interacting 
with a few nearby neighbors by simple rules. The rules can be 
deterministic andor stochastic. Each cell is in one of a small number of 
discrete states. Time advances in discrete steps and the cell states are 
updated either synchronously or asynchronously [Wolfram, 19861. 
Previous CA traffic models [for instance, Nagel, 19981 defined the cell 
unit as 7.5~7.5 meters and assumed that each particle had identical size 
occupying one cell unit; namely, the space required for each vehicle was 
7.5 meters both in length and in width. Because the definition of cell unit 
is too coarse, vehicles are modeled as particles with unrealistic speed 
jumps. This is obviously not the case what we have observed for the 
mixed traffic with cars and motorcycles. 

In line with the vehicle dimensions and observed minimum gaps, we 
define a common cell unit with much finer square grid as 1.25~1.25 
meters. Thus, based on the field observation, a motorcycle in our CA 
models occupies 2x1 cells and a passenger car takes away 6x2 cells 
while moving. In addition, we consider both “car-following” and 
“lane-changing’’ behaviors for each particle that changes its positions 
over time and over a two-dimensional space, in which X-axis indicates 
the vehicle’s longitudinal movement distance and Y-axis denotes the 
vehicle’s lateral displacement distance. Each cell can be either empty or 
occupied at each time step. The time step in updating the related 
information for all particles is set as one second so that the magnitude of 
speed (meters per second) is exactly equal to the longitudinal position 
change (meters). According to the filed survey, the maximum speeds for 
motorcycle and car are nearly the same, thus we set both with identical 
maximum speed as 13 cells (about 58kph). The gaps between the 
following particle (either motorcycle or car) and the front, right-front, 
left-front, right-behind and left-behind particles, respectively denoted by 

are illustrated in Figure 1. In Figure l(a), the 
th following particle is a motorcycle, which uses the 3rd lateral cell lane 
with two motorcycles and two cars in both adjacent lanes. In Figure l(b), 
the ith following particle is a car, which occupies the 2”d and 3rd lateral 
cells with the same surrounding traffic situation. Note from Figures l(a) 
and l(b) that, even with exactly the same surrounding situation, the 
above-mentioned gaps are different because of the non-identical sizes of 

f ir ,  a,, a r b ,  and 
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Y (a) the following (P) vehicle is motorcycle 

I 

(b) the following (irh) vehicle is car 

: the I# veh : motorcycle : car 

Figure 1. An illustration of inhomogeneous particles layout 

2.2 Definition of CA rules 

Nagel and Schreckenberg [1992] first introduced a prototype CA 
traffic model, which simulated single-lane (one-dimensional) pure car 
motions with simple updating rules. In the NaSch model, the road was 
divided into identical square cells of length 7.5 meters and each cell 
could either be empty or occupied by one car. The states of all cars at 
time step t+l  were obtained from those at time step t by applying the 
given rules at the same time. In this paper, we modify the NaSch model 
to simulate the two-dimensional mixed traffic motions with two different 
types of particles. We define the CA rules that govern the particles 
moving logics, including moving forward and lateral displacements from 
left to right or the reverse. Following the previous CA lane-changing 
models [Rickert et al. 1996; Chowdhury et al. 1997; Nagel et al. 1998; 
Knospe et al. 19991, we define a particle can change its “lane” (1.25-m 
cell in our definition) if both of the following two criteria are satisfied. 

The first one is the incentive criterion: the gap in front of particle i at 
the current lane should be smaller than the current speed of i and the gap 
in front of i in the adjacent lane(s) should be larger than the current front 
gap of i. The second one is the safety criterion: any lateral displacement 
should not collide or block other vehicles behind. Thus, “lane changing” 
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is possible for vehicle i only when its adjacent lane(s) is empty and the 
speed of the left- or right-behind vehicle is smaller than the gap between 
vehicle i and the behind vehicle(s). Namely, the front gap of i in the 
adjacent lane(s) is larger than the current speed of i; and the behind gap 
of i in the adjacent lane(s) is larger than the current speed of behind 
vehicle. In fact, the above "lane changing" rules have included both 
symmetric and asymmetric situations. The particle that uses the 
intermediate cell(s) can make a symmetric lane change from both sides 
depending on which side provides larger gap. However, the particle that 
uses the edge (right-most or left-most) cell can only make an asymmetric 
lane change from one side in case that the adjacent gap is large enough. 

Let &f, au'r , dx', , d x t b  , d;y'rb and &rb respectively denote the 
gaps between vehicle i and the front, left-front, ri ht-front, behind, 
left-behind and right-behind vehicles at time step t; = ( X k y ' i ) ,  pf = 
(X>)')), P'I = (X',,.Y'l), p r  = (x'r,r'r) , p b  = (X'b,Y'b), p l b  = (X 16,y'lb) and 
P t r b  = (X'rb,$rb) respectively denote the positions of vehicle i, front, 
left-front, right-front, behind, left-behind and right-behind vehicles at 
time step t. A random enerator is used to determine the vehicles' initial 

= (x'lb, O), and v r b  = (x rl,, 0) respectively denote the speed vectors of 
vehicle i, left-front, right-front] behind, left-behind and right-behind 
vehicles at time step t; Lj, Lk, L 1, and Ltr denote the lengths of vehicle i, 
front, left-front and right-front vehicles at time step t; PC denote the 
vector of lateral position changed, in which PC = (0,-1) represents 
vehicle i changing to the right and PC = (0,l) changing to the left. 
Starting from an arbitrary initial condition with speed V o i  = (Voj,O) and 
Poi = (x"j,y"i) and position, the states of the particles in our CA models 
are updated according to the following rules: 

F positions. Let, Vj = (X j ,  o), Vl= ( ~ ' 1 ,  o), V r  = (X'r, 01, V t b  = (X'b, 0) ,  v i b  

Estimate the desired speed VdeSjred and the effective gaps dx;., dx: , 
Check both incentive and safety criteria; 
Select the largest gap; 
Update the speeds; 
Particle i updates its speed under the following logics: 

dx: 9 a b  9 dx', and &rb; 

If dx;- >v; 
7 

then V;+' = Min [v: + (1, 0) , (vmax,  o ) ] .  

Else, if au: ' 'i and d x t b  > ' f b  or dx: ' ' i  and d x : b  >'f.b 

v;+l = v,! + PC. then change to larger-gap lane, 7 
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Else, cannot change lateral position, 
v;+1 = @;+I, 0)  

( 5 )  Update the positions; 
Particle i moves from P, to P?‘ based on the updated speed; namely, 

p;+1 = pi’ + v;+1 

3. Simulations 

The initial conditions in the following simulations are set as follows. 
A total of 150 inhomogeneous particles (cars and motorcycles) are 
generated according to given traffic mixtures (percentages of car) from 
0% to 100%. In the longitudinal direction, particles are equally spaced 
with distance headway (gap plus length of front particle) of 10 cells; 
however, in the lateral direction, particles are randomly scattered. Each 
particle moves at identical speed of 1 cell per second. 

The aforementioned CA rules for updating the particle speeds and 
positions are used to simulate the particles’ movements in the road 
section without interruptions by curb parking, pedestrian crossing, traffic 
light, etc. This study attempts five cases with “lane” width of 2 cell units 
(2.5m), 3 cell units (3.75m), 4 cell units (5m), 5 cell units (6.25m) and 6 
cell units (7.5m). In both cases I (2.5m) and I1 (3.75m), it is impossible 
for any car to move in parallel along with the other car, thus the car has 
no chance to overtake another car. In other three cases, the car may have 
chances to overtake another car provided that the empty cells in the 
adjacent space are good enough. In contrast, it is possible for a 
motorcycle to move in parallel along with the lateral motorcycle(s). 
Except for the case I, the motorcycle can also overtake the front car or 
move in parallel along with the car. 

3.1 The eflects of lane widths and traflc mixtures 

In this paper, cell occupancy (p) is used as a proxy of density, which 
is defined as p = No/  N,  where N is the number of total cells in the study 
area and No is the number of occupied cells. The flow-occupancy and 
speed-occupancy diagrams for pure motorcycles and pure cars under 
various lane widths are displayed in Figures 2 and 3, respectively. We 
define critical occupancy (critical speed) as the cell occupancy 
(space-mean-speed) corresponding to the maximum flow rates. With 
parallel updates, the steady state is reached when the speed of each 
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particle is the same as the speed of the front vehicle. The average speed 
in steady state equals the number of empty cells divided by the number 
of particles; hence, the average speed is inversely proportional to the cell 
occupancy (a proxy of density). Therefore, as the occupancies are 
smaller than the critical occupancy, the flow rates increase along with the 
increase of occupancies. However, as the occupancies go beyond the 
critical occupancy, the flow rates decrease gradually. Both Figures 2 and 
3 show that the critical occupancies for pure motorcycles are around 0.13 
to 0.18 and for pure cars are around 0.22 to 0.32. The range of critical 
occupancies for pure cars has concurred with the findings by Nagel 
[1998]. Both Figures 2 and 3 also show that the jammed occupancies for 
pure motorcycles can reach 1.0 in the five cases but for pure cars are 
only about 0.7 with an exception that case I can also reach 1.0. These 
phenomena are due to the fact that there is lower chance for pure cars to 
overtake the other particles; as a consequence, the cells utilization 
efficiency is less than that for pure motorcycles. 

Figure 4 shows the relationship between maximum flow rates and 
traffic mixtures under various lane widths. Note that the maximum flow 
rates have a sharp decline from zero to 50 percentages of cars and a mild 
decline from 50 to 100 percentages in case I, implying that 50 
percentages of cars could be the least cell utilization efficiency in case I. 
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Figure 2. Flow-occupancy diagrams for pure motorcycles and pure 
cars 
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Figure 3. Speed-occupancy diagrams for pure motorcycles and pure 
cars 
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Figure 4. Maximum flow rates for various traffic mixtures 
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Furthermore, the maximum flow rates are highly influenced by the 
width of lane and percentages of car. For example, under the condition of 
pure motorcycles, the maximum flow rates in cases I1 and V are 50% and 
200% higher than that in case I. Under the condition of pure cars, in 
contrast, the maximum flow rates are the same in both cases I and 11, and 
case V is only 126% higher than both cases. The results also evidently 
explain that the following car cannot overtake the front car for both cases 
I and 11. 

3.3 The motorcycle equivalents (me) 

Similar to the concept of “passenger car equivalent” (pce), which 
represents the throughput capability of one vehicle of other types (such 
as bus, truck) equivalent to the maximum number of car throughputs 
under identical traffic and environmental conditions, we define the 
“motorcycle equivalent” (me) as the throughput capability of one car 
equivalent to the maximum number of motorcycle throughputs under 
identical conditions. The value of me for any two traffic mixtures under 
the same speed condition is defined as follows: 

where PI , P2 are the percentages of cars; q1 , q2 are the flow rates 
corresponding to PI and P2. Note that the pce value is equal to 1/ me. 

Table 1 summarizes the me and pce  values under different traffic 
mixtures and lane widths. In case I, for example, the me values can range 
from 2.32 to 2.61 (at speed 55kph) and from 3.97 to 4.00 (at speed 5kph) 
with respect to 10% to 100% of cars. For pure cars with speed 55kph, the 
me values are from 2.61 to 3.46 as the lane width increases from two to 
six cells. 

Figure 5 demonstrates the me values with respect to various speeds 
for pure cars. Note that the me values decrease as the speed increases in 
all cases. When cars get closer the average speeds would become lower; 
consequently, the me values should be higher. The lower me values occur 
in higher speeds, in which the efficiencies of cell utilization for cars and 
for motorcycles are nearer. Generally, the me values decrease as the lane 
width increases, indicating that wider roads provide higher degrees of 
freedom for particles’ moving and overtaking than the narrower ones do. 

Figure 6 illustrates the me values with respect to different 
percentages of car at speed 45 kph. We notice that case I has special me 
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values with respect to various car mixtures. It has the highest me values, 
the worst cells utilization efficiency, as the car percentages are lower 
than 50%. Nevertheless, it turns out to be the lowest me values, the best 
cells utilization efficiency, as the car percentages are above 60%. This 
interesting result reflects the fact that if motorcycles are the majority, 
once the cars appear, the following motorcycles would have no chance at 
all to overtake the cars in case I but the overtaking chance becomes 
higher as the lane width gets larger. In contrast, if cars become the 
majority in case I, the motorcycles will be grouped into several blocks by 
any two cars, thus makes the cell utilization better than the other cases. 
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5 0  - 
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4 6  - 
4 4  - 
4 2  
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3 0  - 
2 8  - 
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2 4  
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1 .  I 1 ,  I I 1 

5 15 25 35 45 55 
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Figure 5. The me values at various speeds under pure cars 
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Table 1. The me and pee values under various traffic mixtures and lane 

widths 
- 
Speed 
- 

55 

- 

45 

35 

25 

'ercentage Case I 
of cars- 
(YO) 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

2 cells 
me pce 

2.32 0.43 
2.52 0.40 
2.79 0.36 
2.91 0.34 
3.17 0.32 
2.97 0.34 
2.87 0.35 
2.75 0.36 
2.67 0.38 
2.61 0.38 
2.52 0.40 
2.80 0.36 
2.94 0.34 
3.07 0.33 
3.25 0.31 
3.01 0.33 
2.91 0.34 
2.80 0.36 
2.71 0.37 
2.66 0.38 
2.91 0.34 
2.75 0.36 
3.00 0.33 
3.09 0.32 
3.57 0.28 
3.30 0.30 
3.13 0.32 
2.93 0.34 
2.85 0.35 
2.87 0.35 
3.30 0.30 
3.64 0.27 
3.82 0.26 
3.45 0.29 
3.86 0.26 
3.58 0.28 
3.39 0.29 
3.36 0.30 
3.10 0.32 
3.06 0.33 

Case I1 
3 cells 

me pce 
2.25 0.44 
2.47 0.40 
2.71 0.37 
2.83 0.35 
3.14 0.32 
3.41 0.29 
3.59 0.28 
3.70 0.27 
3.74 0.27 
3.91 0.26 
2.44 0.41 
2.69 0.37 
2.83 0.35 
2.96 0.34 
3.22 0.31 
3.50 0.29 
3.54 0.28 
3.68 0.27 
3.82 0.26 
3.98 0.25 
2.79 0.36 
2.82 0.35 
2.90 0.34 
3.03 0.33 
3.49 0.29 
3.70 0.27 
3.71 0.27 
3.79 0.26 
3.96 0.25 
4.23 0.24 
3.16 0.32 
3.22 0.31 
3.30 0.30 
3.37 0.30 
3.54 0.28 
3.86 0.26 
3.91 0.26 
3.97 0.25 
4.1 1 0.24 
4.34 0.23 

Case I11 
4 cells 

me pce 
2.21 0.45 
2.32 0.43 
2.54 0.39 
2.73 0.37 
3.10 0.32 
3.18 0.31 
3.38 0.30 
3.60 0.28 
3.64 0.27 
3.69 0.27 
2.33 0.43 
2.61 0.38 
2.71 0.37 
2.84 0.35 
3.11 0.32 
3.29 0.30 
3.48 0.29 
3.61 0.28 
3.70 0.27 
3.77 0.27 
2.68 0.37 
2.79 0.36 
2.88 0.35 
2.93 0.34 
3.32 0.30 
3.33 0.30 
3.69 0.27 
3.78 0.26 
3.82 0.26 
3.93 0.25 
3.04 0.33 
3.18 0.31 
3.25 0.31 
3.33 0.30 
3.52 0.28 
3.57 0.28 
3.86 0.26 
3.94 0.25 
4.10 0.24 
4.19 0.24 

Case IV 
5 cells 

me pce 
2.11 0.47 
2.25 0.44 
2.43 0.41 
2.71 0.37 
3.00 0.33 
3.09 0.32 
3.30 0.30 
3.54 0.28 
3.59 0.28 
3.61 0.28 
2.25 0.44 
2.55 0.39 
2.59 0.39 
2.79 0.36 
3.03 0.33 
3.20 0.31 
3.40 0.29 
3.50 0.29 
3.57 0.28 
3.69 0.27 
2.60 0.38 
2.77 0.36 
2.92 0.34 
2.94 0.34 
3.16 0.32 
3.29 0.30 
3.64 0.27 
3.65 0.27 
3.71 0.27 
3.77 0.26 
2.83 0.35 
3.15 0.32 
3.21 0.31 
3.30 0.30 
3.39 0.29 
3.43 0.29 
3.71 0.27 
3.74 0.27 
3.97 0.25 
4.03 0.25 

Case V 
6 cells 

me pce 
2.04 0.49 
2.21 0.45 
2.39 0.42 
2.67 0.38 
2.93 0.34 
2.99 0.33 
3.07 0.33 
3.19 0.31 
3.28 0.30 
3.46 0.29 
2.17 0.46 
2.40 0.42 
2.51 0.40 
2.70 0.37 
2.94 0.34 
3.02 0.33 
3.15 0.32 
3.21 0.31 
3.39 0.30 
3.57 0.28 
2.40 0.42 
2.74 0.37 
2.91 0.34 
2.94 0.34 
3.16 0.32 
3.26 0.31 
3.33 0.30 
3.33 0.30 
3.46 0.29 
3.66 0.27 
2.60 0.38 
2.97 0.34 
3.19 0.31 
3.21 0.31 
3.23 0.31 
3.33 0.30 
3.34 0.30 
3.53 0.28 
3.68 0.27 
3.82 0.26 
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Table 1 (continued). The me andpce values under various trafic 

mixtures and lane widths 

20 
30 
40 
50 
60 
70 
80 
90 
100 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

Speed 

3.81 0.26 
4.01 0.25 
4.26 0.23 
4.30 0.23 
3.89 0.26 
3.74 0.27 
3.66 0.27 
3.49 0.29 
3.37 0.30 
3.97 0.25 
4.28 0.23 
4.33 0.23 
4.50 0.22 
4.65 0.22 
4.67 0.21 
4.47 0.22 
4.37 0.23 
4.19 0.24 
4.00 0.25 

&!?L 

15 

5 

Percentage 

I 

Case I1 
3 cells 

me pce 
3.43 0.29 
3.80 0.26 
3.94 0.25 
3.41 0.29 
4.21 0.24 
4.29 0.23 
4.80 0.21 
4.91 0.20 
4.97 0.20 
5.12 0.20 
3.86 0.26 
4.00 0.25 
4.15 0.24 
4.31 0.23 
4.54 0.22 
5.05 0.20 
5.42 0.18 
5.52 0.18 
5.60 0.18 
5.81 0.17 

Case I11 
4 cells 

me pce 
3.23 0.28 
3.59 0.28 
3.70 0.27 
3.81 0.26 
4.15 0.24 
4.22 0.24 
4.43 0.23 
4.49 0.22 
4.61 0.22 
4.72 0.21 
3.63 0.28 
3.74 0.27 
4.07 0.25 
4.21 0.24 
4.33 0.23 
4.49 0.22 
4.85 0.21 
5.11 0.20 
5.50 0.18 
5.65 0.18 

Case IV 
5 cells 

me pce 
3.09 0.32 
3.32 0.30 
3.35 0.30 
3.36 0.30 
3.62 0.28 
3.96 0.25 
4.07 0.25 
4.23 0.24 
4.25 0.24 
4.43 0.23 
3.42 0.29 
3.41 0.29 
3.52 0.28 
3.89 0.26 
4.13 0.24 
4.21 0.24 
4.74 0.21 
4.88 0.21 
5.36 0.19 
5.59 0.18 

Case V 
6 cells 

me pce 
2.79 0.36 
3.27 0.31 
3.30 0.30 
3.31 0.30 
3.46 0.29 
3.72 0.27 
3.93 0.25 
4.03 0.25 
4.10 0.24 
4.24 0.24 
3.18 0.31 
3.26 0.31 
3.45 0.29 
3.74 0.27 
3.87 0.26 
4.17 0.24 
4.47 0.22 
4.72 0.21 
4.97 0.20 
5.39 0.19 

4 5  
-=- 2 cell 
-0-3 cell 

A ~ 4 cell 
1- 5 cell 
- 6  cell 

I. 
4 0  - 

3 5  - 
9, 

m 
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2 5  - 

2 0  ' l " . l ' l ' l ' l ' l ' l ' l . l .  
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percentage of car (%) 

Figure 6. The me values for various traffic mixtures at speed 45 kph 
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4. Validation 

In order to validate the proposed inhomogeneous CA models, we 
conducted a two-hour survey (16:30 to 18:30pm) in the T-2 Provincial 
Highway at Chuwei of Taipei County. The southbound mixed traffic 
scenes in the outer lane of 3.5-meter width were recorded by a video 
camera and a total of 4,882 vehicles were observed (motorcycles are 
prohibited in the inner lanes). This survey has obtained 120 one-minute 
flow rates with corresponding speeds and densities. Figure 7 displays the 
speed-flow relationship for these 120 samples. Figure 8 further shows the 
space mean speed distributions for individual motorcycles and cars, 
which approximately follow normal distributions with mean 55 kph and 
standard deviation 1 1.8 kph. 

Note from Figure 8 that the speeds for motorcycles in the T-2 
Highway are slightly higher than the cars. Thus, we further undertake a 
statistical test and the result (X2 - 81.71 > X2(0.o~,,~, = 18.3) has rejected 
the null hypothesis that speed is independent of the vehicle type. 
Therefore, we modify the aforementioned CA parameters by assigning 
the car with maximum speeds of 12 cell units (54 kph) and the 
motorcycle with 13 cell units (58.5 kph). The field observed data in T-2 
Highway and the simulated data are presented in Figure 9 and Table 3. 
Note that most of the discrepancies between the observed and simulated 
data are less than f 5%, suggesting that our CA rules have been validated 
by another field observation. 

flow rate ( v p h )  

Figure 7. Observed space mean speeds versus flow rates in T-2 Highway 
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Figure 8. Observed space mean speed distributions in T-2 Highway 

Figure 9. Observed and simulated flow-density in T-2 Highway 
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71% 
70% 
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Table 2. A comparison between observed and simulated data in T-2 

54.69 2,362 43.18 56.09 2,450 43.68 3.73% 
53.73 2,032 37.81 56.09 2,095 37.36 3.12% 

Highway 

73% 
79% 

Flow rate 
(%> 

Observed 
percentages 

of 
motorcvcle 

56.66 2,440 43.06 56.09 2,450 43.68 0.42% 
55.65 2,290 41.15 56.16 2,359 42.00 3.00% 

I I 

Note: *speed and flow rate are measured from the observed data; density are 
calculated from dividing flow rate by speed. 
**speed and density are measured from the simulated data; flow rate 
are calculated from the product of speed and density. 
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5. Stochastic CA models 

One of our deterministic CA rules has set the maximum speeds for 
individual vehicles of the same type with a fixed value. Of course, this 
assumption is too strict and does not fully fit the real world situations. 
Therefore, we further allow the deviations of maximum speeds for 
individual particles by modifying the CA rules with stochastic maximum 
speed distributions. Take an example that the maximum speeds are 
normally distributed with mean 13 cells and standard deviation 1 cell, 
denoted by N( 13,l). The flow-occupancy and speed-occupancy diagrams 
for pure cars and pure motorcycles with stochastic maximum speeds 
N(13,l) are shown in Figures 12 and 13. Compared with Figures 2 and 3 
obtained from deterministic maximum speeds N (1 3,0), we find that both 
maximum flow rates and critical speeds by the stochastic CA models 
have decreased. It is due to the “slow-vehicle” effects. 

In this N(13,l) example, Figure 12 further presents the maximum 
flow rates with respect to various traffic mixtures. Figure 13 displays the 
me values for various maximum speeds under pure car condition. Figure 
14 shows the me values with respect to various traffic mixtures at speed 
45 kph. Compared with Figures 6, 7 and 8 obtained from deterministic 
maximum speeds N (13,0), we find that the corresponding me values for 
the stochastic CA models are apparently higher. It explains that with the 
variation of maximum speeds, some slow vehicles have reduced the 
overall particles moving freedom. 

4- 5 cell car 
~ 5 cell mot 

-A- 4 cell car 

-- 3 cell car --- 3 cell mot  

0.0 0.1 0 .2  0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

occupancy 

Figure 10. Flow-occupancy diagrams for pure motorcycles and pure cars 
(Stochastic CA models with maximum speeds - N (13,l)) 
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Figure 11. Speed-occupancy diagrams for pure motorcycles and pure 
cars 

(Stochastic CA models with maximum speeds - N(13,l)) 
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Figure 12. Maximum flow rates for various traffic mixtures 

(Stochastic CA models with maximum speeds - N ( 1  3 , l ) )  
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Figure 13. The me values at various speeds under pure car condition 

(Stochastic CA models with maximum speeds - N (13,l)) 
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Figure 14. The me values for various traffic mixtures at speed 45 kph 

(Stochastic CA models with maximum speeds - N (13,l)) 



Inhomogeneous Cellular Automata ... 343 

Figures 17 and 18 fbrther compare the simulation results for pure 
motorcycles and pure cars among different standard deviations of 
maximum speeds (zero, one and two standard deviations): N (13,0), N 
(13,l) and N (13,2). We find that as the maximum speed deviations get 
larger, the optimal speeds and maximum flow rates have significantly 
declined. Tables 4 and 5 present the details of maximum flow rates and 
optimal speeds among different maximum speed deviations. We 
conclude that the maximum flow rates and critical speeds are negatively 
influenced by the deviation of maximum speeds; but the influence is less 
significant as the lane width gets larger. 

v- 

0 m 4100 m m lmlml4100lmlm 

Figure 15. 
speed deviations (pure motorcycles) 

Speed-flow diagrams of CA models with various maximum 
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Speed-flow diagrams of CA models with various maximum 

Table 3. Maximum flow rates with various maximum speed deviations 

Lane width k N 13,O 

13,400 -10.7% 12,800 -14.7% 4,150 3,520 -15.2% 2,900 -30.1% 

16,250 -9.7% 15,950 -1 1.4% 5,200 4,450 -14.4% 3,650 -29.8% 
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Table 4. Critical speeds with various maximum speed deviations 

2 cells (2.5 m) 
3 cells (3.75 m) 

4 cells (5 m) 
5 cells (6.25 m) 
6 cells (7.5 m) 

Pure motorcycles (kph) 
N(13,O) N(13, I )  N(13.2) 

Lane width 

58.5 49.5 42.0 

58.5 51.0 44.6 

58.5 51.3 47.0 

58.5 51.8 47.1 

58.5 52.0 48.4 

Pure cars (kph) 
N(13,O) N(I3, I )  N(13,2) 

58.5 47.5 39.0 

58.5 47.5 39.0 

58.5 47.7 39.3 

58.5 48.2 40.0 

58.5 48.3 40.5 

6. Concluding Remarks 

Previous works on CA traffic models focused on pure cars only. 
Some of which defined the cell unit with a rather coarse scale, thus the 
particles might have unrealistic speed jumps or drops. This is obviously 
not consistent with what we can observe in the mixed traffic contexts. To 
overcome these shortcomings, we define a common cell unit with much 
finer square grid as 1.25~1.25 meters. Based on the field observation, a 
motorcycle in our proposed CA models always occupies 2x 1 cells and a 
passenger car always takes away 6x2 cells. The maximum speeds for the 
motorcycle and car are of the same, which are set as 13 cell units per 
time step with no deviation in our deterministic CA models. The 
simulation results have shown reasonable interacting relationships 
among particles in the mixed traffic environments. To validate the 
deterministic CA models, we use another set of field data where 
maximum speeds of motorcycle and car are not the same; thus, the CA 
rules have been slightly modified to accommodate the distinct maximum 
speeds between these two vehicle types. 

In line with the real world situations, we further develop stochastic 
CA models by considering the deviations of maximum speeds for 
individual particles of the same type. Compared with the deterministic 
CA models, we examine the effects of maximum speed deviations on the 
maximum flow rates and the corresponding critical speeds. It is found 
that both maximum flow rates and critical speeds have declined with an 
increase of maximum speed deviations. It is due to the slow-vehicle 
effect that deteriorates the cell utilization efficiency; however, such 
decline effect is less significant as the road (lane) gets wider. 
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The present study does not mark the lane to guide the motorcyclists 
and car drivers, thus the vehicles may occupy the lateral cells in an 
inefficient manner. Marking the lanes and revising the CA rules 
accordingly deserve further investigation. The paper deals only with the 
interacting movements of two vehicle types, motorcycle and car, on the 
road section where flows are not interrupted by curb parking, crossing 
vehicles or pedestrians, traffic signals or the like. Future studies can 
consider more types of vehicles, such as bus and bicycle, with 
interruptions or traffic lights on the road section or at intersection. 
However, it requires introducing more complicated CA rules that can 
govern the particles stopping, starting, moving or turning behaviors. 
Special attentions must be paid to control the particles acceleration or 
deceleration to avoid any unrealistic abrupt speed jumps or drops. Since 
the motorcyclists and car drivers may act in a different way in other 
cities or countries, more empirical case studies from different field 
environments also deserve further explorations. 
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