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Abstract. Generalized geometric programming (GGP) problems occur frequently in engi-
neering design and management. Recently, some exponential-based decomposition methods
[Maranas and Floudas, 1997, Computers and Chemical Engineering 21(4), 351–370; Floudas
et al., 1999, Handbook of Test Problems in Local and Global Optimization, Kluwer Academic
Publishers, Boston, pp. 85–105; Floudas, 2000 Deterministic Global Optimizaion: Theory,
Methods and Application, Kluwer Academic Publishers, Boston, pp. 257–306] have been
developed for GGP problems. These methods can only handle problems with positive
variables, and are incapable of solving more general GGP problems. This study proposes a
technique for treating free (i.e., positive, zero or negative) variables in GGP problems. Com-
putationally effective convexification rules are also provided for signomial terms with three
variables.
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1. Introduction

Generalized Geometric Programming (GGP) Problems are frequent in vari-
ous fields, such as engineering design, location-allocation, chemical process,
and management problems. Many theoretical and algorithmic contributions
of GGP have also been proposed. The developments of global optimization
methods for GGP problems focus mainly on deterministic and heuristic
approaches. Horst and Pardalos (1995) and Pardalos and Romeijn (2002)
provided an impressive overview of these approaches. Recently, Maranas
and Floudas (1997), Floudas et al. (1999) and Floudas (2000) (these three
methods are called Floudas’ methods in this study) developed methods
for solving GGP problems to obtain a global optimum. However, their
methods are only applicable to GGP problems with positive variables. This
study proposes a technique for improving these methods such that they can
also handle GGP problems containing free (i.e., positive, zero or negative)
variables.
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The mathematical formulation of a GGP problem with free variables is
expressed as follows:
GGP:

Minimize Z(X)=
T0∑

p=1

cpzp

subject to
Tk∑

q=1

hkqzkq � lk, k =1, . . . ,K,

zp =x
αp1

1 x
αp2

2 · · ·xαpn

n , p =1, . . . , T0, (1)

zkq =x
βkq1

1 x
βkq2

2 · · ·xβkqn

n , k =1, . . . ,K, q =1, . . . , Tk, (2)

X = (x1, . . . , xm, xm+1, . . . , xn), xi �xi �xi,

xi are positive variables, αpi, βkqi ∈�, for 1� i �m,

xi are free variables, αpi and βkqi are integers, for m+1� i �n,

where cp, hkq, lk ∈ �, Tk, k = 0, . . . ,K, represent the number of posynomi-
al terms of the objective function and of the constraints, and xi and xi

are lower and upper bounds of the continuous variable xi , respectively. If
αpi, βkqi ∈� then xi should be positive; and if αpi and βkqi are integers then
xi can be free variables. These restrictions are illustrated in Examples of
Section 5.

For solving the GGP Problem with xi , where ε�xi �xi , ε is a small pos-
itive number for i =1, . . . , n, Floudas’ methods denote xi =eyi and group all
monomials with identical sign. They reformulate the GGP problem as the
following exponential-based non-linear optimization problem:
P1 (Floudas’ Model):

Minimize G0(Y )=G+
0 (Y )−G−

0 (Y )

subject to Gk(Y )=G+
k (Y )−G−

k (Y )� lk, k =1, . . . ,K,

ln ε �yi �yi, yi = ln xi, i =1, . . . , n,

G+
0 (Y )=

∑

Cp>0

cpe

n∑
i=1

αpiyi

, p =1, . . . , T0,

G−
0 (Y )=

∑

Cp<0

cpe

n∑
i=1

αpiyi

, p =1, . . . , T0,

G+
k (Y )=

∑

hkq>0

hkqe

n∑
i=1

βkqiyi

, k =1, . . . ,K, q =1, . . . , Tk,

G−
k (Y )=

∑

hkq<0

hkqe

n∑
i=1

βkqiyi

, k =1, . . . ,K, q =1, . . . , Tk,
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where Y = (y1, . . . , yn) is a decision vector, G+
k and G−

k , k = 0, . . . ,K , are
positive posynomial functions, and ε is a small positive number.

P1 is an exponential-based decomposition programming problem where
both the constraints and the objective are decomposed into the difference
of two convex functions. A decomposition program has good properties for
finding its global optimum (Horst and Tuy, 1996). A convex relaxation of
the decomposition can be computed easily based on the linear lower bound
of the concave parts of the objective function and constraints.

Floudas’ methods can reach finite ε-convergence to the global minimum
by successively refining a convex relaxation of a series of non-linear convex
optimization problems. However, the usefulness of their methods is limited
by two difficulties as detailed below:

(i) Since Floudas’ methods require to replace xi by eyi , xi must be strictly
positive. However, xi may be zero or negative values in some appli-
cations. For instance, in a portfolio investment problem, xi > 0, xi =
0, and xi < 0 respectively mean that the ith item of an asset is being
treated as buying, without buying and selling, and selling. Further-
more, some variables (e.g., temperature, force, acceleration, speed etc.)
of many engineering design problems are allowed to be zero or nega-
tive values.

(ii) For certain classes of signomial terms zp in Equation (1) (or zkq in
Equation (2)), it is inefficient to replace each xpi in zp with eypi to line-
arize zp since this requires the new non-convex constraint “ypi = ln xpi”
to be added to the constraint set. In fact, for a zp where αpi satis-
fies some conditions, some effective techniques can be developed to
convexify zp.

This study proposes some techniques for overcoming the above difficul-
ties in Floudas’ methods. The proposed techniques can be applied to free
variables as well as positive variables. Additionally, the proposed techniques
can effectively convexify signomial terms with three variables (i.e., zp and
zkq in Equations (1) and (2)).

The rest of this paper is organized as follows. Section 2 formulates some
propositions for treating free variables. Subsequently, Section 3 proposes a
modified Floudas’ model based on the propositions discussed in Section 2.
The convexification strategies for signomial terms with three variables are
analyzed in Section 4. After that, various numerical examples are demon-
strated.

2. Propositions

Consider xi , xi <xi � xi , xi can be zero or negative. Denote λi and θi as
two 0-1 variables, as defined below:
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(i) xi =0 if and only if λi =0.
(ii) xi <0 if and only if λi =1 and θi =1.
(iii) xi >0 if and only if λi =1 and θi =0.

The above conditions can be represented by a set of linear inequalities
as described below:

PROPOSITION 1. Let xi , xi ∈ �, xi � xi � xi , λi, θi ∈ {0,1} , 0 < x0
i � xi

then:

xi =x0
i λi(1−2θi)⇔

⎧
⎨

⎩

(i) xiλi � xi � xiλi

(ii) xi(λi −2θi −1)+x0
i � xi � xi(1−λi + θi)+x0

i

(iii) xi(λi + θi −2)−x0
i � xi � xi(3−λi −2θi)−x0

i

Proof. Let us first prove that constraints (i), (ii), and (iii) imply xi =
x0

i λi(1−2θi); as stated below:

If (i) is activated then λi =0, which results in xi =0 and x0
i λi(1−2θi)=0.

If (ii) is activated then λi −2θi −1=1−λi +θi (means λi =1 and θi =0),
which implies xi =x0

i and x0
i λi(1−2θi)=x0

i .
If (iii) is activated then λi +θi −2=3−λi −2θi (means λi =1 and θi =1),
which implies xi =−x0

i and x0
i λi(1−2θi)=−x0

i .

The next step is to prove that the equality xi =x0
i λi(1−2θi) is fully con-

verted into constraints (i), (ii), and (iii). If λi = 0 then the equality means
xi =0, which is the same as in (i), and does not violate with (ii) and (iii). If
λi =1 and θi =0 then the equality is the same as in (ii) and does not vio-
late with (i) and (iii). Similarly, if λi =1 and θi =1 then the equality is the
same as in (iii). The above demonstrates that the equality xi =x0

i λi(1−2θi)

is equivalent to constraints (i), (ii), and (iii).

Remark 1. Consider the variable xi in Proposition 1, if xi = 0 then xi is
expressed as xi =x0

i λi , 0<x0
i �xi , and

(i) 0�xi �xiλi .
(ii) xi(λi −1)+x0

i �xi �xi(1−λi)+x0
i .

Now denote z and z0 as below:

z=x
α1
1 x

α2
2 · · ·xαn

n and z0 = (x0
1)

α1(x0
2)

α2 · · · (x0
n)

αn,

where x0
i are positive variables.

From Proposition 1, it is clear that

z= z0λ1λ2 · · ·λn(1−2θ1)
α1(1−2θ2)

α2 · · · (1−2θn)
αn, λi, θi ∈{0,1}. (3)
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Now denote J as a set containing all i (where the lower bound of xi is
negative), and denote I as a set of all i (where i ∈J and αi is odd), J and
I are expressed as

J ={i|i =1,2, . . . , n, where xi is negative}
and

I ={i|i =1,2, . . . , n, i ∈Jand αi is odd}.
Consider the following propositions and remarks.

PROPOSITION 2. Expression (3) can be rewritten as

z= z0λ1λ2 · · ·λn

∏

i∈I

(1−2θi)
αi , λi, θi ∈{0,1}. (4)

Proof.

(i) If i /∈J then xi �0, therefore θi =0 and (1−2θi)
αi =1.

(ii) If i ∈J but i /∈ I then αi is even, therefore (1−2θi)
αi =1.

Remark 2. If
∑

i∈I θi is an odd value, then
∏

i∈I (1 − 2θi)
αi = −1. If∑

i∈I θi is an even value, then
∏

i∈I (1−2θi)
αi =1.

PROPOSITION 3. Let θ ∈ {0,1} and t an integer variable, where θ =∑
i∈I θi −2t and 0� t � 1

2

(∑
i∈I θi +1

)
, then

∏
i∈I (1−2θi)

αi =1−2θ .

Proof. If
∑

i∈I θi is odd then θ is 1, and if
∑

i∈I θi is even then θ is 0.
This proves the proposition.

For instance, if
∑
i∈I

θi = 4 then θ = 4 − 2t for 0 � t � 2, which forces t = 2

and θ =0. If
∑
i∈I

θi =5 then θ =5−2t for 0� t �3 , which requires t =2 and

θ =1.

Remark 3. The product term λ1λ2 · · ·λn can be replaced by a 0−1 vari-

able λ, where λ�λi for i =1,2, . . . , n, and λ�
n∑

i=1
λi −n+1.

By referring to Proposition 3 and Remark 3, Equation (4) becomes

z= z0λ(1−2θ). (5)

Now z can be reformulated as the linear function of z0, λ and θ , as
described below:
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PROPOSITION 4. Let λ, θ ∈ {0,1}, z is the upper bound of z, and z > 0,
then:

z= z0λ(1−2θ)⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z=w −2r

0�w � zλ

z0 + z(λ−1)�w � z0 + z(1−λ)

0� r � zθ

r � zλ

z0 + z(λ+ θ −2)� r � z0 + z(2−λ− θ)

Proof.
If λ = 0 then w = 0 and r = 0 based on (i) and (iv), which results in z =
w −2r = z0λ(1−2θ)=0.
If λ=1 and θ =0 then w=z0 (from (ii)) and r =0 (from (iii)), which results
in z= z0 = z0λ(1−2θ).
If λ=1 and θ =1 then w=z0 (from (ii)) and r =z0 (from (v)), which results
in z=−z0 = z0λ(1−2θ).
The above cases support that z= z0λ(1−2θ)=w −2r.

Remark 4. For z=x
α1
1 x

α2
2 · · ·xαn

n , where xi �0, Equation (5) becomes z=
z0λ. Following Proposition 4, z is simplified as z =w where (i) 0 �w � zλ

and (ii) z0 + z(λ−1)�w � z0 + z(1−λ).

3. Modified Floudas’ Model

This section merges the technique in Section 2 into the Floudas’ Model
of P1. Denote ypi = ln x0

pi and ykqi = ln x0
kqi , where x0

pi � ε and x0
kqi � ε

for ε to be a value indicating machine precision (as ε = 10−8). The prod-
uct terms z0

p = x
αp1

1 x
αp2

2 · · ·xαpn

n and z0
kq = x

βkq1

1 x
βkq2

2 · · ·xβkqn

n are expressed as
z0
p =e

∑n
i=1 αpiyi and z0

kq =e
∑n

i=1 αkqiyi . Based on the above discussion, the GGP
model can be converted into the following linear mixed 0–1 program:
P2 (Modified Floudas’ Model):

Minimize
T0∑

p=1

cp(wp −2rp)

subject to
Tk∑

q=1

hkq(wkq −2rkq)� lk for k =1, . . . ,K,
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(a1) 0�wp � zλp, p =1, . . . , T0,

(a2) wp − e
∑

αpiypi + z(1−λp)�0, p =1, . . . , T0,

(a3) −wp + e
∑

αpiypi + z(λp −1)�0, p =1, . . . , T0,

(a4) 0� rp � zθp, p =1, . . . , T0,

(a5) rp � zλp, p =1, . . . , T0,

(a6) rp − e
∑

αpiypi + z(2−λp + θp)�0, p =1, . . . , T0,

(a7) −rp + e
∑

αpiypi + z(λp + θp −2)�0, ∀p ∈J , p =1, . . . , T0,

(a8)
n∑

i=1
λpi −n+1�λp, p =1, . . . , T0,

(a9) λp �λpi, p =1, . . . , T0, i =1, . . . , n,

(a10) θp =∑
i∈I

θpi −2tp, p =1, . . . , T0,

(a11) 0� tp � 1
2(

∑
i∈I

θpi +1), p =1, . . . , T0,

(a12) xpiλpi �xpi �xpiλpi, p=1, . . . , T0, i=1, . . . , n,

(a13) xpi(λpi −2θpi −1)+ eypi

�xpi � (1−λpi + θpi)xpi + eypi , ∀pi ∈J, p =1, . . . , T0,

i =1, . . . , n,

(a14) xpi(λpi + θpi −2)− eypi

�xpi �xpi(3−λpi −2θpi)− eypi , ∀pi ∈J, p =1, . . . , T0,

i =1, . . . , n,

(a15) xpi(λpi −1)+ eypi

�xpi �xpi(1−λpi)+ eypi , ∀pi /∈J , p =1, . . . , T0,

i =1, . . . , n,

(a16) ln ε �ypi � ln xpi, p=1, . . . , T0, i=1, . . . , n,

where λp, λpi , θp, θpi are 0–1 variables, and tp is an integer variable, for
p =1, . . . , T0. z=Max{0, zp, zkq, for all p and kq} is a constant.

(b1)–(b16): the same as in Equations (a1)–(a16) where all subscripts p
and pi are changed to kq and kqi, respectively. All λkpi , θkqi , λkq , θkq are
0-1 variables, and tkq is an integer variable.

Each of the constraints (a2), (a3), (a6), (a7), (a13), (a14), (a15) is the
difference between two convex functions. All other constraints in P2 are
linear inequalities composed of 0–1 variables and continuous variables.
Using the branch-bound algorithm, the P2 program can be computed to
find a point sufficiently closed to the global optimum based on the pre-
specified precision through the linear lower bounding of the concave parts.
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Remark 5. For a general signomial form z=x
α1
1 x

α2
2 · · ·xαn

n where the num-
ber of variables with free lower bounds is k(k < n), the number of extra
binary variables used to transform z into some proper forms solvable using
Floudas’ methods is 2+2n. Moreover, the number of additional constraints
in the transformation is 13+7n+2k.

4. Convexification Strategies for Signomial Terms with Three Variables

P2 provides a model for convexifying general signomial terms in a GGP
problem based on an exponential-based decomposition techniques. How-
ever, there are more computationally efficient convexification strategies for
signomial terms with specific features. To simplify the expression, this study
takes a signomial term with three variables as an example illustrating the
convexification techniques. Consider the following propositions:

PROPOSITION 5. A twice-differentiable function f (X) = cx
α1
1 x

α2
2 x

α3
3 is a

convex function in one of the following conditions.

(i) c � 0, α1, α2, α3 � 0, and αi is even for corresponding xi, xi < 0,
i = 1,2,3. (i.e., if xi < 0, then αi must be even. Otherwise, αi can be
odd or even.)

(ii) c<0, 0�α1, α2, α3 <1,
∑3

i=1 αi �1, and x1, x2, x3 �0.
(iii) c<0, α1, α2, α3 �0, and odd number of all αi are odd for corresponding

xi, xi <0, i =1,2,3. (Referring to Tsai et al. (2002))

Proof. Denote H(X) as the Hessian matrix of f (X), and denote Hi as
the ith principal minor of a Hessian matrix H(X) of f (X). The determi-
nant of Hi can be expressed as detHi = (−1)i(

∏i
j=1 cαjx

iαj −2
j )(1−∑i

j=1 αj )

for i =1,2,3.

(i) Since c�0, α1, α2, α3 �0, and αi is even for corresponding xi, xi <0(i =
1,2,3), then detH1 �0, detH2 �0, and detH3 �0. Hence, f (X) is con-
vex.

(ii) Since c < 0, 0 � α1, α2, α3 < 1,
∑3

i=1 αi � 1, and x1, x2, x3 � 0, then
detH1 �0, detH2 �0, and detH3 �0. Hence, f (X) is convex.

(iii) If odd number of αi are odd for corresponding xi, xi < 0(i = 1,2,3),
then x

α1
1 x

α2
2 x

α3
3 < 0. Since c < 0, α1, α2, α3 � 0, and x

α1
1 x

α2
2 x

α3
3 < 0, then

detH1 �0, detH2 �0, and detH3 �0. Therefore, f (X) is convex.

For a given signomial term z, if z can be converted into a set of con-
vex terms satisfying Proposition 5, then the whole solution process is more
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computationally efficient. Under this condition, z does not require expo-
nential-based decomposition.

Remark 6. For a signomial term z= cx
α1
1 x

α2
2 x

α3
3 , c�0, α1, α2, α3 �0, x1 <

0, x2, x3 > 0, if α1 is even, then z is convex. Otherwise, z can be expressed
as z = cx

α1
11x

α2
2 x

α3
3 + cx

α1
12x

α2
2 x

α3
3 (x1 � x11 � 0,0 < x12 � x1) where cx

α1
12x

α2
2 x

α3
3 is

convex.

For instance, z = x−1
1 x−2

2 x−1
3 with −5 � x1 � 5,0 < x2, x3 � 5 can be

expressed as z=x−1
11 x−2

2 x−1
3 +x−1

12 x−2
2 x−1

3 (−5�x11 �0,0<x12 �5) where the
term x−1

12 x−2
2 x−1

3 is a convex term requiring no transformation, and the
term x−1

11 x−2
2 x−1

3 can be transformed into some proper forms solvable by
Floudas’ methods.

Remark 7. For a signomial term z= cx
α1
1 x

α2
2 x

α3
3 , c<0, α1, α2, α3 �0, x1 <

0, x2, x3 > 0, if α1 is odd, then z is convex. Otherwise, z = cx
α1
11x

α2
2 x

α3
3 +

cx
α1
12x

α2
2 x

α3
3 (x1 �x11 �0,0<x12 �x1) where cx

α1
11x

α2
2 x

α3
3 is a convex term.

For instance, z = −x−1
1 x−2

2 x−1
3 with −5 � x1 � 5,0 < x2, x3 � 5 can

be expressed as z = −x−1
11 x−2

2 x−1
3 − x−1

12 x−2
2 x−1

3 (−5 � x11 � 0,0 < x12 � 5)

where −x−1
12 x−2

2 x−1
3 is a convex term and needs no transformation, and

−x−1
11 x−2

2 x−1
3 can be transformed into some proper forms solvable by

Floudas’ methods.

5. Examples

EXAMPLE 1.

Minimize Z(X)=x2.1
1 x2x

3
3 +x1

subject to
−x1 −x2

2 �−5,

x2 −x1 +x3 �13,

0�x1 �3,−2�x2 �3,−2�x3 �3.

This example contains free variables unable being treated by Floudas’
methods. This study introduces non-negative continuous variables w1, w2,
w3, w4, w5, r1, r2, and r3 as follows:

w1 −2r1 =x2.1
1 x2x

3
3 , w2 =x1, w3 =x2

2 , w4 −2r2 =x2, w5 −2r3 =x3.

Introducing positive variables z0
i , for i = 1, . . . ,5, and x0

j , for j = 1,2,3,
as follows:
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z0
1 = e2.1y1+y2++3y3, z0

2 = ey1, z0
3 = e2y2, z0

4 = ey2,

z0
5 = ey3, and x0

j = eyj , for j =1,2,3.

The upper bounds of zi and xj are specified as z=Max{z1, z2, z3, z4, z5}=
814 and x ={x1, x2, x3}=3, respectively.

According to (a1)–(a16) and (b1)–(b16), this example is converted into
the following program:

Minimize (w1 −2r1)+w2

subject to

−w2 −w3 �−5,

(w4 −2r2)−w2 + (w5 −2r3)�10,
(a1) 0�w1 � zλ1,0�w2 � zλ2,0�w3 � zλ3,0�w4 � zλ4,

0�w5 � zλ5,

(a2), (a3) e2.1y1+y2+3y3 + z(λ1 −1)�w1 � e2.1y1+y2+3y3 + z(1−λ1),

ey1 + z(λ2 −1)�w2 � ey1 + z(1−λ2),

e2y2 + z(λ3 −1)�w3 � e2y2 + z(1−λ3),

ey2 + z(λ4 −1)�w4 � ey2 + z(1−λ4),

ey3 + z(λ5 −1)�w5 � ey3 + z(1−λ5),

(a4) 0� r1 � zθ, 0� r2 � zθ1, 0� r3 � zθ2,

(a5) r1 � zλ1, r2 � zλ4, r3 � zλ5,

(a6), (a7) e2.1y1+y2+3y3 + z(λ1 + θ −2)� r1 � e2.1y1+y2+3y3 + z(2−λ1 − θ),

ey2 + z(λ4 + θ1 −2)� r2 � ey2 + z(2−λ4 − θ1),

ey3 + z(λ5 + θ2 −2)� r3 � ey3 + z(2−λ5 − θ2),

(a8) λ2 +λ4 +λ5 −3+1�λ1,

(a9) λ1 �λ2, λ1 �λ3 and λ1 �λ5,

(a10) θ = θ1 + θ2 −2t,

(a11) t � 1
2(θ1 + θ2 +1),

(a12) 0�w2 �3λ2, −2λ4 �w4 −2r2 �3λ4,

−2λ5 �w5 −2r3 �3λ5,

(a13) 3(λ4 − θ1 −1)+ ey2 �w4 −2r2 �3(1−λ4 + θ1)+ ey2,

3(λ5 − θ2 −1)+ ey3 �w5 −2r3 �3(1−λ5 + θ2)+ ey3

(a14) 3(λ4 − θ1 −2)+ ey2 �w4 −2r2 �3(3−λ4 −2θ1)+ ey2,

3(λ5 − θ2 −2)+ ey3 �w5 −2r3 �3(3−λ5 −2θ2)+ ey3,

(a15) 3(λ2 −1)+ ey1 �w2 �3(1−λ2)+ ey1,

ln ε �y1 � ln 3, ln ε �y2 � ln 3, ln ε �y2 � ln 3,
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where λ1, λ2, λ3, λ4, λ5, θ, θ1, θ2 are 0–1 variables, z= 814, and y1, y2, y3 are
unrestricted in sign.

By adding eight more binary variables, the above program is solved by
Floudas’ methods with the global optimal solution (x1, x2, x3)= (3,−2,3),
(w1,w2,w3,w4,w5)= (542.4359,3,4,2,3), t =0, (r1, r2, r3)= (542.3459,2,3),
(y1, y2, y3) = (1.0986,0.6931,1.0986), (λ1, λ2, λ3, λ4, λ5) = (1,1,1,1,1), and
(θ, θ1, θ2)= (1,1,0). The objective value is –539.4359.

EXAMPLE 2. Insulated steel tank design (Ryoo and Sahinidis, 1995)

Minimize 400x0.9
1 +1000+22(x2 −14.7)1.2 +x4

subject to
x2 =exp(−3950/(x3 +460)+11.86),

144(80−x3)=x1x4,

0�x1 �15.1,14.7�x2 �94.2,−459.67�x3 �80, 0�x4.

The decision variable x3, which denotes the temperature of the ammo-
nia inside the tank, may be a negative value. This problem cannot be
treated directly by Floudas’ methods. After converting the program with
the proposed techniques, the program is solved to obtain the global solu-
tion (x1, x2, x3, x4)= (0,94.1779,80,0) with the objective value 5194.87.

EXAMPLE 3.

Minimize Z(X)=x−2
1 x−0.5

2 x−1
3 +8x−1

1 x2
4 −8x4

subject to
x1 −x0.5

2 x0.5
3 �3,

2x1 +x2 −x3 +x4 �6,

1�x1 �5, 3�x2 �7, 1�x3 �10, 1�x4 �5.

This program is a non-convex program with four positive variables.
By referring to the proposed convexification rules in Proposition 5, the
non-linear terms x−2

1 x−0.5
2 x−1

3 and −x0.5
2 x0.5

3 are convex, and 8x−1
1 x2

4 can be
transformed into a convex term 8x−1

1 z−1 where z=x−2
4 . By piecewisely line-

arizing a single term z, the whole program can be reformulated as a convex
program solvable to obtain a global optimum. However, solving this pro-
gram by Floudas’ methods requires piecewisely linearizing four logarithmic
terms ln xi(i =1,2,3,4) and a non-convex term −x0.5

2 x0.5
3 . Table 1 lists the

computational results of solving the program by Floudas’ methods and the
proposed method on the same computer with LINGO (2001). Table 1 dem-
onstrates that the proposed method is more computationally efficient than
Floudas’ methods.
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Table 1. Computational comparison of Example 3

Floudas’ methods (ε �5%) The proposed method

(x1, x2, x3, x4) (5, 3.5325, 10, 2.4675) (5, 3.5, 10, 2.5)
Objective value −9.9962 −9.9979
CPU time (mm:ss) 02:15 00:03

Table 2. Computational comparison of Example 4

Floudas’ methods (ε �5%) The proposed method

(x1, x2, x3) (0.2, 0.8, 1.9) (0.2, 0.8, 1.9079)
(y1, y2, y3, y4) (1, 1, 0, 1) (1, 1, 0, 1)
Objective value 4.5969 4.5796
CPU time (mm:ss) 07:12 00:02

EXAMPLE 4. Process synthesis MINLP (Ryoo and Sahinidis, 1995)

Minimize (y1 −1)2 + (y2 −2)2 + (y3 −1)2

− log(y4 +1)+ (x1 −1)2 + (x2 −2)2 + (x3 −3)2

subject to
y1 +y2 +y3 +x1 +x2 +x3 �5,

y2
3 +x2

1 +x2
2 +x2

3 �5.5,

y1 +x1 �1.2, y2 +x2 �1.8, y3 +x3 �2.5,

y4 +x1 �1.2, y2
2 +x2

2 �1.64,

y2
3 +x2

3 �4.25, y2
2 +x2

3 �4.64,

0�x1 �1.2, 0�x2 �1.8, 0�x3 �2.5,

yi ∈{0,1}, i =1,2,3,4.

Notably, − log(y4 + 1) of the objective function is a convex term and
this program is a convex program solvable by the proposed method directly
without any transformation. Table 2 compares the computational time
between Floudas’ methods and the proposed method.

6. Conclusions

This study proposes a method for improving Floudas’ methods to treat free
variables in GGP programs. The improvement is achieved by converting the
logical relationship among the variables in a product term into a set of lin-
ear mixed 0-1 inequalities, which can be merged conveniently into Floudas’
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methods. This study also develops some useful rules to effectively convexify
more general signomial terms in GGP programs.
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