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Abstract The tool planning problem is to determine how many
tools should be allocated to each tool group to meet some objec-
tives. Recent studies aim to solve the problem for the cases of
uncertain demand. Yet, most of them do not involve cycle time
constraints. Cycle time, a key performance index in particular
in semiconductor foundry, should not be ignored. The uncertain
demand is modeled as a collection of scenarios. Each scenario,
with an occurrence probability, represents the aggregate demand
volume under a given product mix ratio. A genetic algorithm
embedded with a queuing analysis is developed to solve the
problem. Experiments indicate that the proposed solution outper-
forms that obtained by considering only a particular scenario.

Keywords Capacity planning · Cycle time ·
Demand uncertainty · Genetic algorithm · Tool planning

Notation
Indices

i Product type (1� i � n)
j Tool group (1� j �m)
k Scenario (1� k � l)

Parameters

dk The aggregate demand quantity under scenario k
rk The probability of occurrence for scenario k
PX0 The given product mix ratio,

PX0 = (b1 : . . . : bi : . . . : bn) ,
where bi denotes the ratio of product i,

∑n
i=1 bi = 1

Xc The existing toolset of the fab,

Xc =
(

xc
1, . . ., xc

j , . . ., xc
m

)T
,

where xc
j represents the number of tools in tool group j
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C Tool cost vector,
C = (

c1, . . ., cj , . . ., cm
)

,
where cj is the cost per tool for tool group j

sk Maximum allowable stock-out in scenario k
B The budget constraint for tool procurement
CT0 The target mean cycle time
pik The price of product i per unit in scenario k
vik The variable cost of product i per unit in scenario k
eik The stock-out cost of product i per unit in scenario k
p̄k The weighted price per wafer for scenario k under the

product mix PX0, p̄k = ∑n
i=1 bi · pik

v̄k The weighted variable cost per wafer for scenario k
under the product mix PX0, v̄k = ∑n

i=1 bi ·vik

ēk The weighted stock-out cost per wafer for scenario k
under the product mix PX0, ēk = ∑n

i=1 bi · eik

T Total number of periods used in calculating tool
depreciation

Variables

X f The final toolset,

X f =
(

x f
1 , . . ., x f

j , . . ., x f
m

)T
,

where x f
j represents the number of tools in tool group j

Xn The new toolset to be procured,

Xn = X f − Xc =
(

xn
1 , . . ., xn

j , . . ., xn
m

)T
,

where xn
j represents the number of new tools in tool

group j
nk

(
X f

)
The amount of wafer produced by toolset X f in
scenario k

1 Introduction

Semiconductor wafer fabrication is a capital-intensive industry.
A typical semiconductor wafer fabrication facility (fab) includes
several hundred tools classified into dozens of tool groups; each
tool in a tool group is functionally identical. The investment in
a fab normally exceeds one billion US dollars, and equipment
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accounts for about 80% of the investment. The tool planning
problem, determining how many tools should be allocated to
each tool group to achieve some objectives, is thus very im-
portant. In this paper, a tool allocation plan in the tool planning
problem is called a toolset.

Compared to other production systems, the performance
evaluation of a toolset for wafer fabrication is relatively more
complicated. Semiconductor wafers undergo hundreds of manu-
facturing operations. A collection of 25 wafers, known as a lot,
moves among tool groups with the reentrant feature, that is, a lot
visits a tool group many times. A highly complex manufactur-
ing flow combined with some stochastic factors such as tool
breakdown makes the estimation of the performance a toolset
non-trivial.

Static models are often used in industry for tool planning,
owing to their fast computation and ease of use [1, 2]. Yet,
these methods have two drawbacks, namely, inaccuracy of cap-
acity requirement estimation and lack of queuing delay informa-
tion. Therefore, discrete event simulation and queuing network
models are commonly used in tool planning literature for evalu-
ating the performance of a toolset.

Discrete event simulation provides precise modeling, yet it
requires lengthy computation. Queuing network models, analyt-
ical techniques equipped with less precise modeling, can rapidly
give performance estimates, but the estimates may be less accu-
rate than that obtained by simulation.

Using simulation to estimate performance, the literature on
tool planning has published various methods for seeking can-
didate toolsets. Grewal et al. [3] present a marginal allocation
procedure that updates the candidate toolset by adding one tool
at a time to the tool group according to certain criteria. Mol-
laghasemi and Evans [4] develop an interactive method to lo-
cate a desired toolset for meeting multiple objectives. Chen and
Chen [5] present an experimental design approach, combined
with a response surface methodology, to identify a satisfactory
toolset. Methods based on simulation are not suitable for per-
forming an extensive search in locating the desired toolset be-
cause they have a lengthy run-time requirement.

A great number of studies have developed queuing models for
estimating the performance of a toolset; some of them are listed
in [6–10]. Based on these queuing models, various methods for
seeking candidate toolsets have been proposed. Yoneda et al. [11]
present a simulated annealing approach. Bretthauer [12] devel-
ops a branch and bound algorithm. Connors et al. [10] propose
a marginal allocation algorithm that adds one tool at a time to
the tool group, which tends to reduce the mean cycle time most
effectively. Hopp et al. [13] proposed a greedy heuristic method
for searching a near-optimal toolset. Bard et al. [14] compare
the solution quality of several heuristic methods for tool plan-
ning. Based on a queuing model, Chou [15] proposes a qualita-
tive reasoning method and establishes a solution architecture for
tool planning. Chou and You [1] develop equi-throughput curves,
and use a marginal allocation procedure to identify a toolset that
meets the planner’s criteria. Chou and Wu [16] propose a utility
function, which integrates two criteria (cycle time and through-
put) as a single criterion in evaluating a toolset.

The aforementioned literature on tool planning assumes that
the future demand of product is certain. Yet, some other studies
assume that the future demand is uncertain. Swaminathan [17]
addresses a tool planning problem under demand uncertainty in
a single period. The uncertain demand is modeled as a collection
of scenarios. Each scenario, with an occurrence probability, rep-
resents the demand for each type of product. Swaminathan [17]
formulates the tool planning problem by a mixed integer pro-
gram. The fab throughput is only constrained by available ma-
chine hours. Without applying queuing or simulation techniques,
his approach cannot yield some important performance measures
of a fab such as the mean cycle time. In his further study, the un-
certain demand is extended to multiple periods [18]. Barahona
et al. [19] and Hood et al. [20] enhance the tool planning model
by modifying the objective function and including some more
constraints such as the stock-out volume.

In a semiconductor fab, the cycle time is the period from bare
silicon wafer start to wafer out. Mean cycle time is a key per-
formance index of semiconductor fabs. The life cycles of some
semiconductor products are quite short; prices of such products
may even drop to half in six months. A shorter manufacturing
cycle time will reduce the time-to-market and increase profit. In
tool planning studies, including the target mean cycle time in fab
models is thus very important. This point has been addressed in
the context of certain demand [1, 3, 10], but has been lacking in
the context of uncertain demand.

This study presents a model for a tool planning problem,
which includes the cycle time constraint in the context of uncer-
tain demand. The uncertain demand is modeled by a collection
of scenarios. Each scenario, with an occurrence probability, rep-
resents the aggregate demand volume under a given product mix
ratio. A genetic algorithm embedded with a queuing analysis
is developed for the solution. The remainder of this paper is
organized as follows: Sect. 2 formulates the tool planning prob-
lem, Sect. 3 explains the genetic algorithm (GA) for locating the
near optimum toolset, Sect. 4 describes a method for defining
the search space of the proposed GA, Sect. 5 presents numerical
experiments, and concluding remarks are given in Sect. 6.

2 Problem formulation

The addressed tool planning problem is to determine how to pur-
chase additional tools for a future period of an existing fab in
an environment with the following two characteristics. First, the
forecasted demand in the concerned period is uncertain in aggre-
gate volume under a given product mix ratio. Second, the mean
cycle time of products should be under a predefined target. The
objective of the planning is to maximize the amount of profit,
which is caused by the procurement of new tools.

The environment of interest is frequently faced by a typical
semiconductor foundry, which is a completely make-to-order fab
and has a large number of customers. Cycle time is a very im-
portant performance index for semiconductor foundries, due to
the short life cycle of electronic products. Lengthy cycle time
may seriously cause the loss of customer orders. Therefore, the
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tool planning decisions in semiconductor foundries should in-
clude the constraints of cycle time. A semiconductor foundry
has to periodically (e.g., every year) survey the future demand
of their customers to review the need for tool procurement. Cus-
tomers’ feedbacks can be summarized to yield the following
information: a certain product mix ratio and several probabilis-
tic aggregate demand volumes. The product mix ratio denotes
the demand ratios among each type of product. For example, the
product mix ratio for three types of products may be (A : B :
C) = (1 : 2 : 3). A probabilistic demand volume means a volume
associated with an occurrence probability. For example, for the
given product mix ratio, the aggregate demand volume may in-
volve the following three scenarios: 40 K wafers/month with 0.5
probability, 35 K wafers/month with 0.3 probability, and 30 K
wafers/month with 0.2 probability.

The following notations are used to formulate the problem.
The tool planning problem for the multiple probabilistic de-

mand scenarios (briefly termed the MDTP problem) can be for-
mulated as follows:

MDTP: Maximize F
(
X f

)− F
(
Xc

)
s.t.:

nk
(
X f )� Q

(
X f ) ∀k (1)

nk
(
X f )� dk ∀k (2)

dk −nk
(
X f ) � sk ∀k (3)

CXn � B (4)

x f
j , xn

j , nk

(
X f

)
∈ Z+ . (5)

In the above formulation, F(•) and Q(•) are both functions
of a toolset. As shown in Eq. 6, F(X) denotes the expected profit
of a particular toolset X across all demand scenarios, where the
first term represents the expected contribution margin, the sec-
ond term is the expected stock-out cost, and the third term is the
depreciation cost of tools over the concerned period:

F(X) =
l∑

k=1

[
rk ·nk(X) · ( p̄k − v̄k

)]

−
l∑

k=1

[
rk · (dk −nk(X)) · ēk

]− C · X

T
(6)

Q(X) = fqb (X; PX0, CT0) . (7)

As shown in Eq. 7, Q(X) denotes the maximum throughput
of a particular toolset X under two constraints, i.e., the prod-
uct mix ratio is PX0 and the mean cycle time should be less
than or equal to a predefined target CT0. The function fqb is
a binary search method embedded within a queuing model. The
queuing model is for computing the mean cycle time for a given
throughput. The throughput should be decreased or increased if
its associated mean cycle time is larger or smaller than CT0. The
throughput updating procedure terminates when the mean cycle
time is very close to CT0. Details of the function fqb can be
found in the Appendix.

The objective function is to maximize the profit increased by
the procurement of new tools, where F

(
X f

)
represents the ex-

pected profit of the final toolset X f , and F
(
Xc

)
is the expected

profit of the current toolset Xc across all scenarios. Constraints
Eq. 1 denote that the production volume in each demand scenario
should be less than the maximum throughput. Constraints Eq. 2
indicate that the production volume should be less than the de-
mand in each scenario. Constraints Eq. 3 specify the upper bonds
for stock out. Equation 4 is the budget constraint and Eq. 5 spec-
ifies the integer requirements for variables.

By consolidating the aforementioned constraints, the model
can be concisely presented as follows:

MDTP: Maximize F
(
X f

)− F
(
Xc

)

nk
(
X f ) = Min

(
Q

(
X f ), dk

)
∀k (8)

Q
(
X f )� (dk − sk) ∀k (9)

CXn � B (10)

x f
j , xn

j , nk

(
X f

)
∈ Z+ . (11)

Equation 8 can be easily derived from constraints Eqs. 1
and 2. Referring to Eq. 6, F

(
X f

)
is a monotonically increasing

function with respect to nk
(
X f

)
. That is, the higher the pro-

duction volume, the larger the profit. Since the upper bound
of nk

(
X f

)
is Min

(
Q

(
X f

)
, dk

)
, we thus can conclude that

nk
(
X f

) = Min
(
Q

(
X f

)
, dk

)
, as indicated in Eq. 8, for maximiz-

ing the objective function.
Equation 9 is derived from Eq. 3 by employing nk

(
X f

) =
Min

(
Q

(
X f

)
, dk

)
. Equation 3 can be easily transformed as

nk
(
X f

)
� (dk − sk), or equivalently, Min

(
Q

(
X f

)
, dk

)
� (dk −

sk), which implies that Q
(
X f

)
� (dk − sk) and dk � (dk − sk).

dk � (dk − sk) is always true and can be removed from the con-
straint list. The equivalence of Eqs. 3 and 9 is thus proved.

The MDTP problem formulated above is a complex nonlin-
ear integer programming model, where Q

(
X f

)
and nk

(
X f

)
are

related to X f by a set of nonlinear functions [10]. Moreover, the
search space of the problem is quite huge. A typical wafer fab in-
cludes about 100 tool groups. Given a particular toolset X, the
decision of whether or not to add one tool to each tool group j
( j = 1, . . ., 100) will yield a search space that comprises 2100

(or 1.27×1030) toolsets. Due to the complex nonlinear functions
and the enormous solution space, it seems impractical to solve
the problem analytically. A genetic algorithm is therefore pro-
posed to solve the problem.

3 Genetic algorithm

A genetic algorithm is proposed to locate efficiently a near-
optimal solution in the enormous space. The genetic algorithm
(GA) technique was first proposed in the early 1970s [21] and
has been widely applied to various areas [22]. Various applica-
tions have shown that GAs are powerful techniques for effec-
tively and efficiently solving large scale space-search problems.

A GA is an iterative procedure that maintains a constant-
sized population P(t) of candidate solutions (also known as chro-
mosomes). During each iteration step t, called a generation, new
chromosomes are created by invoking some genetic operators.
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Each existing and newly generated chromosome is evaluated to
determine its fitness value, which denotes how good the solu-
tion is. Based on these evaluations, a set of chromosomes are
screened out by a selection procedure to form the new popula-
tion P(t + 1). The procedure is iteratively performed until the
termination conditions are met.

Appropriate methods for representing a chromosome, ge-
netic operators, a fitness function, a selection strategy for form-
ing new population, and termination conditions must all be de-
fined in designing a genetic algorithm [22]. Each of these aspects
of the proposed GA is presented below.

3.1 Representation of a chromosome

A chromosome, the final toolset, is expressed by a string of m
positive integers, X f = [

x f
1 , . . ., x f

j , . . ., x f
m
]
. Each position of

a chromosome is called a gene. Let Np be the total number of
chromosomes in the population P(t). The initial population P(0)

is created by randomly generating Np chromosomes. In generat-
ing a chromosome, the value of each gene x f

j is randomly chosen

from the interval
[

L B
(

x f
j

)
, UB

(
x f

j

)]
, where L B

(
x f

j

)
and

UB
(

x f
j

)
denote the lower and upper bounds of x f

j , respectively.

The method for determining L B
(

x f
j

)
and UB

(
x f

j

)
is presented

in Sect. 4.

3.2 Fitness function

The fitness function in a GA is defined to evaluate the quality
of a chromosome. In the proposed GA, the fitness function, as
shown in Eq. 12, is based on the objective function of the MDTP
problem, with embellishments for including the required con-
straints as penalties [23].

Fitness =
[

F
(
X f )− F

(
Xc)

]
−Yk

l∑

k=1

(

1− Q
(
X f

)

(dk − sk)

)

− Z ·
(

C · Xn

B
−1

)

Yk =
{

0, if Q
(
X f

)
� (dk − sk);

Mk, otherwise

Z =
{

0, if C · Xn � B;
H, otherwise

(12)

where Mk and H denote large positive numbers.
The first term denotes the objective function, where F

(
X f

)

is computed by taking nk
(
X f

) = Min
(
Q

(
X f

)
, dk

)
. The second

term is a penalty reflecting constraint Eq. 9, while the third term
is another penalty reflecting constraint Eq. 10. The penalty terms
lead to a small fitness value if the solution violates the two con-
straints. A toolset with a small fitness value is less likely to
survive during the evolution of the population and tends to finally
be excluded from the population.

The penalty design can seemingly be removed from the fit-
ness function by excluding all the violation chromosomes (due to
over stock-out or over budget) from each population. However,
so doing might also exclude “good genes” from the population.
For a violation chromosome, particular segments of its genes
may exactly match a part of the optimum solution. Possibly car-
rying good genes, violation chromosomes shall not be forcibly
excluded from each population.

3.3 Crossover and mutation operators

The proposed GA defines two genetic operators, known as
crossover and mutation, to create new chromosomes.

The crossover operator is designed to create Np × Pcr new
chromosomes in each generation, where Pcr is a predefined
crossover probability. This operator is applied by first randomly
choosing Np × Pcr chromosomes from P(t) and randomly group-
ing them into (Np × Pcr)/2 pairs. For each pair of chromosomes,
a position in a chromosome (called the crossover point) is ran-
domly chosen, and the segments to the right of the crossover
point are exchanged. Let the pair of chromosomes for crossover
be X1 = [5, 7, 9, 1 : 2, 3, 6] and X2 = [1, 4, 5, 6 : 9, 8, 1]. Sup-
pose that the crossover point (:) has been chosen as indicated.
The resulting two new chromosomes would be Y1 = [5, 7, 9, 1 :
9, 8, 1] and Y2 = [1, 4, 5, 6 : 2, 3, 6].

The mutation operator is designed to create Np × Pmu new
chromosomes from P(t), where Pmu is a predefined proba-
bility of mutation. This operator is applied by first randomly
selecting Np × Pmu chromosomes from P(t). For each cho-
sen chromosome, a gene x f

j is randomly selected. Then, x f
j

is replaced by an integer randomly chosen from the interval[
L B

(
x f

j

)
, UB

(
x f

j

)]
.

3.4 Selection strategy

The chromosomes in population P(t), together with the new
chromosomes created by crossover and mutation, are put in
a pool. Let S represent the pool in which the number of chro-
mosomes is h = Np · (1+ Pcr + Pmu); Np chromosomes are to be
selected from S to the population P(t +1). The selection strategy
used in this paper is termed the rank-space method [24], which is
presented below.

Step 1: Sort in descending order the chromosomes in S accord-
ing to their fitness values. Let X1, X2, . . ., Xh be the
sorted result. Such a ranking of Xi , termed quality-
ranking, is represented by Rq(Xi).

Step 2: Move the best quality-ranking chromosome from S to
P(t +1).
S = S −{X1};
P(t +1) ← X1;
Y1 = X1;
/* rename the chromosome selected for P(t +1) */
N = 1; /* count the chromosome number in P(t +1) */

Step 3: For each chromosome Xi in S, compute the diversity in-
dex D(Xi):
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D(Xi) = ∑N
k=1

1
|Xi−Yk| ;

/* Yk is a chromosome in P(t +1) */
Step 4: Sort in ascending order the chromosomes in S accord-

ing to D(Xi). Such a ranking of Xi , termed diversity-
ranking, is represented by Rd(Xi).

Step 5: Compute the sum of quality-ranking and diversity-
ranking of Xi in S:
T(Xi) = Rq(Xi)+ Rd(Xi) .

Step 6: Sort in ascending order the chromosomes in S accord-
ing to T(Xi). Such a ranking of Xi , termed combined-
ranking, is represented by Rc(Xi).

Step 7: For each chromosome in S, compute the probability of
putting Xi in P(t +1):
r = Rc(Xi);
Prob(Xi) = p · (1− p)r−1 ; /* p is a predefined probabil-
ity, typically set to 0.667 */

Step 8: Generate a random number and determine which chro-
mosome in S is selected. Let Xm be the selected chromo-
some. Move Xm from S to P(t +1).
S = S −{Xm};
P(t +1) ← Xm ;
Ym = Xm ;
/* rename the chromosome selected for P(t +1) */
N = N +1;
/* count the chromosome number in P(t +1) */

Step 9: Termination check,
if N < Np then go to Step 3,
else stop.

3.5 Terminating conditions

Population P(t) is iteratively updated until the following ter-
mination conditions are met. The GA stops when a particular
chromosome keeps the best solution for over NG generations or
when t = Nf .

4 Determination of searching space

Scale of searching space is critical to the efficiency of a GA. In
our model, the value of each gene x f

j is chosen from the inter-

val
[

L B
(

x f
j

)
, UB

(
x f

j

)]
. The determination of L B

(
x f

j

)
and

UB
(

x f
j

)
is described below.

Equation 9 suggests that nL , the lower bound of throughput,
should be nL = Maxl

k=1(dk − sk). The lower bound throughput
for product i thus equals nL · bi . The least required number of
tool group j , denoted by xL

j , can be computed by

xL
j =

⌈∑n
i=1 tij ·nL ·bi

aj

⌉

,

where tij is the standard process time of product i on tool j , aj is
the available time for tool j during the time horizon and �·� de-
notes taking the integer ceiling. Further considering the existing

tools xc
j , the lower bound for x f

j is given by:

L B
(

x f
j

)
= Max

(
xL

j , xc
j

)
for j = 1, . . ., m .

Constraint Eq. 8 gives an upper bound of the throughput
for each scenario. Since nk

(
X f

)
� dk for every scenario k, the

throughput of the fab is thus bounded by nU = Maxl
k=1 dk . The

upper bound of tool group j , denoted by xU
j , can be accordingly

computed as:

xU
j =

⌈
n∑

i=1

tij ·nU ·bi

aj ·β

⌉

,

where 0 < β < 1 is a heuristically defined parameter for consid-
ering the effects of cycle time constraints. The upper bound for
x f

j can therefore be defined as

UB
(

x f
j

)
= Max

(
xU

j , xc
j

)
for j = 1, . . ., m .

5 Numerical examples

The performance of the proposed method is evaluated by solving
a hypothetical MDTP problem. Four cases are tested to exam-
ine our model. The four cases are characterized by the different
probability combination for demand scenarios. The following as-
sumptions are made about the context of the testing examples.

The semiconductor fab produces four product types: A, B,
C, and D. The planning horizon of tool procurement for the fab
is half a year. The forecasted product mix ratio for the planning
horizon is PX0 = (0.3, 0.2, 0.3, 0.2). Each product requires 400
to 500 operations on 101 tool groups. The target mean cycle time
is CT0 = 4PT0, where PT0 is the mean processing time of all
product types. The budget for tool procurement is 400 million
dollars.

The existing toolset can produce 180 K wafers for PX0 in
the planning horizon. Table 1 shows the aggregate demand vol-
ume of three possible scenarios, forecasted by the marketing de-
partment. Scenario 1 represents a moderate demand; scenario 2
denotes a high demand; and scenario 3 implies a fair demand.
Table 2 shows the probability of each scenario in four tested
cases, where ri denotes the probability of scenario i.

Table 3 shows the profit caused by MDTP versus the profit
incurred by planning only for a particular scenario. Let Xn

1 rep-
resent the new toolset planned for Case 1, where (r1, r2, r3) =
(0.5, 0.3, 0.2); Xn

0 represents the new toolset planned for a case
with (r1, r2, r3) = (1, 0, 0). In row 2 of Table 3, which indi-
cates the occurrence of Case 1, the expected profit by purchasing

Table 1. The aggregate demand volumes for three scenarios

Scenario 1 Scenario 2 Scenario 3

Demand dk 210 K 238 K 189 K



570

Table 2. The occurrence probability of each scenario in four tested cases

(r1, r2, r3)

Case 1 (0.5, 0.3, 0.2)
Case 2 (0.3, 0.5, 0.2)
Case 3 (0.3, 0.2, 0.5)
Case 4 (0.34, 0.33, 0.33)

Table 3. Comparison of profits by MDTP and single scenario planning (unit:
$ 1000)

Case (r1, r2, r3) MDTP (1, 0, 0) (0, 1, 0) (0, 0, 1)

Case 1 (0.5, 0.3, 0.2) 24 065 22 678 22 363 7913
Case 2 (0.3, 0.5, 0.2) 35 945 25 453 35 102 8846
Case 3 (0.3, 0.2, 0.5) 12 163 10 771 6179 5281
Case 4 (0.34, 0.33, 0.33) 21 217 18 867 20 021 7446

toolset Xn
1 (column 3) is higher than that by purchasing toolset

Xn
0 (column 4). Likewise, for each tested case (row), the so-

lution obtained by MDTP (column 3) always outperforms the
three other solutions obtained by considering only one scenario
(column 4–6). The percentage difference in profit ranges from
2.4% to 306% in the tested cases, where 306% = (35 945 −
8846)/(8846). This implies that the toolset obtained by MDTP
performs well across all scenarios, and thus reduces the risk of
demand uncertainty.

The proposed GA method was coded in C++ language and
performed on a Pentium IV computer. In the GA, the crossover
rate was set to Pcr = 0.6, the mutation rate to Pmu = 0.01, and
the population size to Np = 50. The search terminates when
a particular toolset maintains the best solution for over NG = 500
generations. In this example, the search space comprises around
2.22×1037 toolsets and the number of toolsets visited by the
proposed GA is about 1.2×105. The computation time for the
GA to obtain the final solution is about 8 h, which seems accept-
able for a long-term decision problem such as tool planning.

6 Concluding remarks

This study presents a methodology for solving the tool plan-
ning problem in an environment, which involves multiple and
probabilistic demand volumes for a given product mix ratio with
a target mean cycle time. The previous literature on the tool
planning issue for multiple uncertain demand scenarios has not
addressed cycle time – a key performance index in semiconduc-
tor manufacturing. The formulated MDTP problem does reflect
a business environment in the real world, in which semiconduc-
tor fabs face market demand variation and short time-to-market.

The proposed methodology is a GA-based approach. Candi-
date toolsets are iteratively generated and evaluated until the op-
timum solution is obtained. A binary search procedure combined
with a queuing model is proposed to compute the throughput of
a toolset, which is subsequently used in evaluating the perform-

ance of the toolset. For a typical semiconductor fab, identifying
the optimum solution using the GA takes about 8 h. This compu-
tational time is acceptable because tool planning in semiconduc-
tor manufacturing is a long-term and large-scale problem.

Experimental results show that the proposed solution to the
MDTP problem is better than the solution obtained for a particu-
lar demand scenario. The percentage difference in profit ranges
from 2.4% to 306% in the tested cases. Finally, future research
may address the tool planning problem under uncertain demand
volumes and varying product mix ratios.
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Appendix: Throughput estimation

In this appendix we present an iterative scheme for estimating
the capacity (throughput) of a toolset under a target mean cycle
time. The use of queuing models for estimating the performance
of a toolset a in fab has been widely published. Typical examples
can be found in [6, 10].

The input and output relationships of such a queuing model
can be formulated as Eq. 13. This equation shows that given
a product mix (PX0) and a wafer release rate (R0), a queu-
ing model fq can quickly compute the mean cycle time CTi

for a toolset Xi . The subscript q denotes that the function fq is
a queuing model:

CTi = fq(Xi; PX0, R0) . (13)

Notice that in the function fq , PX0, R0 and Xi denote three
independent variables. The symbol “;” is used to clarify which
variables are to be varied and which are to be fixed in a particu-
lar application. The variables to the right-hand side of “;” are
fixed, and that to the left-hand side is varied. Equation 13 there-
fore denotes that for a particular scenario (PX0, R0), the mean
cycle time CTi for a toolset Xi can be computed by the queuing
model fq .

In steady state, the wafer release R0 rate may be considered
as being equal to the throughput Q0 (the output rate). Equa-

Fig. 1. The relationship between throughput and cycle

tion 13 can therefore be reformulated as Eq. 14:

CTi = fq(Xi; PX0, Q0) . (14)

The queuing model fq can also be used to compute the
mean cycle times for various throughputs, in a particular scenario
(PX0, X0), as formulated in Eq. 15. By evaluating the queu-
ing model [10], the relationship between mean cycle time and
throughput is as shown in Fig. 1;

CTi = fq(Qi; PX0, X0) . (15)

With reference to Fig. 1, increasing Qi in general will in-
crease CTi . Given this monotonically increasing feature, a binary
search procedure based on Eq. 15 can be used to find a Qi , at
which CTi ∼= CT0 in the scenario (PX0, X0).

A function fqb representing the binary search procedure is
formulated in Eq. 16, where the subscripts qb denote the com-
bination of a queuing model and the binary search proced-
ure. This equation denotes that in a scenario (PX0, CT0), the
function fqb can determine the maximum throughput Q(X) for
a toolset X:

Q(X) = fqb(X; PX0, CT0) . (16)
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