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NetworkDEAmodels assess production systems that contain a set of network-structured subsystems. Each subsystemhas input and
output measures from and to the external network and has intermediate measures that link to other subsystems. Most published
studies demonstrate how to employ DEA models to establish network DEA models. Neither static nor dynamic network DEA
models adjust the links. This paper applies the virtual gap measurement (VGM) model to construct a mixed integer program to
solve dynamic network DEA problems. The mixed integer program sets the total numbers of “as-input” and “as-output” equal to
the total number of links in the objective function. To obtain the best-practice efficiency, each DMU determines a set of weights for
inputs, outputs, and links.The links are played either “as-input” or “as-output.” Input and as-input measures reduce slack, whereas
output and as-output measures increase slacks to attain their target on the production frontier.

1. Introduction

Data envelopment analysis (DEA) models are used to mea-
sure the relative efficiency of each decision-making unit
(DMU) relative to its peers regarding multiple input indices
versus multiple output indices. Fewer input values and more
output values are desired to improve the model’s aggregated
performance score. The DMU assigns a set of weights to the
indices to obtain the best-practice performance score. The
drawback of these models is the omission of the internal
processes between inputs and outputs.

Seiford and Zhu [1] developed a DEA approach for
evaluating US commercial banks in a two-stage process
characterized by profitability and marketability. Zhu [2]
applied the same two-stage process to the Fortune Global 500
companies. Sexton and Lewis [3] studied the performance of
Major League Baseball in a two-stage process.The above two-
stage DEA papers are among the first to address formally the
links between the two internal stages and the link categories
being distinguished and discussed; these are the origin of
network DEA. For a two-stage model, the links’ role implies
a reduction in the first-stage outputs, thereby reducing the
efficiency of that stage but increasing the efficiency of the

second stage. A number of DEA studies have been developed
in an attempt to address this type of conflict. For instance,
Lewis and Sexton [4] used the network DEA approaches
of Färe and Whittaker [5] and Färe and Grosskopf [6, 7]
to compute the efficiency scores of subprocesses. “Link”
cannot be adjusted freely in radial models, which adjust
the inputs and outputs by the efficiency scores in a two-
stage process. For these models, the entire system efficiency
cannot be improved by adjusting links; see Kao and Hwang
[8] and Lewis and Sexton [4]. “Link” applied in nonradial
models (SBM), as has been discussed in recent years. Tone
and Tsutsui [9] introduced a network DEA and categorized
links into two types of “fixed links” and “free links.” “Free
links” means that the intermediate items are adjustable or
discretionary, not to change direction, and each DMU can be
increased or decreased from the observed one and is free to
assign each individual link to one of the three characteristics:
as-input, as-output, or nondiscretionary so that entire system
efficiency could be maximized. “Fixed links” means that the
intermediate items are nonadjustable or nondiscretionary.
The linking activities are kept unchanged that cannot improve
the efficiency of the entire system. In other words, the
intermediate products are beyond the control of DMUs.
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The recent extension of network DEA development to
dynamic DEA does not represent the effect of carry-over
activities (links) between two consecutive terms (nodes).
Tone and Tsutsui [10] and Kao [11] introduced the dynamic
DEA model using the nonradial and radial DEA models,
respectively.These researchers express the outputs from term
“𝑡” as being carried over to term “𝑡 + 1,” which means
that the carry-over can be regarded as one type of link.
Tone and Tsutsui [12] categorized carry-over into four types:
desirable (good), undesirable (bad), discretionary (free), and
nondiscretionary (fixed). The discretionary link is the same
as the free link in network DEA. Kao [13] considered general
multistage systems in which exogenous inputs are consumed
in addition to intermediate products. Cheng and Gao [14]
proposed a matrix-type network model which uses data in
input-output tables; it is tested and can be feasible in evaluat-
ing the relative performance.There aremany articles illustrat-
ing the application of free links and fixed links. Lozano [15]
relaxed the constraints for both the fixed-link and the free-
link cases, thus enhancing the discriminating power of the
model. This study is to present the performance assessment
of the individual processes of an external efficiency model.
Avkiran [16] illustrated dynamic network data envelopment
analysis (DN-DEA) in commercial banking with emphasis
on testing robustness. Huang et al. [17] proposed a two-stage
network model with bad outputs and supper efficiency (US-
NSBM). Empirical comparisons show that the US-NSBM
may be promising and practical for taking the nonperforming
loans into account and being able to rank all samples.

Decreasing the volumes of inputs and “as-input” links
and increasing the volumes of outputs and “as-output” links
would improve the entire system efficiency of DMU𝑜. Tone
and Tsutsui [10] introduced a slack-based measurement
(SBM) ex-post approach (adjusted score) and a 0-1 mixed
integer fractional program (MIP) to address the discretionary
slacks. The MIP model is, in fact, a nonlinear program.
Therefore, a 0-1 binary decision variable 𝛿𝑖𝑡 is assigned to free
link 𝑖 at term 𝑡, transforming the process into a SBM model.
These links introduced objective function in the MIP model
introduced by Tone and Tsutsui [10], which is the ratio of
inputs and as-input links to output and as-output links. The
symbol 𝑛free is the total number of free links. We suggest
the upper bounds of the furthest right summations in the
numeration and denomination should be replaced by 𝑛free−
and 𝑛free+, respectively. The nonradial model SBM has the
advantage of determining the slack on each input, output, and
free link. However, this model requires the total number of
as-input and as-output free links to generate the aggregate
efficiency score.

The current paper adopts the virtual gap measurement
(VGM) model introduced by Liu and Huang [18]. The prime
form of VGM is to seek the minimum virtual gap instead of
the maximal efficiency score. The obtained optimal values of
dual variables are used to compute the final efficiency score.
The prime and dual models are well defined and explainable
and the analysis is reliable. The contribution of this paper
is to solve the network DEA problem raised in Tone and
Tsutsui [10]. We employ a VGM two-phase procedure and
linear integer restrictions, whichwere developed byCook and

Zhu [19]. The researchers adopted linear integer restrictions
to capture the nonlinear expression, without actually having
to specify it directly in the optimization model. This paper
introduces a two-phase approach to solve the problem. Phase-
I is a mixed integer program model to partition the links
into two sets: as-input and as-output. Phase-II is a linear
programmodel to determine the slack of each input, as-input
link, output, and as-output link.The best-practice aggregated
efficiency of DMU𝑜 in the entire system was obtained. The
slacks of inputs, outputs, and free links are obtainable.
The VGM model is presented in Section 2. The proposed
two-phase performance evaluation model is presented in
Section 3. Because the uniqueness of the optimal solution
is important, we present an experiment on this subject in
Section 4. Managerial insights are introduced in Section 5.
We conclude this paper in the last section.

2. Virtual Gap Measurement Model

A set of DMUs 𝐽 = {1, 2, . . . , 𝑛} uses a production technology
that transforms a set of inputs 𝐼 = {1, 2, . . . , 𝑚} into a set
of outputs 𝑅 = {1, 2, . . . , 𝑠}. Let the notions 𝑥𝑖𝑗 and 𝑦𝑟𝑗 be
the nonnegative volumes of inputs and outputs of DMU𝑗.
The VGMDEAmodel is to measure the maximum efficiency
score of DMU𝑜. The multiplier (dual) form of the model
depicts the objective function as minimizing the virtual gap
(Δ∗𝑜) between virtual-input (∑𝑖∈𝐼 𝑥𝑖𝑜V𝑖) and virtual-output
(∑𝑟∈𝑅 𝑦𝑟𝑜𝑢𝑟). Each DMU in set 𝐽 alternatively acts as DMU𝑜.
Let the symbol “𝐷” denote the commensurate virtual unit
that is used for virtual gap, virtual-input, and virtual-output.
The first set of constraints ensures all DMUs have a non-
negative virtual gap. The vectors V = (V1, V2, . . . , V𝑚) and𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑠) are the decision variables of the weights
to be assigned to the inputs and outputs. The second and
third constraints define that each weighted input and output
have a lower bound 𝜏󸀠, a constant value with unit of𝐷. These
assign dual variables 𝜋𝑖, 𝑞𝑖, and 𝑝𝑟 to the three constraints.
The envelopment (prime) model of VGM is [M1]:

Δ∗𝑜 = min (∑
𝑖∈𝐼

𝑥𝑖𝑜V󸀠𝑖 − ∑
𝑟∈𝑅

𝑦𝑟𝑜𝑢󸀠𝑟) , 𝑜 = 1, 2, . . . , 𝑛; (1)

s.t. ∑
𝑖∈𝐼

𝑥𝑖𝑗V󸀠𝑖 − ∑
𝑟∈𝑅

𝑦𝑟𝑗𝑢󸀠𝑟 ≥ 0, 𝑗 ∈ 𝐽; (2)

𝑥𝑖𝑜V󸀠𝑖 ≥ 𝜏󸀠, 𝑖 ∈ 𝐼; (3)

𝑦𝑟𝑜𝑢󸀠𝑟 ≥ 𝜏󸀠, 𝑟 ∈ 𝑅; (4)

V󸀠𝑖 ≥ 0, 𝑖 ∈ 𝐼; (5)

𝑢󸀠𝑟 ≥ 0, 𝑟 ∈ 𝑅. (6)

The dual to model [M1] can be expressed as [M2]:

𝛿∗𝑜 = max 𝜏󸀠(∑
𝑖∈𝐼

𝑞𝑖𝑥𝑖𝑜 + ∑
𝑟∈𝑅

𝑝𝑟𝑦𝑟𝑜) (7)

s.t. ∑
𝑗∈𝐽

𝜋𝑗𝑥𝑖𝑗 = 𝑥𝑖𝑜 − 𝑞𝑖, 𝑖 ∈ 𝐼; (8)
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∑
𝑗∈𝐽

𝜋𝑗𝑦𝑟𝑗 = 𝑦𝑟𝑜 − 𝑝𝑟, 𝑟 ∈ 𝑅; (9)

𝜋𝑗 ≥ 0, 𝑗 ∈ 𝐽; (10)

𝑞𝑖 ≥ 0, 𝑖 ∈ 𝐼; (11)

𝑝𝑟 ≥ 0, 𝑟 ∈ 𝑅. (12)

The decision variable 𝜋𝑗 denotes the weight of DMU𝑗.𝑞𝑖 and 𝑝𝑟 denote the slacks of 𝑖th input and 𝑟th output,
respectively. The objective function (7) expresses the max-
imum summation of improvement ratios of inputs and
outputs. Set 𝜏󸀠 = 1 temporarily for computation convenient,
and it will not affect the optimal solutions. The decision
variable with a superscript “∗” denotes its optimal value.
The following equation defines the constant value of 𝜏; it
is equal to the reciprocal of the maximum virtual-inputs of
DMUs:

𝜏 = 1
max𝑗∈𝐽∑𝑖∈𝐼 𝑥𝑖𝑗V󸀠∗𝑖 . (13)

Thus, the optimal solutions are normalized as

V∗𝑖 = V󸀠∗𝑖 × 𝜏, 𝑖 ∈ 𝐼;
𝑢∗𝑟 = 𝑢󸀠∗𝑟 × 𝜏, 𝑟 ∈ 𝑅. (14)

Evaluating different DMU𝑜’s, one may directly compare their
weights, virtual gap, virtual-input, and virtual-output vectors.
According to (1), the ensuing equation (15) existed. It is
obvious that the minimum virtual gap Δ∗𝑜 is equivalent to 𝛿∗𝑜 .
Referring to (16), this result ensures the nearest improvement
target is found. The maximum total of improvement ratios
in (16) ensures the improvement target is located on the
envelopment.

1 = (∑𝑟∈𝑅 𝑦𝑟𝑜𝑢∗𝑟 + Δ∗𝑜)∑𝑖∈𝐼 𝑥𝑖𝑜V∗𝑖 , (15)

𝜃∗𝑜 = ∑𝑟∈𝑅 𝑦𝑟𝑜𝑢∗𝑟∑𝑖∈𝐼 𝑥𝑖𝑜V∗𝑖 . (16)

3. Proposed Network Structure of VGM

3.1. Network Structure. Thenetwork contains a set of subpro-
cesses (nodes), 𝐻. The nodes are assigned ordinal numbers1, 2, 3, . . . , ‖𝐻‖. Let 𝐴 denote the set of network links. There
are 𝑛homogeneousDMUs in set 𝐽, namedDMU1,DMU2, . . .,
and DMU𝑛, which are randomly processed by the subpro-
cesses in set𝐻.

3.1.1. Inputs and Outputs. At each subprocess ℎ, there is a set
of input measures 𝐼ℎ that flow into the network and a set of
output measures 𝑅ℎ that flow out of the network. For DMU𝑗
in set 𝐽, let 𝑥ℎ𝑖𝑗 ∈ R𝐼

ℎ

+ and 𝑦ℎ𝑟𝑗 ∈ R𝑅
ℎ

+ denote the volumes of the𝑖th input measure and the 𝑟th output measure at subprocessℎ, respectively. Let 𝑞ℎ𝑖 and 𝑝ℎ𝑟 be the slack of the 𝑖th input and
the 𝑟th output at subprocess ℎ, respectively.
3.1.2. Links. Each subprocessmay have links to other subpro-
cesses. Let (ℎ, 𝑘) denote the link between subprocesses ℎ and𝑘, ℎ > 𝑘. Let 𝐷(ℎ,𝑘) denote the set of link measures on link
(ℎ, 𝑘). 𝑧(ℎ,𝑘)

𝑑𝑗
∈ R𝐷

(ℎ,𝑘)+

+ ∪R𝐷(ℎ,𝑘)−+ denotes the volume of the 𝑑th
link in set 𝐷(ℎ,𝑘). Each DMU alternatively acts as the DMU𝑜
that is under evaluation. The volume of link 𝑑 on link (ℎ, 𝑘),𝑧(ℎ,𝑘)
𝑑𝑜

, could be increased or decreased with a slack 𝑓(ℎ,𝑘)
𝑑

to
improve the efficiency of DMU𝑜 as well.

In Phase-I, we introduce the mixed binary integer virtual
gap-based measurement model [M3] to partition the links
into two subsets: as-input and as-output.

[M3] is as follows:

𝛿(I)∗𝑜 = max 𝜏󸀠 ∑
ℎ∈𝐻

(∑
𝑖∈𝐼ℎ

𝑞ℎ𝑖𝑥ℎ𝑖𝑜 + ∑
𝑟∈𝑅ℎ

𝑝ℎ𝑟𝑦ℎ𝑟𝑜 + ∑
(ℎ,𝑘)∈𝐴

∑
𝑑∈𝐷(ℎ,𝑘)

𝑓(ℎ,𝑘)
𝑑𝑧(ℎ,𝑘)
𝑑𝑜

) ; (17)

s.t. ∑
𝑗∈𝐽

𝜋ℎ𝑗𝑥ℎ𝑖𝑗 = 𝑥ℎ𝑖𝑜 − 𝑞ℎ𝑖 , 𝑖 ∈ 𝐼ℎ; ℎ ∈ 𝐻; (18)

∑
𝑗∈𝐽

𝜋ℎ𝑗𝑦ℎ𝑟𝑗 = 𝑦ℎ𝑟𝑜 + 𝑝ℎ𝑟 , 𝑟 ∈ 𝑅ℎ, ℎ ∈ 𝐻; (19)

∑
𝑗∈𝐽

𝜋ℎ𝑗𝑧(ℎ,𝑘)𝑑𝑗 = 𝑧(ℎ,𝑘)𝑑𝑜 − 𝑓(ℎ,𝑘)𝑑 +𝑀𝑡(ℎ,𝑘)𝑑 , 𝑑 ∈ 𝐷(ℎ,𝑘), (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (20)

∑
𝑗∈𝐽

𝜋ℎ𝑗𝑧(ℎ,𝑘)𝑑𝑗 = 𝑧(ℎ,𝑘)𝑑𝑜 + 𝑓(ℎ,𝑘)𝑑 −𝑀(1 − 𝑡(ℎ,𝑘)𝑑 ) , 𝑑 ∈ 𝐷(ℎ,𝑘), (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (21)

∑
𝑗∈𝐽

(𝜋ℎ𝑗 − 𝜋𝑘𝑗) 𝑧(ℎ,𝑘)𝑑𝑗 = 0, 𝑑 ∈ 𝐷(ℎ,𝑘), (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (22)
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𝜋ℎ𝑗 ≥ 0, 𝑗 ∈ 𝐽; ℎ ∈ 𝐻; (23)

𝑞ℎ𝑗 ≥ 0, 𝑗 ∈ 𝐽; ℎ ∈ 𝐻; (24)

𝑝ℎ𝑗 ≥ 0, 𝑗 ∈ 𝐽; ℎ ∈ 𝐻; (25)

𝑡(ℎ,𝑘)𝑑𝑜 ∈ {0, 1} , 𝑑 ∈ 𝐷(ℎ,𝑘), (ℎ, 𝑘) ∈ 𝐴, ℎ ∈ 𝐻. (26)

In (17), the objective function maximizes the total improve-
ment ratios of each input, output, and link of DMU𝑜. The
decision variable 𝜋ℎ𝑗 is the weight of DMU𝑗 at subprocess ℎ.
The set of left-side of inequalities (18)∼(22) is the efficient
frontier with respect to DMU𝑜. The right-side of (18) is the
improved 𝑖th input at subprocess ℎ located on the frontier.
The right-side of (19) is the improved 𝑟th output at subprocessℎ located on the frontier. 𝑀 denotes a considerably large
constant. When the decision variable 𝑡(ℎ,𝑘)

𝑑𝑜
= 0, (20) becomes

effective and (21) becomes ineffective and this constrain could
be ignored, and the 𝑑th measurement on link𝐷(ℎ,𝑘) is treated
as “as-input” with respect to the network. Conversely, when𝑡(ℎ,𝑘)
𝑑𝑜

= 1, (20) becomes ineffective and (21) becomes effective,
and the 𝑑th measurement on link 𝐷(ℎ,𝑘) is treated as “as-
output” with respect to the network.

When 𝑡(ℎ,𝑘)
𝑑𝑜

= 0, (27) and (28) derived from (20) and (22)
would ensure the improved 𝑑th as-input at link (ℎ, 𝑘) projects
on the frontier, respectively, to subprocesses ℎ and 𝑘 with the
same value, 𝑧(ℎ,𝑘)

𝑑𝑜
− 𝑓(ℎ,𝑘)
𝑑

.

∑
𝑗∈𝐽

𝜋ℎ𝑗𝑧(ℎ,𝑘)𝑑𝑗 = 𝑧(ℎ,𝑘)𝑑𝑜 − 𝑓(ℎ,𝑘)𝑑 ,
𝑑 ∈ 𝐷(ℎ,𝑘), (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻;

(27)

∑
𝑗∈𝐽

𝜋𝑘𝑗𝑧(ℎ,𝑘)𝑑𝑗 = 𝑧(ℎ,𝑘)𝑑𝑜 − 𝑓(ℎ,𝑘)𝑑 ,
𝑑 ∈ 𝐷(ℎ,𝑘), (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻. (28)

When 𝑡(ℎ,𝑘)
𝑑𝑜

= 1, the two equations (29) and (30) derived
from (21) and (22) would ensure the deteriorated 𝑑th as-
output at link (ℎ, 𝑘) projects on the frontier, respectively, to
subprocesses ℎ and 𝑘 with the same value, 𝑧(ℎ,𝑘)

𝑑𝑜
+ 𝑓(ℎ,𝑘)
𝑑

.

∑
𝑗∈𝐽

𝜋ℎ𝑗𝑧(ℎ,𝑘)𝑑𝑗 = 𝑧(ℎ,𝑘)𝑑𝑜 + 𝑓(ℎ,𝑘)𝑑 ,
𝑑 ∈ 𝐷(ℎ,𝑘), (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (29)

∑
𝑗∈𝐽

𝜋𝑘𝑗𝑧(ℎ,𝑘)𝑑𝑗 = 𝑧(ℎ,𝑘)𝑑𝑜 + 𝑓(ℎ,𝑘)𝑑 ,
𝑑 ∈ 𝐷(ℎ,𝑘), (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻. (30)

Therefore, a single constraint (22) would replace the two cases
above (Chen et al. [20]).

Proposition 1. If it is an as-output direction for subprocess ℎ,
then it must be an as-input direction for subprocess 𝑘.
Proof. When 𝑡(ℎ,𝑘)

𝑑𝑜
= 0, equations (20) and (22) are parti-

tioned to (27) and (28) which is explained in prior section.
If (28) is multiplied by −1 on each side of the equation, due to
the fact that 𝑧(ℎ,𝑘)

𝑑𝑗
= −𝑧(𝑘,ℎ)
𝑑𝑗

and 𝑓(ℎ,𝑘)
𝑑

= 𝑓(𝑘,ℎ)
𝑑

, the modified
(28) can be converted to (31):

∑
𝑗∈𝐽

𝜋𝑘𝑗𝑧(𝑘,ℎ)𝑑𝑗 = 𝑧(𝑘,ℎ)𝑑𝑜 + 𝑓(𝑘,ℎ)𝑑 ,
𝑑 ∈ 𝐷(𝑘,ℎ), (𝑘, ℎ) ∈ 𝐴; ℎ ∈ 𝐻. (31)

For (27), from 𝜋ℎ𝑗 perspective, the links are as-input. For (31),
from 𝜋𝑘𝑗 perspective, the links are as-output. With respect to
(27) and (31), the direction is from subprocess 𝑘 to subprocessℎ.

Solve [M3] to obtain the optimal solutions of the binary
integer variables. If 𝑡(ℎ,𝑘)∗

𝑑𝑜
= 0, then assign index 𝑑 to the

set “as-input” that regards the entire system. Conversely, if𝑡(ℎ,𝑘)∗
𝑑𝑜

= 1, then assign index 𝑑 to the set “as-output” that
regards the entire system. On each link (ℎ, 𝑘), the set of links
on 𝐷(ℎ,𝑘) is then partitioned into two subsets, 𝐷(ℎ,𝑘)−𝑜 = {𝑑 |𝑡(ℎ,𝑘)∗
𝑑𝑜

= 0} and 𝐷(ℎ,𝑘)+𝑜 = {𝑑 | 𝑡(ℎ,𝑘)∗
𝑑𝑜

= 1}. The notation 𝑓(ℎ,𝑘)
𝑑

in [M3] is replaced by 𝑓(ℎ,𝑘)+
𝑑

and 𝑓(ℎ,𝑘)−
𝑑

if 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 and𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , respectively. Then, the following linear program
[M4] is constructed as Phase-II of the solving procedure:

𝛿(II)∗𝑜 = max 𝜏󸀠 ∑
ℎ∈𝐻

(∑
𝑖∈𝐼ℎ

𝑞ℎ𝑖𝑥ℎ𝑖𝑜 + ∑
𝑟∈𝑅ℎ

𝑝ℎ𝑟𝑦ℎ𝑟𝑜 + ∑
(ℎ,𝑘)∈𝐴

( ∑
𝑑∈𝐷(ℎ,𝑘)−𝑜

𝑓(ℎ,𝑘)−
𝑑𝑧(ℎ,𝑘)
𝑑𝑜

+ ∑
𝑑∈𝐷(ℎ,𝑘)+𝑜

𝑓(ℎ,𝑘)+
𝑑𝑧(ℎ,𝑘)
𝑑𝑜

)) (32)

s.t. ∑
𝑗∈𝐽

𝜋ℎ𝑗𝑥ℎ𝑖𝑗 = 𝑥ℎ𝑖𝑜 − 𝑞ℎ𝑖 , 𝑖 ∈ 𝐼ℎ, ℎ ∈ 𝐻; (33)
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∑
𝑗∈𝐽

𝜋ℎ𝑗𝑦ℎ𝑟𝑗 = 𝑦ℎ𝑟𝑜 + 𝑝ℎ𝑟 , 𝑟 ∈ 𝑅ℎ, ℎ ∈ 𝐻; (34)

∑
𝑗∈𝐽

𝜋ℎ𝑗𝑧(ℎ,𝑘)𝑑𝑗 = 𝑧(ℎ,𝑘)𝑑𝑜 − 𝑓(ℎ,𝑘)−𝑑 , 𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (35)

∑
𝑗∈𝐽

𝜋ℎ𝑗𝑧(ℎ,𝑘)𝑑𝑗 = 𝑧(ℎ,𝑘)𝑑𝑜 + 𝑓(ℎ,𝑘)+𝑑 , 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (36)

∑
𝑗∈𝐽

(𝜋ℎ𝑗 − 𝜋𝑘𝑗) 𝑧(ℎ,𝑘)𝑑𝑗 = 0, 𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (37)

∑
𝑗∈𝐽

(𝜋ℎ𝑗 − 𝜋𝑘𝑗) 𝑧(ℎ,𝑘)𝑑𝑗 = 0, 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (38)

𝜋ℎ𝑗 ≥ 0, 𝑗 ∈ 𝐽; ℎ ∈ 𝐻; (39)

𝑞ℎ𝑖 ≥ 0, 𝑖 ∈ 𝐼; ℎ ∈ 𝐻;
𝑝ℎ𝑟 ≥ 0, 𝑟 ∈ 𝑅; ℎ ∈ 𝐻; (40)

𝑓(ℎ,𝑘)+𝑑 ≥ 0, 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (41)

𝑓(ℎ,𝑘)−𝑑 ≥ 0, 𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻. (42)

The objective function (32) expresses the maximum sum-
mation of improvement ratios of inputs, outputs, as-inputs,
and as-outputs. Set 𝜏󸀠 = 1 for convenient computation and
it would be adjusted according to a normalization process.
Constraints (33), (34), (35), and (36) ensure the modified
values of inputs, outputs, as-inputs, and as-outputs would

project on the efficient frontier, respectively. Constraints (37)
and (38) ensure the modified as-input and as-output links
would project on the efficient frontier (Chen et al. [20]).
Assign dual variables V󸀠ℎ𝑖 , 𝑢󸀠ℎ𝑟 , 𝑤󸀠(ℎ,𝑘)−𝑑 , 𝑤󸀠(ℎ,𝑘)+

𝑑
, 𝜍󸀠(ℎ,𝑘)−
𝑑

, and𝜍󸀠(ℎ,𝑘)+
𝑑

to the functional constraints (33)∼(38), respectively.
The transformed dual form [M5] is shown below.

[M5] Δ󸀠∗𝑜 = min ∑
ℎ∈𝐻

[[(∑
𝑖∈𝐼ℎ

𝑥ℎ𝑖𝑜V󸀠ℎ𝑖 + ∑
(ℎ,𝑘)∈𝐴

∑
𝑑∈𝐷(ℎ,𝑘)−𝑜

𝑧(ℎ,𝑘)𝑑𝑜 𝑤󸀠(ℎ,𝑘)−𝑑 ) −(∑
𝑟∈𝑅ℎ

𝑦ℎ𝑟𝑜𝑢󸀠ℎ𝑟 + ∑
(ℎ,𝑘)∈𝐴

∑
𝑑∈𝐷(ℎ,𝑘)+𝑜

𝑧(ℎ,𝑘)𝑑𝑜 𝑤󸀠(ℎ,𝑘)+𝑑 )]] (43)

s.t. ∑
ℎ∈𝐻

[[(∑
𝑖∈𝐼ℎ

𝑥ℎ𝑖𝑗V󸀠ℎ𝑖 + ∑
(ℎ,𝑘)∈𝐴

∑
𝑑∈𝐷(ℎ,𝑘)−𝑜

𝑧(ℎ,𝑘)𝑑𝑗 𝑤󸀠(ℎ,𝑘)−𝑑 ) −(∑
𝑟∈𝑅ℎ

𝑦ℎ𝑟𝑗𝑢󸀠ℎ𝑟 + ∑
(ℎ,𝑘)∈𝐴

∑
𝑑∈𝐷(ℎ,𝑘)+𝑜

𝑧(ℎ,𝑘)𝑑𝑗 𝑤󸀠(ℎ,𝑘)+𝑑 )

+( ∑
(ℎ,𝑘)∈𝐴

∑
𝑑∈𝐷(ℎ,𝑘)−𝑜

𝑧(ℎ,𝑘)𝑑𝑗 𝜍󸀠(ℎ,𝑘)−𝑑 + ∑
(ℎ,𝑘)∈𝐴

∑
𝑑∈𝐷(ℎ,𝑘)+𝑜

𝑧(ℎ,𝑘)𝑑𝑗 𝜍󸀠(ℎ,𝑘)+𝑑 )

− ( ∑
(𝑘,ℎ)∈𝐴

∑
𝑑∈𝐷(𝑘,ℎ)−𝑜

𝑧(𝑘,ℎ)𝑑𝑗 𝜍󸀠(𝑘,ℎ)−𝑑 + ∑
(𝑘,ℎ)∈𝐴

∑
𝑑∈𝐷(𝑘,ℎ)+𝑜

𝑧(𝑘,ℎ)𝑑𝑗 𝜍󸀠(𝑘,ℎ)+𝑑 )]] ≥ 0;

(44)

𝑤󸀠(ℎ,𝑘)+𝑑 𝑧(ℎ,𝑘)𝑑𝑜 = 𝜏󸀠, 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (45)

𝑤󸀠(ℎ,𝑘)−𝑑 𝑧(ℎ,𝑘)𝑑𝑜 = 𝜏󸀠, 𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (46)

𝑥ℎ𝑖𝑜V󸀠ℎ𝑖 ≥ 𝜏󸀠, 𝑖 ∈ 𝐼ℎ, ℎ ∈ 𝐻; (47)

𝑦ℎ𝑟𝑜𝑢󸀠ℎ𝑟 ≥ 𝜏󸀠, 𝑟 ∈ 𝑅ℎ, ℎ ∈ 𝐻; (48)

V󸀠ℎ𝑖 ≥ 0, 𝑖 ∈ 𝐼ℎ, ℎ ∈ 𝐻; (49)
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𝑢󸀠ℎ𝑟 ≥ 0, 𝑟 ∈ 𝑅ℎ, ℎ ∈ 𝐻; (50)

𝑤󸀠(ℎ,𝑘)−𝑑 ≥ 0, 𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (51)

𝑤󸀠(ℎ,𝑘)+𝑑 ≥ 0, 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (52)

𝜍󸀠(ℎ,𝑘)−𝑑 f ree in sign, 𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (53)

𝜍󸀠(ℎ,𝑘)+𝑑 f ree in sign, 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 , (ℎ, 𝑘) ∈ 𝐴; ℎ ∈ 𝐻; (54)

𝜍󸀠(𝑘,ℎ)−𝑑 f ree in sign, 𝑑 ∈ 𝐷(𝑘,ℎ)−𝑜 , (𝑘, ℎ) ∈ 𝐴; ℎ ∈ 𝐻; (55)

𝜍󸀠(𝑘,ℎ)+𝑑 f ree in sign, 𝑑 ∈ 𝐷(𝑘,ℎ)+𝑜 , (𝑘, ℎ) ∈ 𝐴; ℎ ∈ 𝐻. (56)

Replace the coefficient 𝜏󸀠 in VGM models by 𝜏, which is
expressed as (57). Therefore, all the upper bound of normal-
ized values of virtual-input plus virtual-as-input of DMUs

is 1. Furthermore, all of the upper bound of normalized
values of virtual-output plus virtual-as-output of DMUs is 1,
as well.

𝜏 = 1
max𝑗∈𝐽 [∑ℎ∈𝐻 (∑𝑖∈𝐼ℎ 𝑥ℎ𝑖𝑗V󸀠ℎ𝑖 + ∑(ℎ,𝑘)∈𝐴∑𝑑∈𝐷(ℎ,𝑘)−𝑜 𝑧(ℎ,𝑘)

𝑑𝑗
𝑤󸀠(ℎ,𝑘)−
𝑑

)] . (57)

Then, the optimal solutions are normalized as

Δ∗𝑜 = Δ󸀠∗𝑜 × 𝜏, ℎ ∈ 𝐻; (58)

Vℎ∗𝑖 = V󸀠ℎ∗𝑖 × 𝜏, 𝑖 ∈ 𝐼ℎ, ℎ ∈ 𝐻; (59)

𝑢ℎ∗𝑟 = 𝑢󸀠ℎ∗𝑟 × 𝜏, 𝑟 ∈ 𝑅ℎ, ℎ ∈ 𝐻; (60)

𝑤(ℎ,𝑘)−∗𝑑 = 𝑤󸀠(ℎ,𝑘)−∗𝑑 × 𝜏, 𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , (ℎ, 𝑘) ∈ 𝐴; (61)

𝑤(ℎ,𝑘)+∗𝑑 = 𝑤󸀠(ℎ,𝑘)+∗𝑑 × 𝜏, 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 , (ℎ, 𝑘) ∈ 𝐴; (62)

𝜍(ℎ,𝑘)−∗𝑑 = 𝜍󸀠(ℎ,𝑘)−∗𝑑 × 𝜏, 𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , (ℎ, 𝑘) ∈ 𝐴; (63)

𝜍(ℎ,𝑘)+∗𝑑 = 𝜍󸀠(ℎ,𝑘)+∗𝑑 × 𝜏, 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 , (ℎ, 𝑘) ∈ 𝐴. (64)

Evaluating different DMU𝑜’s, one may directly compare their
weights, virtual gap, virtual-input, virtual-as-input, virtual-
as-output, and virtual-output vectors. According to (43), the
ensuing equation (65) existed. It is obvious that theminimum
virtual gap “Δ∗𝑜” is equivalent to 𝛿(II)∗𝑜 . The maximum effi-
ciency score of the entire network could be computed as (66).

1
= ∑ℎ∈𝐻 (∑𝑟∈𝑅ℎ 𝑦ℎ𝑟𝑜𝑢ℎ∗𝑟 +∑(ℎ,𝑘)∈𝐴∑𝑑∈𝐷(ℎ,𝑘)+𝑜 𝑧(ℎ,𝑘)

𝑑𝑜
𝑤(ℎ,𝑘)+∗
𝑑

)+Δ∗𝑜∑ℎ∈𝐻 (∑𝑖∈𝐼ℎ 𝑥ℎ𝑖𝑜Vℎ∗𝑖 + ∑(ℎ,𝑘)∈𝐴∑𝑑∈𝐷(ℎ,𝑘)−𝑜 𝑧(ℎ,𝑘)
𝑑𝑜

𝑤(ℎ,𝑘)−∗
𝑑

) ; (65)

𝐸∗𝑜 = ∑ℎ∈𝐻 (∑𝑟∈𝑅ℎ 𝑦ℎ𝑟𝑜𝑢ℎ∗𝑟 + ∑(ℎ,𝑘)∈𝐴∑𝑑∈𝐷(ℎ,𝑘)+𝑜 𝑧(ℎ,𝑘)
𝑑𝑜

𝑤(ℎ,𝑘)+∗
𝑑

)
∑ℎ∈𝐻 (∑𝑖∈𝐼ℎ 𝑥ℎ𝑖𝑜Vℎ∗𝑖 + ∑(ℎ,𝑘)∈𝐴∑𝑑∈𝐷(ℎ,𝑘)−𝑜 𝑧(ℎ,𝑘)

𝑑𝑜
𝑤(ℎ,𝑘)−∗
𝑑

) . (66)

3.2. Subprocess Efficiencies. (33)∼(36) depict the production
technology of the network. The equations’ right-side is the
target on each index. At the improvement target, reducing the
slacks 𝑞ℎ∗𝑖 , 𝑖 ∈ 𝐼ℎ, ℎ ∈ 𝐻; 𝑓(ℎ,𝑘)−∗

𝑑
, 𝑑 ∈ 𝐷(ℎ,𝑘)−𝑜 , (ℎ, 𝑘) ∈𝐴 to the associated indices and adding the slacks 𝑝ℎ∗𝑟 , 𝑟 ∈𝑅ℎ, ℎ ∈ 𝐻; 𝑓(ℎ,𝑘)+∗

𝑑
, 𝑑 ∈ 𝐷(ℎ,𝑘)+𝑜 , (ℎ, 𝑘) ∈ 𝐴 from the

associated indices will improve the efficiency score to 1. The
efficient reference set of DMUs with respect to DMU𝑜 is
defined as ER𝑜 = {𝑗 | 𝜋ℎ∗𝑗 > 0, ℎ ∈ 𝐻, 𝑗 ∈ 𝐽}. The efficiency
score of subprocess ℎ is computed as follows:

𝐸ℎ∗𝑜
= ∑𝑟∈𝑅ℎ 𝑦ℎ𝑟𝑜𝑢ℎ∗𝑟 + ∑(ℎ,𝑘)∈𝐴∑𝑑∈𝐷(ℎ,𝑘)+𝑜 𝑧(ℎ,𝑘)

𝑑𝑜
𝑤(ℎ,𝑘)+∗
𝑑∑𝑖∈𝐼ℎ 𝑥ℎ𝑖𝑜Vℎ∗𝑖 + ∑(ℎ,𝑘)∈𝐴∑𝑑∈𝐷(ℎ,𝑘)−𝑜 𝑧(ℎ,𝑘)

𝑑𝑜
𝑤(ℎ,𝑘)−∗
𝑑

. (67)

3.3. Virtual Gap Diagram. For the virtual gap diagram, this
paper defines the summation of input and as-input as 𝑥-
axis (∑𝑖∈𝐼ℎ 𝑥ℎ𝑖𝑜Vℎ∗𝑖 + ∑(ℎ,𝑘)∈𝐴∑𝑑∈𝐷(ℎ,𝑘)−𝑜 𝑧(ℎ,𝑘)

𝑑𝑜
𝑤(ℎ,𝑘)−∗
𝑑

) and the
summation of output and as-output as 𝑦-axis (∑𝑟∈𝑅ℎ 𝑦ℎ𝑟𝑜𝑢ℎ∗𝑟 +∑(ℎ,𝑘)∈𝐴∑𝑑∈𝐷(ℎ,𝑘)+𝑜 𝑧(ℎ,𝑘)

𝑑𝑜
𝑤(ℎ,𝑘)+∗
𝑑

). For (66), it represents not
only the maximum efficient score of the entire system but
also the slope of the line from DMU𝑜 to origin. From (65),
if the virtual gap is zero, the optimal efficient score is 1. We
define the line with a slope equal to 1 to be the frontier.
A larger virtual gap will entail a smaller slop and lower
efficiency. Figure 1 depicts the DMU𝑗 performance on the
virtual gap diagram. The slope of DMU1 is 1; it is located on
the efficiency frontier, indicating high efficiency. DMU2 slope
is 0.6, indicating lower efficiency; its location on the virtual
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Figure 1: Virtual gap diagram.
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Figure 2: Example of network DEA.

gap diagram is (0.5, 0.3). For this DMU𝑜, the virtual gap is 0.2
(0.5 minus 0.3). In order to improve the DMU𝑜 efficiency, the
virtual gap needs to be decreased.

4. Illustrative Examples

4.1. Data. This paper introduces a -realworld application
of the network VGM model. One manufactory company
produces microwave radio; this company owns three facto-
ries to produce printed circuit board (PCB), duplexer, and
microwave radio.The relationship between the three factories
is depicted in Figure 2; process 1 is PCB factory, process 2 is
duplexer factory, and process 3 is microwave radio factory.
Process 1 (PCB factory) purchases raw material from outside
suppliers (𝑥1𝑖𝑗) and provides PCB to processes 2 and 3 (𝑧(1,2)

𝑑𝑗

and 𝑧(1,3)
𝑑𝑗

). It also sells PCB to other customers (𝑦1𝑟𝑗). Process
2 (duplexer factory) purchases mechanical housing from
other suppliers (𝑥2𝑖𝑗) and PCB from process 1 (𝑧(1,2)

𝑑𝑗
) to build

duplexer and it sells duplexer to process 3 (𝑧(2,3)
𝑑𝑗

). Process

3 (microwave radio factory) purchases PCB from process 1
(𝑧(1,3)
𝑑𝑗

), duplexer from process 2 (𝑧(2,3)
𝑑𝑗

), and other materials
(𝑥3𝑖𝑗) from other suppliers outside of this company to build
microwave radio which it sells to end-users (𝑦3𝑟𝑗). Figure 2
depicts the entire network DEA system that is drawn as the
rectangular dash box. The system contains a set of processes,𝐻 = {1, 2, 3}. The inputs, outputs, and links are shown
in the figure. The set of links is 𝐴 = {(1, 2), (1, 3), (2, 3)}.
For instance, the set of indices are 𝐼1 = {1}, 𝐼2 = {1},𝐼3 = {1}, 𝑅1 = {1}, 𝑅2 = {}, 𝑅3 = {1}, 𝐷(1,2) = {1, 2},𝐷(1,3) = {1}, and 𝐷(2,3) = {1, 2}. The set of DMUs is 𝐽 ={1, 2, . . . , 11}. The arrows of inputs and outputs express the
directions of their flows with respect to the system as well as
to the processes. As regards the free link, the linking activities
are freely determined while maintaining continuity between
input and output. It demonstrates whether the current link
flow is appropriate or needs to be increased or decreased.

Table 1 lists the hypothetical data of the indices of all
DMUs.
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Table 1: The dataset of indices.

DMU𝑗 𝑥11𝑗 𝑥21𝑗 𝑥31𝑗 𝑧(1,2)1𝑗 𝑧(1,2)2𝑗 𝑧(1,3)1𝑗 𝑧(2,3)1𝑗 𝑧(2,3)2𝑗 𝑦11𝑗 𝑦31𝑗
1 5 10 714 20 43 538 74 6256 78 234
2 6 32 786 20 65 773 84 6814 83 254
3 5 25 851 25 60 612 70 9567 99 123
4 5 30 544 24 60 591 64 7205 80 161
5 9 13 700 30 70 547 98 4404 85 226
6 9 41 678 27 58 592 72 6529 96 206
7 5 33 948 12 59 587 85 6201 97 144
8 6 10 658 13 42 540 70 8898 83 175
9 5 41 641 10 46 676 73 4927 69 181
10 9 20 885 28 60 659 79 6793 84 174
11 6 25 727 22 41 655 84 4346 70 117

Table 2: Partitions of links, as-input and as-output.

DMU𝑜
Binary decision variables for the five measures on

links Sets of as-input and as-output on the three links

𝑡(1,2)∗1𝑜 𝑡(1,2)∗2𝑜 𝑡(1,3)∗1𝑜 𝑡(2,3)∗1𝑜 𝑡(2,3)∗2𝑜 𝐷(1,2)+𝑜 𝐷(1,2)−𝑜 𝐷(1,3)+𝑜 𝐷(1,3)−𝑜 𝐷(2,3)+𝑜 𝐷(2,3)−𝑜1 0 1 0 1 1 {2} {1} {} {1} {1, 2} {}2 0 1 0 1 1 {2} {1} {} {1} {1, 2} {}3 1 0 0 1 0 {1} {2} {} {1} {1} {2}4 0 0 0 0 0 {} {1, 2} {} {1} {} {1, 2}5 0 0 1 0 1 {} {1, 2} {1} {} {2} {1}6 0 0 1 1 1 {} {1, 2} {1} {} {1, 2} {}7 1 0 1 0 0 {1} {2} {1} {} {} {1, 2}8 1 1 1 1 0 {1, 2} {} {1} {} {1} {2}9 1 1 0 1 1 {1, 2} {} {} {1} {1, 2} {}10 0 1 1 1 1 {2} {1} {1} {} {1, 2} {}11 0 1 0 1 1 {2} {1} {} {1} {1, 2} {}
4.2. Results of VGM Case. Employ [M3] of this paper to
solve the optimal solutions. Each row in Table 2 lists the
optimal solutions of the binary variables. When DMU𝑜 =
DMU1, according to the first row, optimal values of five
binary decision variables can be read as 0, 1, 0, 1, and 1, and
the six sets of as-input and as-output are {2}, {1}, {}, {1}, {1, 2},
and {}. The decision variable 𝑡(1,2)∗1𝑜 = 0 means that link 1
between processes 1 and 2 is treated as an as-input measure
and 𝑡(1,2)∗1𝑜 = 1means that link 2 between processes 1 and 2 is
treated as an as-output measure.

With the partitions of the links depicted in Table 2, one
is ready to employ [M4]. The optimal values of the indices’
slacks are listed in Table 3. When DMU1 is being evaluated,
DMU𝑜 = DMU1 in the first column, all the slacks are zero.
DMU1 is not dominated by the other DMUs, and it does
not modify any values of indices. When DMU𝑜 = DMU3,
in the third column, the optimal solution of [M4] decreases
input values 𝑥12 and 𝑥22 by 3.286 and 25.411, respectively.
The values of links 𝑧(1,2)1 , 𝑧(1,2)2 , 𝑧(1,3)1 , 𝑧(2,3)1 , and 𝑧(2,3)2 are
modified by the values −8.326, −2.078, −48.096, +14.863,
and −4651.133, respectively. Increase output values 𝑦31 by
3.169.

Solving model [M4], one would also obtain the optimal
values of dual variables as each DMU is played as DMU𝑜.The
optimal values of dual variables are listed and summarized in
Table 4.

This paper adopts the coefficient 𝜏 (57) to limit the upper
bound and normalize the optimal solution; 𝜏 is equal to the
reciprocal of the maximum virtual-inputs of DMUs listed in
Table 5.

According to (58)∼(64), the normalized weights of the
indices are listed in Table 6.

The bottom rows of Tables 7 and 8 are the virtual-input
and virtual-output of the DMUs, respectively. This paper
defines a virtual gap diagram; the summation of input and
as-input is the 𝑥-axis, and the summation of output and as-
output is the 𝑦-axis. Figure 3 depicts the locations of DMUs
on this virtual gap diagram. DMU1 is located on the diagonal
line because its efficiency score equals 1. The other DMUs are
located below the diagonal line because there is a virtual gap
for each DMU.

Use (58) to calculate the solution of the virtual gap, Δ∗𝑜.
Use (66) to calculate the overall efficiency score of DMU𝑜,𝐸∗𝑜 .
Use (67) to calculate the subprocess efficiencies at process ℎ,𝐸ℎ∗𝑜 , ℎ = 1, 2, 3. Table 9 lists their values.
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Table 3: Slacks of the indices of every DMU𝑜.

Slacks DMU𝑜
1 2 3 4 5 6 7 8 9 10 11𝑞1∗1 0 0 3.286 0 0 3.644 0.822 0 0 0 2.618𝑞2∗1 0 11.289 25.411 21.713 18.914 0.822 19.009 0 21.267 11.035 3.242𝑞3∗1 0 101.510 0 0 0 0 0 0 197.015 0 0𝑓(1,2)−∗1 0 0 8.326 4.877 13.241 14.168 — — — 3.846 6.215𝑓(1,2)+∗1 — — — — — — 3.111 10.077 12.672 — —𝑓(1,2)−∗2 0 0 2.078 15.380 13.937 18.851 10.436 — — — —𝑓(1,2)+∗2 — — — — — — — 11.846 0.270 17.651 10.383𝑓(1,3)−∗1 0 0 48.096 50.473 — — — — 21.746 — 122.544𝑓(1,3)+∗1 — — — — 85.253 63.823 171.004 143.581 — 31.949 —𝑓(2,3)−∗1 0 — — 1.532 5.011 — 6.939 — — — —𝑓(2,3)+∗1 — 12.374 14.836 — — 12.752 — 5.385 2.689 13.752 38.305𝑓(2,3)−∗2 0 — 4651.133 4397.778 — — 4745.688 5510.308 — — —𝑓(2,3)+∗2 — 5389.739 — — 5477.336 6432.22 — — 2412.840 8079.703 8118.121𝑝1∗1 0 0 0 0 12.075 0 7.369 9.794 0 21.783 15.000𝑝3∗1 0 80.803 3.169 4.781 9.085 0 0 26.768 64.298 112.870 80.000

“—” means the decision variable is not in model [M4].

Table 4: Optimal weights of indices of model [M5].

Weight DMU𝑜
1 2 3 4 5 6 7 8 9 10 11𝑢󸀠∗1 0.053 0.012 0.271 0.075 0.025 0.043 0.053 0.012 0.014 0.004 0.014𝑢󸀠∗3 0.022 0.005 0.008 0.006 0.028 0.005 0.007 0.006 0.006 0.000 0.009

V󸀠∗1 0.200 0.167 4.953 0.288 0.111 0.111 1.190 0.199 0.789 0.111 0.236
V󸀠∗2 0.100 0.031 0.040 0.033 0.077 0.024 0.030 0.442 0.024 0.050 0.040
V󸀠∗3 0.001 0.002 0.001 0.003 0.012 0.009 0.001 0.003 0.006 0.005 0.007𝑤󸀠(1,2)∗+1 — — — — — — 0.083 0.077 0.100 — —𝑤󸀠(1,2)∗+2 — — — — — — — 0.024 0.022 0.017 0.024𝑤󸀠(1,3)∗+1 — — — — 0.002 0.002 0.002 0.002 — 0.002 —𝑤󸀠(2,3)∗+1 — 0.012 0.014 — — 0.014 — 0.014 0.014 0.013 0.012𝑤󸀠(2,3)∗+2 — 0.000 — — 0.000 0.000 — — 0.000 0.000 0.000𝑤󸀠(1,2)∗−1 0.050 0.050 0.040 0.042 0.033 0.037 — — — 0.036 0.045𝑤󸀠(1,2)∗−2 0.051 0.015 0.017 0.017 0.014 0.017 0.017 — — — —𝑤󸀠(1,3)∗−1 0.002 0.001 0.002 0.002 — — — — 0.001 — 0.002𝑤󸀠(2,3)∗−1 0.014 — — 0.016 0.010 — 0.012 — — — —𝑤󸀠(2,3)∗−2 0.000 — 0.000 0.000 — — 0.000 0.000 — — —𝜍󸀠(1,2)∗+1 0.112 0.069 0.095 0.050 0.024 0.035 0.086 — — 0.044 0.082𝜍󸀠(1,2)∗+2 — — 0.121 0.063 0.015 0.038 0.092 0.044 — 0.016 0.016𝜍󸀠(1,3)∗+1 — 0.002 0.016 0.000 — — 0.006 — 0.002 — 0.002𝜍󸀠(2,3)∗+1 0.090 — — — — — — — — — —𝜍󸀠(2,3)∗+2 — — — — — — — — — — —𝜍󸀠(1,2)∗−1 — — — — — — — 0.068 0.068 — —𝜍󸀠(1,2)∗−2 0.029 0.009 — — — — — — 0.033 — —𝜍󸀠(1,3)∗−1 0.002 — — — 0.000 0.001 — 0.000 — 0.001 —𝜍󸀠(2,3)∗−1 — 0.008 0.062 0.004 0.012 0.046 0.016 0.003 0.029 0.026 0.030𝜍󸀠(2,3)∗−2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5: The coefficient 𝜏 for normalization.

DMU𝑜
1 2 3 4 5 6 7 8 9 10 11𝜏 0.069 0.144 0.020 0.090 0.060 0.084 0.064 0.045 0.073 0.140 0.089
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Table 6: Optimal weights of indices after normalization.

Weight DMU𝑜
1 2 3 4 5 6 7 8 9 10 11𝑢∗1 0.004 0.002 0.005 0.007 0.001 0.004 0.003 0.001 0.001 0.000 0.001𝑢∗3 0.002 0.001 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.001

V∗1 0.014 0.024 0.098 0.026 0.007 0.009 0.077 0.009 0.058 0.016 0.021
V∗2 0.007 0.004 0.001 0.003 0.005 0.002 0.002 0.020 0.002 0.007 0.004
V∗3 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001𝑤(1,2)∗+1 — — — — — — 0.005 0.003 0.007 — —𝑤(1,2)∗+2 — — — — — — — 0.001 0.002 0.002 0.002𝑤(1,3)∗+1 — — — — 0.000 0.000 0.000 0.000 — 0.000 —𝑤(2,3)∗+1 — 0.002 0.000 — — 0.001 — 0.001 0.001 0.002 0.001𝑤(2,3)∗+2 — 0.000 — — 0.000 0.000 — — 0.000 0.000 0.000𝑤(1,2)∗−1 0.003 0.007 0.001 0.004 0.002 0.003 — — — 0.005 0.004𝑤(1,2)∗−2 0.004 0.002 0.000 0.002 0.001 0.001 0.001 — — — —𝑤(1,3)∗−1 0.000 0.000 0.000 0.000 — — — — 0.000 — 0.000𝑤(2,3)∗−1 0.001 — — 0.001 0.001 — 0.001 — — — —𝑤(2,3)∗−2 0.000 — 0.000 0.000 — — 0.000 0.000 — — —𝜍(1,2)∗+1 0.008 0.010 0.002 0.004 0.001 0.003 0.006 — — 0.006 0.007𝜍(1,2)∗+2 — — 0.002 0.006 0.001 0.003 0.006 0.002 — 0.002 0.001𝜍(1,3)∗+1 — 0.000 0.000 0.000 — — 0.000 — 0.000 — 0.000𝜍(2,3)∗+1 0.006 — — — — — — — — — —𝜍(2,3)∗+2 — — — — — — — — — — —𝜍(1,2)∗−1 — — — — — — — 0.003 0.005 — —𝜍(1,2)∗−2 0.002 0.001 — — — — — — 0.002 — —𝜍(1,3)∗−1 0.000 — — — 0.000 0.000 — 0.000 — 0.000 —𝜍(2,3)∗−1 — 0.001 0.001 0.000 0.001 0.004 0.001 0.000 0.002 0.004 0.003𝜍(2,3)∗−2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 7: Input and as-input weighted data of the VGMmodel.

Weight data DMU𝑜
1 2 3 4 5 6 7 8 9 10 11𝑥1V∗1 0.069 0.144 0.488 0.130 0.060 0.084 0.383 0.053 0.289 0.140 0.126𝑥2V∗2 0.069 0.144 0.020 0.090 0.060 0.084 0.064 0.198 0.073 0.140 0.089𝑥3V∗3 0.069 0.194 0.020 0.132 0.506 0.538 0.064 0.075 0.269 0.570 0.442𝑧(1,2)1 𝑤(1,2)−∗1

0.069 0.144 0.020 0.090 0.060 0.084 — — — 0.140 0.089𝑧(1,2)2 𝑤(1,2)−∗2
0.151 0.144 0.020 0.090 0.060 0.084 0.064 — — — —𝑧(1,3)1 𝑤(1,3)−∗1
0.069 0.144 0.020 0.090 — — — — 0.073 — 0.089𝑧(2,3)1 𝑤(2,3)−∗1
0.069 — — 0.090 0.060 — 0.064 — — — —𝑧(2,3)2 𝑤(2,3)−∗2
0.083 — 0.020 0.090 — — 0.064 0.045 — — —

Summation = virtual
input 0.648 0.913 0.607 0.802 0.808 0.873 0.704 0.370 0.705 0.991 0.834

5. Managerial Insights

This paper adopts the VGM model to evaluate the indices of
input items, output items, and links and identify the major
efficiency improvement. As shown in Table 9, it indicates the
efficiency scores of each subprocess. For DMU2, the actions
needed to improve its low efficiency are subprocesses 1 and
2. The efficiency scores are 0.25 and 0.667, respectively. For
DMU11, the actions needed to improve the efficiency are to

improve subprocesses 1 and 3. The efficiency scores are 0.585
and 0.502, respectively. If their efficiency scores are too low,
even if subprocess 2 has higher performance, that will affect
overall efficiency. The manager should review and consider
the slacks of improvement, weight of each index, and virtual
gap to define a plan and improve the efficiency of entire
system.

The resulting VGM DEA scores provide complete infor-
mation on how to improve the efficiency of DMUs for a
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Table 8: Output and as-output weighted data of the VGMmodel.

Weight data DMU𝑜
1 2 3 4 5 6 7 8 9 10 11𝑦1𝑢∗1 0.288 0.144 0.528 0.538 0.126 0.342 0.330 0.045 0.073 0.042 0.089𝑦3𝑢∗3 0.360 0.174 0.020 0.090 0.385 0.084 0.064 0.045 0.073 0.000 0.089𝑧(1,2)1 𝑤(1,2)+∗1
— — — — — — 0.064 0.045 0.073 — —𝑧(1,2)2 𝑤(1,2)+∗2
— — — — — — — 0.045 0.073 0.140 0.089𝑧(1,3)1 𝑤(1,3)+∗1
— — — — 0.060 0.084 0.064 0.045 — 0.140 —𝑧(2,3)1 𝑤(2,3)+∗1
— 0.144 0.020 — — 0.084 — 0.045 0.073 0.140 0.089𝑧(2,3)2 𝑤(2,3)+∗2
— 0.144 — — 0.060 0.084 — — 0.073 0.140 0.089

Summation = virtual
output 0.648 0.606 0.568 0.628 0.632 0.677 0.523 0.268 0.440 0.603 0.444

Table 9: Efficiency and virtual gaps solved by VGMmodel.

DMU𝑗 1 2 3 4 5 6 7 8 9 10 11
Virtual input 0.648 0.913 0.607 0.802 0.808 0.873 0.704 0.370 0.705 0.991 0.834
Virtual output 0.648 0.606 0.568 0.628 0.632 0.677 0.523 0.268 0.440 0.603 0.444
Virtual gap 0 0.307 0.039 0.174 0.176 0.196 0.181 0.102 0.265 0.470 0.390𝐸𝑜 1.000 0.663 0.936 0.783 0.782 0.775 0.743 0.724 0.624 0.608 0.532𝐸1𝑜 0.804 0.250 0.965 1.344 1.029 1.697 1.026 3.357 0.606 1.148 0.585𝐸2𝑜 0 0.667 0.250 0 0.250 0.667 0.250 0.553 4.000 1.500 1.500𝐸3𝑜 1.242 1.368 0.667 0.224 0.893 0.622 0.667 1.121 0.642 0.738 0.502

specific network process. The VGM impartially measures
items with considerable measuring unit difference and is
unit-invariant. The VGM can be applied in supply chain
management which takes the perspective of organization
mechanism to deal with the complex interactions in supply
chain. The broadcasting company in Tone and Tsutsui [9]
includes two departments: one is program department which
produces programs and the other is transmission depart-
ment which broadcasts programs. The links between the
two departments are the program broadcasting plan which
is generated from program producer. The producer would
apply VGM and consider time, advertisement revenue, and
customer preference to increase or decrease the program
transmission.

6. Discussion and Conclusions

The contributions and innovative progress of this paper are
that (1) it solves the MIP unsolvable nonlinear program
model through a two-phase procedure by using a mixed
integer program and (2) it creates a mathematical model and
convertsmultiefficiency frontiers for the separation processes
to an aggregation efficiency frontier for the entire production
system, eventually obtaining the best-practice performance.
The objective of efficiency assessment is to identify weak-
nesses such that the appropriate steps to improve the entire
system performance can be taken. This paper introduces
a two-phase procedure to evaluate the network DEA with
“free” links.This new procedure employsVGMand considers
not only the input and output slacks in the objective function
but also the slacks of intermediate measures. The adjustment
in the slacks of input, links, and output items defines the

best-practice performance.The resulting DEA scores provide
complete information on how to project inefficient DMUs
onto the DEA frontier for a specific network DEA.The VGM
impartially measures items with considerable measuring unit
differences and is unit-invariant. Instead of the two conflict-
ing roles that each link plays in existing models, each link
plays a single role in the proposed network system in that it is
either desirable or undesirable. We derived the dual method
of the envelopment form, the multiplier form, to express
how to obtain the weights of the as-input and as-output
items. Each link is assigned a single weight. This procedure
is similar to the legacy radial DEA models that determine
the virtual weights of the inputs (as-input) and outputs (as-
output) of each DMU𝑜. In computing the performance score,
the signs of the as-input and as-output items are always
opposite. The single assignment of weights for all of the
performance indices, inputs, outputs, and links is crucial for
performance analysis. The quantity of all process links may
be considerably large. The current two-phase procedure is
capable of solving the problem in nonpolynomial complexity.
The new procedure will also be applied in series multistage,
shared resource (Chen et al. [21] and Liang et al. [22]),
dynamic network DEA (Tone and Tsutsui [10] and Kao [11]),
assurance region (Thompson Jr. et al. [23]), cone ratio model
(Charnes et al. [24]), and virtual weight analysis models
(Sarrico and Dyson [25]) in future research.
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Figure 3: Locations of the 11 DMUs on the virtual gap diagram.
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[7] R. Färe and S. Grosskopf, “Intertemporal production frontiers:
with dynamicDEA,” Journal of the Operational Research Society,
vol. 48, no. 6, p. 656, 1997.

[8] C. Kao and S.-N. Hwang, “Efficiency decomposition in two-
stage data envelopment analysis: an application to non-life
insurance companies in Taiwan,” European Journal of Opera-
tional Research, vol. 185, no. 1, pp. 418–429, 2008.

[9] K. Tone andM. Tsutsui, “NetworkDEA: a slacks-basedmeasure
approach,” European Journal of Operational Research, vol. 197,
no. 1, pp. 243–252, 2009.

[10] K. Tone andM.Tsutsui, “DynamicDEAwith network structure:
a slacks-basedmeasure approach,”Omega, vol. 42, no. 1, pp. 124–
131, 2014.

[11] C. Kao, “Dynamic data envelopment analysis: a relational
analysis,” European Journal of Operational Research, vol. 227, no.
2, pp. 325–330, 2013.

[12] K. Tone and M. Tsutsui, “Dynamic DEA: a slacks-based mea-
sure approach,” Omega, vol. 38, no. 3-4, pp. 145–156, 2010.

[13] C. Kao, “Efficiency decomposition in network data envelop-
ment analysis with slacks-based measures,” Omega, vol. 45, pp.
1–6, 2014.

[14] Y. Cheng and H.-L. Gao, “Matrix-type network DEA model
with its application based on input-output tables,”Mathematical
Problems in Engineering, vol. 2015, Article ID 505941, 8 pages,
2015.

[15] S. Lozano, “Alternative SBMmodel for network DEA,” Comput-
ers & Industrial Engineering, vol. 82, pp. 33–40, 2015.

[16] N. K. Avkiran, “An illustration of dynamic network DEA in
commercial banking including robustness tests,”Omega, vol. 55,
pp. 141–150, 2015.

[17] J. Huang, J. Chen, and Z. Yin, “A network DEA model with
super efficiency and undesirable outputs: an application to bank
efficiency in China,”Mathematical Problems in Engineering, vol.
2014, Article ID 793192, 14 pages, 2014.

[18] F. H. Liu and Y. C. Huang, “Virtual-gap measurement (VGM)
for assessing a set of units,” in Proceedings of the International
Conference on Science, Technology, Engineering and Manage-
ment (ICSTEM ’15), Master thesis, 2015, http://www.ircsme
.com/Programme%20Schedule%20-%20IRCSME%202015.pdf.

[19] W. D. Cook and J. Zhu, “Classifying inputs and outputs in
data envelopment analysis,” European Journal of Operational
Research, vol. 180, no. 2, pp. 692–699, 2007.

[20] Y. Chen,W. D. Cook, and J. Zhu, “Deriving the DEA frontier for
two-stage processes,” European Journal of Operational Research,
vol. 202, no. 1, pp. 138–142, 2010.

[21] Y. Chen, J. Du, H. D. Sherman, and J. Zhu, “DEA model
with shared resources and efficiency decomposition,” European
Journal of Operational Research, vol. 207, no. 1, pp. 339–349,
2010.

[22] L. Liang, F. Yang, W. D. Cook, and J. Zhu, “DEA models
for supply chain efficiency evaluation,” Annals of Operations
Research, vol. 145, no. 1, pp. 35–49, 2006.

http://www.ircsme.com/Programme%20Schedule%20-%20IRCSME%202015.pdf
http://www.ircsme.com/Programme%20Schedule%20-%20IRCSME%202015.pdf


Mathematical Problems in Engineering 13

[23] R. G. Thompson Jr., F. D. Singleton, R. M. Thrall, and B. A.
Smith, “Comparative site evaluations for locating a high-energy
physics lab in Texas,” Interfaces, vol. 16, no. 6, pp. 35–49, 1986.

[24] A. Charnes, W. W. Cooper, Z. M. Huang, and D. B. Sun, “Poly-
hedral Cone-Ratio DEAModels with an illustrative application
to large commercial banks,” Journal of Econometrics, vol. 46, no.
1-2, pp. 73–91, 1990.

[25] C. S. Sarrico and R. G. Dyson, “Restricting virtual weights in
data envelopment analysis,” European Journal of Operational
Research, vol. 159, no. 1, pp. 17–34, 2004.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


