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Abstract. Recent experiments in Bi2Sr1Ca1Cu2O8+δ [7] demonstrated that the fluctuation
diamagnetism in strong magnetic field at the vicinity of the critical temperature significantly
differs from the behavior predicted by fluctuation diamagnetism theories based on Ginzburg-
Landau model within the lowest Landau level approximation. In this study, we extend previous
theoretical result to the T < Tc region and incorporate to the theory contributions from higher
Landau levels. Comparison with experimental results shows a good agreement with the theory
for an optimally doped sample, while for under-doped sample the agreement is poor at low
temperature.

1. Introduction

Fluctuating behavior near upper critical field, Hc2(T ), in type-II superconductors has been a
subject of an intense interest in experiments and theory from the 90s. Theoretically, the problem
of fluctuations can be investigated in framework of Ginzburg-Landau (GL) free energy functional,
with the fluctuation of order parameter confined to the lowest-Landau level (LLL). The GL-LLL
theory shows single-parameter scaling properties of various thermodynamic quantities, such as
magnetization and heat capacity which are confirmed by numerous experiments [2, 3]. The
LLL scaling functions are found associated with characteristic dimensionality of the system:
Thermodynamic functions scale with scaling variable aT = [T − Tc(H)]/(HT )γ where γ = 1/2
for quasi-2D system and γ = 2/3 for anisotropic 3D system.

The scaling behavior might not hold due to the layer structure of superconductor [4, 5, 9, 10]
or due to strong fluctuations which enter higher Landau levels (HLLs)[1, 8]. Recent study of
qusi-2D system by Ong [7] shows that the magnetization curve deviates from the LLL scaling
behaviors (see Fig.1(a)) and disagrees with theoretical explanations based on GL[1, 8].

In this study, we calculate explicitly the free energy for Lawrence-Doniach model with all
Landau levels correction by variational Gaussian approximation (VGA). The contribution from
LLL is carefully considered using Borel-Pade (BP) resummation technique in ref.[5].
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2. Layered superconductor in Magnetic field

Analysis of layered superconductor is accounted for using the Lawrence-Doniach model. The
Boltzman factor is
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where Ψl is the order parameter of the l-th superconducting layer, ~A is vector potential, S is
inter-layer spacing and D is the thickness of each layer. The free energy density is defined as
f = −(T/V ol)ln

∫

Ψ
exp{−FLD[Ψ]} and magnetization is M = −∂f/∂H. We will use rescaled

quantities from now on: T = tTc , H = bHc2, ~R = ~rξ, S = sξc, D = dξc and Ψ2 = 2αTc

β ψ2.

The length scales are coherence lengths which are different in xy (ξ) and z direction (ξc). To
discuss topic related to charged particles in the presence of uniform magnetic field, expanding
the fluctuations in Landau basis is a convenience choice, thus

ψl(r) =
∑
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c
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φ
n,~k

(r) exp(ikz l), (2)

where n, k, kz are the quantum numbers of the system. In this study, a rescaled gauge
A = (0, bx, 0) is chosen to describe the magnetic field b in z direction.

According to VGA, a variational parameter ε of quadratic term is introduced to minimize
the free energy. The functional can be separated into two parts: The dominant part K which is
quadratic in order parameter and small part V which will be treated as a small parameter:
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where ω = β/4dγξ3α2Tc (with γ =
√
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c/m
∗) is proportional to

√
Gi. The rescaled free energy

density is defined as fr = −ωtln
∫

ψ exp{−K[ψ] + V [ψ]}. In first order of V , the rescaled free

energy density is written as

fr(ε) ≈ ωt

s

{

v(ε, b) + (−ah − ε)∂εv(ε, b) + ωt(∂εv(ε, b))
2
}

(5)

where

v(ε, b) =
b

2π

∑

n

∫ π/2

−π/2
dkz ln

[

nb+ ε+ (1 − cos[kzs])s
−2

]

(6)

=
b

2π

∑

n

2
{

ln
[√

nb+ ε+
√

nb+ ε+ 2s−2

]

− ln2
}

(7)

≈ b

2π

{

∑

n

ln[nb+ ε] +
1

s2

∑

n

1

nb+ ε

}

. (8)

The limit for large s with (1 + x)1/2 ≈ 1 + 1

2
x and ln(1 + x) ≈ x are taken at the last step. Our

main goal is to calculate the first term of eq.(8),
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where ϕ(x) is basically a loggamma function [8, 6] and Λ is a cutoff as nc = Λ/b− 1. The first
term of eq.(10) is divergent. However, similar to the renormalization of mass in field theory,
the bare critical temperature is renormalized as arh = ah − ωt

π lnΛ. Note also that the second

term of eq.(7) is simply ∂εu. In low field limit, u(ε, b) ≈ − 1

24

b
ε− b

2

+ u(ε, 0) where u(ε, 0) is a b

independent diverging quantity.
Minimizing fr(ε) with respect to ε, one gets a gap equation,∂fr(ε) = 0,

ε = −ah + 2ωt∂εv(ε, b). (11)

In 2D limit, the gap equation is ε = −arh+2ωt∂εu(ε, b)with ah = (1− t− b)/2. The rescaled free
energy density of the system ,fr, can be obtained by substitution of the gap solution in eq.(5).
The effective free energy density we used includes HLLs part (fHLLG ) by VGA and LLL (fLLLBP )
by BP: f ≈ fHLLG + fLLLBP . The rescaled magnetization is given by m = ∂bfr,

m =
ωt

s

{
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1

2
∂εv

}

|ε=εsol
, (12)

while the relation between rescaled quantities and phyiscal quantities are:

f =
H2
c2

2πκ2
fr,M =

Hc2

2πκ2
m. (13)

3. Results and Analysis of quasi-2D system

The failure of LLL scaling in BSCCO[7] is shown in Fig.1. The magnetization curves do not
collapse into a single line in the vicinity ofHc2(T ), i.e. aT = 0, especially for under-doped sample.
The rescaling parameters are collected in the first two columns of Tab.1. In Fig.2, one can see the
contribution of HLLs on magnetization,with coupling between different levels and each HLL, at
high temperature is important, it tends to approach a constant. The HLLs contribution suppress
the diamagnetic property, as shown in Ref. [1], the magnetization is asymptotically approaching
zero at high temperature. However, since our expansion parameter is ωt, thus our result is not
reliable at very high temperature. While the contribution from HLLs decays exponentially at
low temperature. The HLLs contribution for lower field, say b = .1 (blue), is stronger at high
temperature while at high field, say b = .5 (red), is also important at lower temperatures. The
contribution of HLLs can be enhanced by large Gi (see the dashed curve). High Landau level
contribution is not negligible at the vicinity of Tc for strong fluctuating system. Comparison of
optimally doped and under doped sample with all Landau corrections are shown in Fig.3 with
the fitting parameters in Tab.(1).

Table 1. Fitting parameters of magnetization curves

Tc (K) H ′scaling
c2 (T/K) H ′fitting

c2 (T/K) Gi κ

Optimally Doped 93.3 1.25 2.36 0.0035 72.3747
Under-doped 57 1.80 2.98 0.31 97.183

Acknowledgments

This work was supported by NSC grant in Taiwan under project No NSC96-2112-M-009-030-
MY3 and MOE ATU program.

25th International Conference on Low Temperature Physics (LT25) IOP Publishing
Journal of Physics: Conference Series 150 (2009) 052139 doi:10.1088/1742-6596/150/5/052139

3



-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-0.020

-0.015

-0.010

-0.005

0.000

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-2.0

-1.5

-1.0

-0.5

0.0

M
/(T

H
)1/

2 (1
0-4

(T
/K

)1/
2 )

(T-Tc(H))/(TH)1/2(K1/2/T1/2)

Optimally Doped

 

 

 4T
 6T
 8T
 10T
 12T
 14T

Under-doped

Figure 1. LLL magnetization scaling of
Bi2Sr1Ca1Cu2O8+δ [7]. : optimally doped
sample and ⊓⊔: under-doped sample. Different
color denotes different magnetic fields.
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as a function of rescaled temperature in VGA.
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Figure 3. Magnetization curves as a function of temperature, t, in various magnetic fields:
(a)Optimally doped BSCCO(b)Under-doped BSCCO. • are experimental data and ——are
theoretical curves
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