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Rapid increase in the amount of audio data demands an efficient method to automatically
segment or classify audio stream based on its content. In this paper, based on the Gabor
wavelet features, an audio classification and segmentation method is proposed. This
method will first divide an audio stream into clips, each of which contains one-second
audio information. Then, each clip is classified as one of two classes or five classes.
Two classes contain speech and music; pure speech, pure music, song, speech with music
background, and speech with environmental noise background are for five classes. Finally,
a merge technique is provided to do segmentation.

In order to make the proposed method robust for a variety of audio sources, we use
Fisher Linear Discriminator to obtain features with the highest discriminative ability.
Experimental results show that the proposed method can achieve over 98% accuracy rate

for speech and music discrimination, and more than 95% for a five-way discrimination.
By checking the class types of adjacent clips, we can also identify more than 95% audio
scene breaks in audio sequence.

Keywords: Audio classification and segmentation; spectrogram; audio content-based
retrieval; Fisher Linear discriminator; Gabor wavelets.

1. Introduction

In recent years, audio, as an important and integral part of many multimedia appli-
cations, has gained more and more attention. Rapid increase in the amount of audio
data demands an efficient method to automatically segment or classify audio stream
based on its content. Many studies on audio content analysis2,4,5,7–9,12,15–17,20–22

have been proposed.
A speech/music discriminator was provided in Ref. 17, based on thirteen features

including cepstral coefficients, four multidimensional classification frameworks are
compared to achieve better performance. The approach presented by Saunders16

∗This research was supported in part by the National Science Council of R.O.C. under contract
NSC-90-2213-E-009-127.
†Author for correspondence.
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takes a simple feature space, it is performed by exploiting lopsideness of the dis-
tribution of zero-crossing rate, where speech signals show a marked rise that is not
common for music signals. In general, for speech and music, it is not hard to reach
a relatively high level of discrimination accuracy since, different properties exist in
both time and frequency domains.

Besides speech and music, it is necessary to take other kinds of sounds into
consideration in many applications. The classifier proposed by Wyse and Smoliar20

classifies audio signals into “music”, “speech”, and “others”. It was developed for
the parsing of news stories. In Ref. 8, audio signals are classified into speech, silence,
laughter, and nonspeech sounds for the purpose of segmenting discussion recordings
in meetings. However, the accuracy of the segmentation results using this method
varies considerably for different types of recording. Besides the commonly studied
audio types such as speech and music, research in Refs. 9, 21 and 22 has taken
into account hybrid-type sounds, e.g. speech signal with music background and the
singing of a person, which contain more than one basic audio type and usually
appear in documentaries or commercials. In Ref. 9, 143 features are first studied
for their discrimination capability. Then, the cepstral-based features such as Mel-
frequency cepstral coefficients (MFCC), linear prediction coefficients (LPC), etc.
are selected to classify audio signals. Zhang and Kuo22 extracted some audio fea-
tures including the short-time fundamental frequency and the spectral tracks by
detecting the peaks from the spectrum. The spectrum is generated by autoregres-
sive model (AR model) coefficients, which are estimated from the autocorrelation
of audio signals. Then, the rule-based procedure, which uses many threshold val-
ues, is applied to classify audio signals into speech, music, song, speech with music
background, etc. Accuracy of the above 90% is reported. However, this method is
complex and time-consuming due to the computation of autocorrelation function.
Besides, the thresholds used in this approach are empirical, they are improper when
the source of audio signals is changed.

In this paper, we will provide two classifiers, one is for speech and music (called
two-way); the other is for five classes (called five-way) that are pure speech, music,
song, speech with music background, and speech with environmental noise back-
ground. Based on the classification results, we will propose a merging algorithm to
divide an audio stream into some segments of different classes.

One basic issue for content-based classification of audio sound is feature selec-
tion. The selected features should be able to represent the most significant prop-
erties of audio sounds, and they are also robust under various circumstances and
general enough to describe various sound classes. The issue in the proposed method
is addressed in the following: first, some perceptual features based on the Gabor
wavelet filters6,10 are extracted as initial features, then Fisher Linear Discriminator
(FLD)3 is applied to these initial features to explore the features with the highest
discriminative ability.

Note that FLD is a tool for multigroup data classification and dimensionality
reduction. It maximizes the ratio of between-class variance to within-class variance
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in any particular data set to guarantee maximal separability. Experimental results
show that the proposed method can achieve an accuracy rate of discrimination over
98% for a two-way speech/music discriminator, and more than 95% for a five-way
classifier which uses the same database as that used in the two-way discrimina-
tion. Based on the classification result, we can also identify scene breaks in audio
sequence quite accurately. Experimental results show that our method can detect
more than 95% of audio type changes. These results demonstrate the capability of
the proposed audio features for characterizing the perceptual content of an audio
sequence.

The paper is organized as follows. In Sec. 2, the proposed method will be
described. Experimental results will be presented in Sec. 3. Finally, the conclusions
will be given in Sec. 4.

2. The Proposed System

The block diagram of the proposed method is shown in Fig. 1. It is based on
the spectrogram and consists of five phases: time-frequency distribution (TFD)
generation, initial feature extraction, feature selection, classification and segmen-
tation. First, the input audio is transformed to a spectrogram, which will meet
the ear-hearing system. Second, for each clip with one-second window, some Gabor
wavelet filters will be applied to the resulting spectrogram to extract a set of initial
features.

Speech
with NB

Speech
with MB

Song

Pure
Music

Pure
Speech

Audio

Signal

TFD

generation

Five-way
feature

selection
and

classification

Initial
feature

extraction

Music

Speech

Two-way
segmentation

Five-way
segmentation

Segments

Segments

Two-way
feature

selection
and

classification

Fig. 1. Block diagram of the proposed method, where “MB” and “NB” are the abbreviations for
“music background” and “noise background”, respectively.
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Third, based on the extracted initial features, the Fisher Linear Discriminator
(FLD) is used to select the features with the best discriminative ability and also
to reduce feature dimension. Fourth, based on the selected features, a classification
method is then provided to classify each clip. Finally, based on the classified clips, a
segmentation technique is presented to identify scene breaks in each audio stream.
In what follows, we will describe the details of the proposed method.

2.1. TFD generation

In the first phase, the input audio is first transformed to a spectrogram that is a
commonly used representation of an acoustic signal in a three-dimensional (time,
frequency, intensity) space known as a time-frequency distribution (TFD).13 Con-
ventionally, the Short Time Fourier Transform (STFT) is applied to construct a
spectrogram and the TFD is sampled uniformly in time and frequency. However, it
is not suitable for the auditory model because the frequency resolution within the
human psycho-acoustic system is not constant but varies with frequency.23

In this paper, the TFD is perceptually tuned, mimicking the time-frequency
resolution of the ear. That is, the TFD consists of axes that are nonuniformly
sampled. Frequency resolution is coarse and temporal resolution is fine at high
frequencies while temporal resolution is coarse and frequency resolution is fine at
low frequencies.23 Given the sampling frequency (Fs) of 441,00Hz, the Hamming
window is applied and an audio signal is divided into frames, each of which contains
512 samples (N = 512), with 50% overlap in each of two adjacent frames. One
example of the tiling in the time-frequency plane is shown in Fig. 2. Figure 3 shows
a schematic diagram of the TFD generation.

There are three parts in the TFD generation. In the first part, the N -point
STFT is applied to the original audio signal P1(t) to obtain a spectrogram S1(x, y).
In the second part, P1(t) is downsampled to half-size to obtain signal P2(t) and
the N -point STFT is applied to P2(t) to obtain a spectrogram S2(x, y). In the
third part, P1(t) is downsampled to quarter-size to obtain signal P3(t) and the
N -point STFT is applied to P3(t) to obtain a spectrogram S3(x, y). Note that
the downsampling is conducted after applying a low-pass filtering to original signal
to prevent the aliasing, and the window size for STFT is 512 (i.e. N = 512) in this

Time
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y

Fig. 2. An example of tiling in the time-frequency plane.
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Input
Audio
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P3(t)

P2(t)
Low-Pass

 Filter
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 Filter

 2
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DFT

DFT

DFT

Selected
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Selected
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Selected
Band 3

[Fs/4-Fs/2]

[Fs/8-Fs/4]

[0-Fs/8]

Fig. 3. A schematic diagram of the TFD generation details.

paper. The frequency resolution ∆fj and the analysis time interval Tj in Sj(x, y)
can be calculated as follows:

∆fj =
1

2j−1
· Fs

N
=

1
Tj

, j = 1, 2, 3. (1)

Note that the window center at the kth time block in Sj(x, y), tkj , is given by

tkj =
k

2
Tj, j = 1, 2, 3. (2)

Finally, based on S1(x, y), S2(x, y), and S3(x, y), a spectrogram I(x, y) is obtained
according to the following equation:

I(x, y)

=




S1(x, y), if y ∈ [FS/4, FS/2], x = 0, 1, . . . , Nf − 1;

S2(2i, y), if y ∈ [FS/8, FS/4], x = 2i, 2i + 1., i = 0, 1, . . . , Nf/2 − 1;

S3(4i, y), if y ∈ [0, FS/8], x = 4i, . . . , 4i + 3, i = 0, 1, . . . , Nf/4 − 1;

(3)

where Nf is the frame number of P1(t). From Eq. (3), we can see that in I(x, y),
the frequency resolution is coarse and temporal resolution is fine at high frequencies
while temporal resolution is coarse and frequency resolution is fine at low frequen-
cies. This means that I(x, y) meets the human psycho-acoustic system.

2.2. Initial feature extraction

Generally speaking, the spectrogram is a good representation for the audio since
it is often visually interpretable. By observing a spectrogram, we can find that the
energy is not uniformly distributed, but tends to cluster to some patterns.14 All
curve-like patterns are called tracks. Figure 4(a) shows that for a music signal, some
line tracks corresponding to tones will exist on its spectrogram. Figure 4(b) shows
some patterns including clicks (broadband, short time), noise burst (energy spread
over both time and frequency), and frequency sweeps in a song spectrogram. Thus,
if we can extract some features from a spectrogram to represent these patterns, the
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Tones 

(a) (b)

Fig. 4. Two examples to show some possible different kinds of patterns in a spectrogram. (a) Line
tracks corresponding to tones in a music spectrogram. (b) Clicks, noise burst and frequency sweeps
in a song spectrogram.

classification should be easy. Smith and Serra18 proposed a method to extract tracks
from a STFT spectrogram. Once the tracks are extracted, each track is classified.
However, tracks are not well suited for describing some kinds of patterns such as
clicks, noise burst and so on. To treat all kinds of patterns, a richer representation
is required. In fact, these patterns contain various orientations and spatial scales.
For example, each pattern formed by lines [see Fig. 4(a)] will have a particular
line direction (corresponding to orientation) and width (corresponding to spatial
scale) between two adjacent lines; each pattern formed by curves [see Fig. 4(b)]
contains multiple line directions and a particular width between two neighboring
curves. Since Gabor wavelet transform provides an optimal way to extract those
orientations and scales,13 in this paper, we will use the Gabor wavelet functions
to extract some initial features to represent those patterns. The details will be
described in the following section.

2.2.1. Gabor wavelet functions and filters design

Two-dimensional Gabor kernels are sinusoidally modulated Gaussian Functions.
Let g(x, y) be the Gabor kernel, its Fourier Transform G(u, v) can be defined as
follows6:

g(x, y) =
(

1
2πσxσy

)
exp

[−1
2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjωx

]
, (4)

G(u, v) = exp
(−1

2

[
(u − ω)2

σ2
u

+
v2

σ2
v

])
, (5)

where σu = 1
2πσx

and σv = 1
2πσy

and ω is the center frequency.
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Gabor wavelets are sets of Gabor kernels which will be applied to different
subbands with different orientations. It can be obtained by appropriate dilations
and rotations of g(x, y) through the following generating functions10:

gmn(x, y) = a−mg(x′, y′), a > 1, m, n = integer,

x′ = a−m(x cos θ + y sin θ), and y′ = a−m(−x sin θ + y cos θ), (6)

a =
(

ωh

ωl

) 1
S−1

, (7)

σu = ((a − 1)ωh)/((a + 1)
√

2 ln 2), (8)

σv = tan
( π

2k

) [
ωh − 2 ln 2

(
σ2

u

ωh

)][
2 ln 2 − (2 ln 2)2 − σ2

u

ω2
h

]−1
2

, (9)

where θ = nπ
K , n = 0, 1, . . . , K − 1., m = 0, 1, . . . , S − 1., K is the total number

of orientations, S is the number of scales in the multiresolution decomposition, ωh

and ωl are the lowest and the highest center frequency, respectively. In this paper,
we set ωl = 3/64, ωh = 3/4, K = 6 and S = 7.

2.2.2. Feature estimation and representation

To extract the audio features, each Gabor wavelet filter, gmn(x, y), is first applied
to the spectrogram I(x, y) to get a filtered spectrogram, Wmn(x, y), as

Wmn(x, y) =
∫

I(x − x1, y − y1) gmn ∗ (x1, y1)dx1dy1, (10)

where * indicates the complex conjugate. The above filtering process is executed
by FFT (Fast Fourier Transform). That is

Wmn(x, y) = F−1{F{gmn(x, y)} · F{I(x, y)}}. (11)

Since peripheral frequency analysis in the ear system roughly follows a log-
arithmic axis, in order to keep this way, the entire frequency band [0, Fs/2] is
divided into six subbands of unequal width: F1 = [0, Fs/64], F2= [Fs/64, Fs/32],
F3= [Fs/32, Fs/16], F4 = [Fs/16, Fs/8], F5= [Fs/8, Fs/4], and F6 = [Fs/4, Fs/2].
In our experiments, high frequency components above Fs/4 (i.e. subband [Fs/4,
Fs/2]) are discarded to avoid the influence of noise. Then, for each interested sub-
band Fi, the directional histogram, Hi(m, n), is defined to be

Hi(m, n) =
Ni(m, n)∑5

n=0 Ni(m, n)
, i = 0, . . . , 4, (12)

W i
mn(x, y) =

{
1, if Wmn(x, y) > Tm and y ∈ Fi

0, otherwise,
(13)

Ni(m, n) =
∑

x

∑
y

W i
mn(x, y), (14)
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where m = 0, . . . , 6 and n = 0, . . . , 5. Note that Ni(m, n) is the number of pixels
in the filtered spectrogram Wmn(x, y) at subband Fi, scale m and direction n with
value larger than threshold Tm. Tm is set as

Tm = µm + σm, (15)

where µm =
∑5

n=0

∑
x

∑
y Wmn(x, y)/Nm, σm =(

∑5
n=0

∑
x

∑
y(Wmn(x, y)−µm)2/

Nm)
1
2 , and Nm is the number of pixels over all the six filtered spectrogram

Wmn(x, y) with scale m.
An initial feature vector, f , is now constructed using Hi(m, n) as feature compo-

nents. Recall that in our experiments, we use seven scales (S = 7), six orientations
(K = 6) and five subbands, this will result in a 7× 6× 5-dimensional initial feature
vector

f = [H0(0, 0), H0(0, 1), . . . , H4(6, 5)]T . (16)

2.3. Feature selection and audio classification

The initial features are not used directly for classification since some features give
poor separability among different classes and inclusion of these features will lower
down classification performance. In addition, some features are highly correlated so
that redundancy will be introduced. To remove these disadvantages, in this paper,
the Fisher Linear Discriminator (FLD) is applied to the initial features to find
those uncorrected features with the highest separability. Before describing FLD,
two matrices, between-class scatter and within-class scatter, will first be introduced.
The within-class scatter matrix measures the amount of scatter between items in
the same class and the between-class scatter matrix measures the amount of scatter
between classes.

For the ith class, the within-class scatter matrix Si
w is defined as

Si
w =

∑
xi

k∈Xi

(xi
k − µi)(xi

k − µi)T , (17)

the total within-class scatter matrix Sw is defined as

Sw =
C∑

i=1

Si
w, (18)

and the between-class scatter matrix Sb is defined as

Sb =
C∑

i=1

Ni(µi − µ)(µi − µ)T , (19)

where µi is the mean of class Xi, Ni is the number of samples in class Xi, xi
k is the

kth sample in Xi, and C is the number of classes.

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

05
.1

9:
80

7-
82

2.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

6/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



August 30, 2005 14:7 WSPC/115-IJPRAI SPI-J068 00428

A New Approach for Audio Classification and Segmentation 815

In FLD, a matrix Vopt = {v1, v2, . . . , vC−1} is first chosen, it satisfies the follow-
ing equation:

Vopt = argmax
V

∣∣∣∣ V T SbV

V T SwV

∣∣∣∣. (20)

In fact, {v1, v2, . . . , vC−1} is the set of generalized eigenvectors of Sb and Sw corre-
sponding to the C − 1 largest generalized eigenvalues {λi|i = 1, 2, . . . , C − 1},3 i.e.

Sbvi = λiSwvi. (21)

Note that in this paper, two classes and five classes (i.e. C = 2 and C = 5) are used
and one-second audio clip is taken as the basic classification unit.

Based on Vopt, the initial feature vector for each one-second audio clip in the
training data and testing data is projected to the space generated by Vopt to get a
new feature vector f ′ with dimension C − 1. f ′ is then used to stand for the audio
clip. Before classification, it is important to give a good similarity measure. In our
experiments, the Euclidean distance worked better than others (e.g. Mahalanobis,
covariance, etc.). For each test sample, xj with feature vector f ′

j , the Euclidean
distance between the test sample and the class center of each class in the space gen-
erated by Vopt is evaluated. Then the sample is assigned to the class with minimum
distance. That is, xj is assigned as class C′

j according to the following criterion:

C′
j = arg

i
min

∥∥f ′
j − µ′

i

∥∥, i = 1, 2, . . . , C, (22)

where µ′
i is the mean vector of the projected vectors of all training samples in

class i. Figure 5 shows an example of using a two-way speech/music discriminator.
In the figure, “x” stands for the projected result of a music signal, “o” stands for the
projected result of a speech signal. From this figure, we can see that through FLD,
music and speech samples can be easily separated. Figure 6 outlines the process of
feature selection and classification.

Fig. 5. An example of using FLD for two-way speech/music discriminator.
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Audio
Signal

Fig. 6. A block diagram of feature selection and classification using FLD.

Two problems arise when using Fisher discriminator. First, the matrices needed
for computation are very large. Second, since we may have fewer training samples
than the number of features in each sample, the data matrix is rank deficient.
To avoid the problems described above, it is possible to solve the eigenvectors
and eigenvalues of a rank deficient matrix by using a generalized singular value
decomposition routine. One simple and speedup solution1 is taken in this paper.

2.4. Segmentation

The segmentation is to divide an audio sequence into semantic scenes called “audio
scene” and to index them as different audio classes. Due to some classification errors,
a reassigning algorithm is first provided to rectify these classification errors. For
example, if we detect a pattern like speech-music-speech, and the music subpattern
lasts a very short time, we can conclude that the music subpattern should be speech.
First, for each one-second audio clip, the similarity measure between the audio clip
and the center of its class is defined as

Similarity = 1 − distmin∑5
j=1 distj

, distmin = min
j

distj , (23)

where distj is the Euclidean distance between the clip and the jth class center in the
feature space. If the similarity measure is less than 0.9, mark the clip as ambiguous.
Note that ambiguous clips often arise in transition periods. For example, if a tran-
sition happens when speech stops and music starts, then each clip in the transition
will contain both speech and music information. Then, each ambiguous clip will
be reassigned as the class of the nearest unambiguous clip. After the reassignment
is completed, all neighboring clips with the same class are merged into a segment.
Finally, for each audio segment, the length is evaluated. If the length is shorter
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than the threshold T (T = 3 second), each clip in the segment is reassigned as the
class of one of its two neighboring audio segments with the least Euclidean distance
between the clip and the center of class of the selected neighboring segment.

3. Experimental Results

3.1. Audio database

In order to do comparison, we have collected a set of 700 generic audio pieces (with
duration from several seconds to no more than one minute) of different types of
sound according to the collection rule described in Ref. 22 as the testing database.
Care was taken to obtain a wide variation in each category, and some clips are taken
from MPEG-7 content set.11 The database contains 100 pieces of classical music
played with various instruments, 100 other music pieces of different styles (jazz,
blues, light music, etc.), 200 pieces of pure speech in different languages (English,
Chinese, Japanese, etc.), 200 pieces of song sung by male, female, or children,
50 pieces of speech with background music (e.g. commercials, documentaries, etc.),
and 50 pieces of speech with environmental noise (e.g. sport broadcast, news inter-
view, etc.). These shorter audio clips are stored as 16-bit per sample with 44.1 kHz
sampling rate in the WAV file format and are used to test the audio classification
performance. Note that we take one-second audio signal as a test unit.

We have also collected a set of 15 longer audio pieces recorded from movies,
radio or video programs. These pieces last from several minutes to an hour and
contain various types of audio. They are used to test the performance for audio
segmentation.

3.2. Classification and segmentation results

3.2.1. Audio classification results

In order to examine the robust use for a variety of the audio source and the accuracy
for audio classification, we present two experiments. One is two-way discrimination
and the other is five-way discrimination. Concerning the two-way discrimination,
we try to classify the audio set into two categories: music and speech. As for the five-
way discrimination, the audio set will be classified into five categories: pure speech,
pure music, song, speech with music background, and speech with environmental
noise background.

Tables 1 and 2 show the results of the classification. From these tables, we can
see that the proposed classification approach for generic audio data can achieve an

Table 1. Two-way classification results.

Audio Type Number Correct Rate

Speech 300 98.17%
Music 400 98.79%
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Table 2. Five-way classification results.

Discrimination Results

Speech Speech
Audio Type Number Pure Music Song Pure Speech with MB with NB

Pure Music 200 94.67% 3.21% 1.05% 1.07% 0%
Song 200 0.8% 96.43% 0% 1.97% 0.8%
Pure Speech 200 0% 0.14% 98.40% 0.11% 1.35%
Speech with MB 50 1.01% 4.2% 3.10% 89.62% 2.07%
Speech with NB 50 0.15% 0.71% 1.28% 0.63% 97.23%

over 98% accuracy rate for the speech/music discrimination, and more than 95%
for the five-way classification. Both classifiers use the same testing database. It is
worth mentioning that the training is done using 50% of randomly selected samples
in each audio type, and the test is operated on the remaining 50%. By changing
training set several times and evaluating the classification rates, we find that the
performance is stable and independent on the particular test and training sets. The
experiments are carried out on a Pentium II 400 PC/Windows 2000 with less than
one-eleventh of the time required to play the audio clip.

In our experiments, there are several misclassifications. From Table 2, we can
see that most errors occur in the speech with music background category. This is
because the music or speech component is weak. In order to do a comparison, we
would also like to cite the efficiency of the existing system described in Ref. 22 which
also includes the five audio classes considered in our method and use databases
similar to ours. The authors of Ref. 22 report that less than one eighth of the time
required to play the audio clip are needed to process an audio clip. They also report
that their accuracy rates are more than 90%.

3.2.2. Audio segmentation results

We tested our segmentation procedure with audio pieces recorded from radio,
movies and video programs. We made a demonstration program for online audio
segmentation and indexing as shown in Fig. 7. Figure 7(a) shows the classification
result for a 66 second audio piece recorded from MPEG-7 data set CD19 that is
a Spanish cartoon video called “Don Quijote de la Mancha”. Figure 7(b) shows
the result of applying the segmentation method to Fig. 7(a). Besides the above
example, we have also performed experiments on other audio pieces.

Listed in Table 3 is the result of the audio segmentation, where miss-rate and
over-rate are defined as the ratio between the number of miss-segmented ones and
the actual number of segments, and the ratio between the number of over-segmented
ones and the actual number of segments in audio streams, respectively. Besides,
error rate is defined as the ratio between the number of segments indexed in errors
and the actual number of segments in audio stream.
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(a)

(b)

Fig. 7. Demonstration of audio segmentation and indexing, where “SMB” and “SNB” are the
abbreviations for “speech with music background” and “speech with noise background”, respec-
tively. (a) Original result. (b) Final results after applying the segmentation algorithm to (a).
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Table 3. Segmentation results.

Without Using Reassignment Using Reassignment

Miss-Rate 0% 1.1%
Over-Rate 5.2% 1.8%
Error-Rate 2.5% 1.3%

The first column shows the segmentation result without applying the reassign-
ment process to the classification result, and the second column shows the seg-
mentation result using the reassignment process. Experiments have shown that the
proposed scheme achieves satisfactory segmentation and indexing. Using human
judgement as the ground truth, our method can detect more than 95% of audio
type changes.

4. Conclusions

In this paper, we have presented a new method for the automatic classification
and segmentation of generic audio data. An accurate classification rate higher than
95% was achieved. The proposed scheme can treat a wide range of audio types.
Furthermore, the complexity is low due to the easy computing of audio features,
and this makes online processing possible. The experimental results indicate that
the extracted audio features are quite robust.

Besides the general audio types such as music and speech tested in existing
work, we have taken into account other different types of sounds including hybrid-
type sounds (e.g. speech with music background, speech with environmental noise
background, and song). While current existing approaches for audio content analysis
are normally developed for specific scenarios, the proposed method is generic and
model free. Thus, it can be widely applied to many applications.
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