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Abstract

A neural-learning fuzzy technique is proposed for T–S fuzzy-model identification of model-free physical systems.
Further, an algorithm with a defined modelling index is proposed to integrate and to guarantee that the proposed
neural-based optimal fuzzy controller can stabilize physical systems; the modelling index is defined to denote
the modelling-error evolution, and to ensure that the training data for neural learning can describe the physical
system behavior very well; the algorithm, which integrates the neural-based fuzzy modelling and optimal fuzzy
controlling process, can implement off-line modelling and on-line optimal control for model-free physical systems.
The neural-fuzzy inference network is a self-organizing inference system to learn fuzzy membership functions and
fuzzy-subsystems’ parameters as data feeding in. Based on the generated T–S fuzzy models for the continuous
mass–spring–damper system and Chua’s chaotic circuit, discrete-time model car system and articulated vehicle,
their corresponding fuzzy controllers are formulated from both local-concept and global-concept fuzzy approach,
respectively. The simulation results demonstrate the performance of the proposed neural-based fuzzy modelling
technique and of the integrated algorithm of neural-based optimal fuzzy control structure.
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1. Introduction

Research in fuzzy modelling and fuzzy control has come of age[1,2,5,11,22,23]. There are two main
ways totheoreticallyconstruct aT–S fuzzy model. One is from local linear approximation, which generates
a linear consequent part with a constant term included in each rule; the other is via sector nonlinearity
concept [7,14,15], which results in a constant-free linear consequence for each rule. Both are demonstrated
to be universal approximations to any smooth nonlinear systems [16,20,28]. For simplification, these two
kinds of fuzzy structures are, respectively, denoted aslinear andaffineT–S fuzzy systems by Tanaka and
Wang [20]. It is noticed that the consequent part of each fuzzy rule in both models are represented by a
linear state equation; the only difference between these two representations is that there exists a constant
singleton in the fuzzy rule consequence for theaffineT–S fuzzy model.

The T–S type with no constant term in the local linear consequent part of each rule (linear T–S fuzzy
system) is the most popular fuzzy model for its further intrinsic analysis: T–S model-based fuzzy control
has been successfully applied to many nonlinear systems [15]. The linear matrix inequality (LMI)-based
fuzzy controller is to minimize the upper bound of the performance index [21]. Structure-oriented and
switching fuzzy controller are further developed for more complicated systems [6,12,14]. The optimal
fuzzy control technique is used to minimize the performance index from local-concept or global-concept
approach [25–27]. Recently, Tanaka and Wang developed an integrated LMI approach to fuzzy modelling
and controlling a nonlinear system with unknown parameters [10]. Three LMI conditions are derived to
identify the parameters of T–S fuzzy models, and a robust controller is developed to compensate the
identification error. The membership functions and fuzzy rule numbers are chosen as known parameters
in the aforementioned approach. And in order to decrease the computational cost, much research focuses
on rule and consequence order reduction [6,15,17] and on rule switching technique [12]. Advanced
research for fuzzy modelling of more complicated systems is still open. Further, the aforementioned
research is available only for model-based nonlinear systems.

The approach of model-free nonlinear systems to guarantee the proposed fuzzy model under limited
modelling error and the corresponding fuzzy control with desirable implementation is still developing.Yu
and co-workers use a type-1 fuzzy neural network (FNN) with sliding-mode and gradient-decent learning
to control a Duffing system [9]. Wai uses FNN to mimic a perfect control law and compensate the error by
another compensator [19]. Lin and co-workers use FNN to approximate nonlinear functions and develop
adaptive laws to attenuate approximation errors and external disturbance [4]. Hu and Liu fuzzy model
a time-delay systemanalytically, then use adaptive RBF NN to approximate fuzzy modelling error and
adoptH∞ control to compensate the error [8]. Wang and co-workers use type-1 FNN with adaptive update
law to approximate an optimal controller [24]. Most of them describe systems with fuzzy rules and use
FNN to control the systems. There was no direct approach to identify T–S fuzzy systems of model-free
nonlinear systems.

In this work, we propose a neural fuzzy network (NFN) to achieve identification of alinear T–S
fuzzy model for model-based or model-free systems, which can self-learn the Gaussian-type membership
functions and fuzzy subsystems’ parameters of each rule consequence. The generatedlinear T–S fuzzy
model can be used to develop fuzzy controllers such as an LMI-based fuzzy controller, structure-oriented
and switching fuzzy controllers. In order to further ensure that the generated fuzzy model can approximate
the original physical system and more to control the model-free system well, we propose an integrated
algorithm, which integrates the proposed neural fuzzy network and previously proposed nonlinear optimal
fuzzy controller, to guarantee the generated fuzzy system can describe the physical system behavior and
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the closed-loop neural-based optimal fuzzy control system is stable. The proposed structure is applied
to fuzzy modelling and optimal controlling of a mass–spring–damper system, a chaotic Chua’s circuit
system, a model car system and an articulated vehicle system.

2. Neural-based fuzzy model and optimal controller

2.1. Neural-based fuzzy inference structure

As we know, the T–S fuzzy model is basically a locally linearized fuzzy model, which describes global
behavior by fuzzily blending linear subsystems. Most T–S fuzzy models are identified by, respectively,
local linear approximation and sector nonlinearity concept[7,15], which fuzzily blendsthe bounded
values of each nonlinear term to achieve global or semi-global effect. Accordingly, two kinds of T–S
fuzzy system representations,affineT–S fuzzy model andlinear T–S fuzzy model, are generated. The
difference between these two representations is that a singleton is included in the fuzzy subsystems of
theaffineT–S fuzzy model. Both fuzzy models are demonstrated to be universal approximations of any
smooth nonlinear system to any desired accuracy. However, these two modelling techniques (local linear
approximation and sector nonlinearity concept) are available for model-based systems only. Besides,
since the controller design forlinear T–S fuzzy model has been developed very well, it is important to
propose a modelling technique to construct alinearT–S fuzzy system not only for model-based but also
for model-free nonlinear physical systems.

Juang and Lin proposed a neural-fuzzy inference network with self-learning ability (SONFIN) [3],
though anaffineT–S fuzzy system can be obtained via this network by regarding external inputs as aug-
mented state variables. However, the singleton in each fuzzy rule is the key consequence for learning and
the state-dependent terms are just optional generated for compensation. The learning process will always
diverge by just deleting the singleton from the rule consequence of Juang’s algorithm directly. In other
words, basic SONFIN structure will learn type-1 fuzzy system basically. We modified this neural fuzzy
network such that the input- and state-dependent terms initially exist and the corresponding parameters
are adapted by the gradient method; in other words, the learning process will focus on generating input-
and state-dependent terms.

We here name the modified NFN to belinear-NFN and Juang’s to beaffine-NFN to denote the con-
structed fuzzy models to belinearT–S type andaffineT–S type, respectively. Notice that even these two
structures are similar in representation but the learning spirit is totally different. That is, the singleton is
the key term and state-dependent terms are optional generated for compensation in the rule consequences
of affine type, but the input- and state-dependent terms are now the key terms in those of linear type.

Fig. 1 describes the proposed six-layerlinear NFN structure for realizing alinear T–S fuzzy model.
This structure is similar to Juang’s except for the rule representation in the fifth layer. Each node in the
structure possesses finite weighted fan-in connections to the last-layer nodes and fan-out connections to the
next-layer nodes. An integration function is associated with the fan-in operation to integrate information,
activation and evidence; in other words, the integration function is the net input of a node. For example,
for the ith node in thekth layer, we have

net− inputki = f (uk1i , u
k
2i , . . . , u

k
pi
, wk1i , w

k
2i , . . . , w

k
pi
),
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Fig. 1. linear-SONFIN structure.

whereuk1i , u
k
2i
, . . . , ukpi are the inputs of theith node andwk1i , w

k
2i
, . . . , wkpi are the associated weights.

The output operationoki is then proceeded by an activation functiona(·),

oki = a(net− inputki ).

We now briefly describe the proposed six-layer NFN structure as follows.
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Layer 1: Each node in this layer is correspondent to one input variable and transmits the input variable
to the next layer directly; that is,

f = u1
i , a1 = f,

where the linking weightw1
i is unity in this layer. Layer 2: Each node in this layer denotes a linguistic

label; that is, the input variables are fuzzified in this layer. We choose Gaussian distribution as the
membership function and the operation is performed as

f (u2
ij ) = −(u

2
i −mij )

2

�2
ij

, a2(f ) = ef ,

wheremij and�ij are the mean and the standard deviation of the Gaussian membership function of the
jth term of theith input variableu2

i .
Layer 3: The fuzzily blending operation is performed in this layer and hence each node represents one

fuzzy logic rule; that is,

f (u3
i ) =

n∏
i=1

u3
i = e−[Di(x−mi)]t [Di(x−mi)], a3(f ) = f,

wheren is the number of Layer-2 nodes joining with theith rule precondition,Di = diag(1/�i1,
1/�i2, . . . ,1/�in) andmi = (mi1,mi2, . . . , min). Notice that the weighted factor for each fan-in stream
is unity in this layer and the node output is in fact the firing strength of the corresponding fuzzy rule.
Layer 4: This layer is for normalization and hence generalizes the normalized fire strength of the fuzzy

rule in the following way:

f (u4
i ) =

∑
i

u4
i , a4(f ) = u4

i

f
,

where all weighted factors are unity in this layer.
Layer 5: This layer is the consequence layer. Each node in Layer 4 has its corresponding node. Notice

that the node outputs in Layer 4 are the key consequences of the fuzzy rules in Juang’s NFN; but now,
they are only the basic node inputs to store the fire strength information. Not only the input variables in
Layer 1 but also the external inputs of the physical system are included as the node inputs to generate
the consequence condition for the corresponding fuzzy rule. In other words, the activity function in this
layer is

f =
∑
j

ajixj +
∑
m

bmium, a5(f ) = f · u5
i .

Layer 6: Each node in this layer is correspondent to one system output variable. This layer is to integrate
the actions from Layer 5, and hence to perform the defuzzifier operation for the fuzzy logic system. In
other words,

f (u6
i ) =

∑
i

u6
i , a6(f ) = f.



S.-J. Wu et al. / Fuzzy Sets and Systems 154 (2005) 182–207 187

Hence, the input variablesxj are fuzzified as fuzzy variables whose corresponding term setsTji have
Gaussian membership function with meanmji and standard deviation�ji ; the corresponding output for
the neural network is

SX(t) = AiX(t)+ Biu(t), i = 1, . . . , r.

In other words, the proposed NFN structure is in fact a neural-basedlinearT–S fuzzy modelling structure.
Via neural learning technique, this structure will proceed the structure and parameter learning concurrently
and generate the followinglinearT–S fuzzy system:

Ri : If x1 is T1i(m1i , �1i), . . . , xn is Tni(mni, �ni), thenY (t) = CX(t)

SX(t) = AiX(t)+ Biu(t), i = 1, . . . , r, (1)

whereRi denotes theith rule of the fuzzy model;x1, . . . , xn are system states;Tji(mji, �ji), j =
1, . . . , n, is the fuzzy term of the input fuzzy variablexj in the ith rule withmji and�ji being the mean
and standard deviation of the Gaussian membership function;SX(t) denotesẊ(t) for the continuous case
andX(t+1) for the discrete case;X(t) = [x1, . . . , xn]t ∈ �n is the state vector,Y (t) = [y1, . . . , yn′ ]t ∈
�n′

is the system output vector, andu(t) ∈ �m is the system input (i.e., control output); andAi , Bi and
C are, respectively,n× n, n×m andn′ × n matrices.

Structure learning includes both precondition and consequence identification of a fuzzy IF–THEN
rule. Precondition identification (input-space partition) is formulated as the combinational optimization
problem to minimize the number of generated rules and the number of fuzzy term sets for each input
fuzzy variable, where the input space is partitioned in a flexible way via the aligned clustering-based
algorithm. Consequence identification is to decide the significant terms (states and inputs) to be added via
projected-based correlation measure of each rule. The combined precondition and consequence structure
identification scheme can set up an economical and dynamically growing network automatically. In
other words, this NFN structure possesses the self-construction ability to generate its rule nodes, term set
nodes and linking weights between nodes.As for the parameter learning, based on the supervised learning
algorithm, the least mean square algorithm is adopted to adjust the parameters in the rule consequence, and
the back-propagation algorithm for minimizing a given cost function is adopted to adjust the parameters
in the rule precondition.

2.2. Neural-fuzzy-based optimal fuzzy controller

Though the proposed NFN structure can obtain the linear T–S fuzzy model for the model-free systems,
the critical issue is how to ensure the training data sufficiently enough for describing the system behavior
effectively. As we know, once the designed optimal fuzzy controlleru∗(t) is applied to a real physical
system, then the deviation between real and estimated output comes from modelling error and controlling
error. Via our previous papers[25–27], we know the proposed optimal fuzzy controller can exponentially
stabilize the correspondinglinearT–S fuzzy system once each fuzzy subsystem is completely controllable
(c.c.) and completely observable (c.o.). In other words, the closed-loop real system compensated with the
optimal fuzzy controller is exponentially stable in the case of zero modelling error; that is, the neural-
learning-based T–S fuzzy system is consistent with the real nonlinear system. For measuring the modelling
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error, we define a modelling index as

IM(t) = Y cl
Lsonfin(t)+ �

Y cl(t)+ �
, (2)

whereYLsonfin(t) is the output of the proposed neural-learning-based T–S fuzzy closed-loop system and
Y (t) is the output of the real physical closed-loop system;� is a small constant to ensure a nonzero
denominator. Accordingly to the stability of the optimal fuzzy closed-loop system[25–27], we know the
index must approach unity as time goes to infinity once the fuzzy model can approximate the real physical
system very well.Therefore, we further integrate the neural-fuzzy modelling process and the optimal fuzzy
controlling design scheme into an integrated neural-fuzzy modelling and controlling (INFMC) algorithm
in Fig. 2. Via this INFMC algorithm, we can guarantee that the proposed neural-learning-based T–S fuzzy
models can describe the real physical systems well and obtain the corresponding optimal fuzzy controller.
In the rest of this subsection, the adopted local- and global-based optimal fuzzy controllers are described
briefly as follows.

Based on the generated T–S fuzzy model from Section 2.1, we assume all desired controllers are in the
form of

Ri : If y1 is S1i , . . . , yn′ is Sn′i , thenu(t) = ri(t), i = 1, . . . , �, (3)

wherey1, . . . , yn′ are the elements of output vectorY (t), S1i , . . . , Sn′i are the input fuzzy terms in the
ith control rule, and the plant input (i.e., control output) vectoru(t) or ri(t) is in �m space. Our quadratic
optimal fuzzy control problem is then described as follows:

Problem 1. Given the rule-based fuzzy system in Eq. (1) withX(t0) = X0 ∈ �n and a rule-based fuzzy
controller in Eq. (3), find the individual optimal control law,r∗i (·), i = 1, . . . , �, such that the composed
optimal controller,u∗(·), can minimize the quadratic cost functional,J (u(·)), over all possible inputs
u(·).

J (u(·))=
∫ ∞

t0

[Xt(t)L(t)X(t)+ ut (t)u(t)] dt (continuous), (4)

J (u(·))=
∞∑
t=t0

[Xt(t)L(t)X(t)+ ut (t)u(t)] (discrete-time), (5)

whereXt(t)L(t)X(t) is state-trajectory penalty withL(t) belonging to a symmetric positive semi-definite
n× n matrix andut (t)u(t) is fuel consumption.

For the local approach, we first adopt the principles of dynamic programming to transform the quadratic
optimization problem into a successively ongoing dynamic problem with regard to the state resulting from
the previous decision. Then, based on theadditive property of energy, we know that,at any time-stept ,
if we can find theoptimal local decision(optimal control law) for minimizing

Jt (ut )=
∫ ∞

t

(XtlLlXl + utlul)dl, t ∈ [t0,∞) (continuous), (6)

Jt (ut )=
∞∑
t

[XtlLlXl + utlul], t ∈ [t0,∞) (discrete) (7)
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Fig. 2. Integrated neural-fuzzy modelling and controlling (INFMC) algorithm.
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with regard to afuzzy subsystem, the composed global decision can be aglobal minimizerof total cost
with regard to afuzzy system. In other words, based on the local viewpoint of the global optimal fuzzy
control, we know that solving the quadratic optimal control problem is to findonly one corresponding
optimal solution of the fuzzy controller foreachrule of the fuzzy model. Thereupon, both the fuzzy
model andadmissiblefuzzy controller have, more precisely, the same input variables and same input
space partition, and there exists only one optimal fuzzy control rule for each fuzzy subsystem described
by a fuzzy rule in the fuzzy model. In short, the local-concept optimization technology is first adopted to
rewrite the quadratic optimization problems into the following successively ongoing dynamic problems
with regard to the state resulting from the previous decision[25].

Problem 1.1. Given the fuzzy subsystem,

Ẋl =AilXl + Bil ril , l ∈ [t,∞), i = 1, . . . , r (continuous), (8)
Xl+1 =AilXl + Bil ril , l ∈ [t,∞), i = 1, . . . , r (discrete) (9)

with the initial state resulting from the previous decision, i.e.,X0t = X∗
t ,

(1) find the optimal local decision at time instantt, r∗it , for minimizing the cost functional,

Jt (rit )=
∫ ∞

t

(XtlLlXl + rtil ril )dl, t ∈ [t0,∞) (continuous), (10)

Jt (rit )=
∞∑
t

(XtlLlXl + rtil ril ], t ∈ [t0,∞) (discrete); (11)

(2) obtain the optimal global decision at time instantt, u∗
t , for minimizing the cost functionalJt (ut ) in

Eqs. (6) and (7), by fuzzily blending each local decision, i.e.,u∗
t = ∑r

i=1 hi(X
∗
t )r

∗
it
.

Since the local fuzzy system (i.e., fuzzy subsystem) is linear, its quadratic optimization problem is
the same as the general linear quadratic issue. Therefore, it is realizable that solving the optimal control
problem for a fuzzysubsystemcan be achieved by simply generalizing the classical theorem from the
deterministic case to the fuzzy case. Hence, we have the following corresponding local-concept optimal
continuous fuzzy controller design schemes.

Proposition 1 (Local-concept continuousWu and Lin[25] ). For a continuous fuzzy controller, respec-
tively, in Eq. (3) and the continuous fuzzy system in Eq. (1), letAi, Bi, C,L be given constant matrices.
If (Ai, Bi) is c.c. and(Ai, C) is c.o. fori = 1, . . . , r, then

(1) there exists a uniquen× n symmetric positive semi-definite solution�i∞ of the steady-state Riccati
equation(SSRE)

AtiK +KAi −KBiB
t
iK + L = 0; (12)

(2) the asymptotically local optimal fuzzy control law is

r∗i (t) = −Bti �i∞X∗(t), i = 1, . . . , r, (13)

and their“blending” global minimizeru∗(t) = ∑n
i=1 hi(X

∗)r∗i (t) minimizesJ (u(·)) in Eq. (4);
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(3) and the optimal global feedback fuzzy subsystem

Ẋ∗(t) =
n∑
i=1

hi(X
∗)(Ai − BiB

t
i �
i∞)X∗(t) (14)

is exponentially stable.

Proof. From the inference in the above, we can get local optimal fuzzy control lawr∗i (t) in Eq. (13)
and thelocal feedback fuzzy subsystem,Ẋ∗(t) = (Ai − BiB

t
i �
i∞)X∗(t), is exponentially stable. We

demonstrate the stability of the composedglobal feedback fuzzy subsystem in Eq. (14) in the Appendix.
For the discrete-time system, we have the following corresponding local-concept optimal discrete-time

fuzzy controller design schemes.

Proposition 2 (Local-concept discrete-time, Wu and Lin[25] ). For the discrete-time fuzzy controller in
Eq. (3) and the discrete-time fuzzy system in Eq. (1), let Ai, Bi, C,L be given constant matrices. If
(Ai, Bi) is stabilizable and(Ai, C) is detectable fori = 1, . . . , r, then

(1) there exists a unique symmetric positive semi-definite solution�i(∞) of the following algebraic
SSRE,

V (∞)=L+ AtiV (∞)[In + BiB
t
i V (∞)]−1Ai, (15)

V (∞)=L+ AtiV (∞)Ai − AtiV (∞)Bi[In + Bti V (∞)Bi]−1Bti V (∞)Ai; (16)

(2) the asymptotically local optimal fuzzy control law is

r∗i (t) = −[In + Bti �
i(∞)Bi]−1Bti �

i(∞)AiX
∗(t), t = t0, . . . , N − 1, (17)

and the resultant global controlleru∗(t) minimizesJ (u(·)) in Eq. (5);
(3)moreover, the optimal local feedback fuzzy subsystem,

X∗(t + 1) = [In + BiB
t
i �
i(∞)]−1AiX

∗(t), (18)

is asymptotically and exponentially stable.

As for the global-concept technique, since each penalty term in the performance index is with regard
to the entire fuzzy system and controller, we fuzzily blend the distributed fuzzy subsystems and rule-
based fuzzy controller into the entire fuzzy system and entire fuzzy controller formulations, and unify
the individual matrices into synthetical matrices to form alinear-like global system representation of a
fuzzy system,

SX(t)=H(X(t))A(t)X(t)+H(X(t))B(t)W(Y (t))R(t),

Y (t)=C(t)X(t), (19)

whereH(X(t)) = [h1(X(t))In ... hr(X(t))In],W(Y(t)) = [w1(Y (t))Im ... w�(Y (t))Im],

A(t) =


A1(t)
...

Ar(t)


 , B(t) =



B1(t)
...

Br(t)


 , R(t) =



r1(t)
...

r�(t)






192 S.-J. Wu et al. / Fuzzy Sets and Systems 154 (2005) 182–207

with In andIm denoting the identity matrices of dimensionn andm, respectively. And,hi(X(t)) and
wi(Y (t)) are the normalized fire strengths for theith fuzzy rule in the fuzzy system and in the fuzzy
controller, respectively. Furthermore, a multistage-decomposition approach is adopted to transform the
optimal control problem into an ongoing stage-by-stage dynamic issue[26,27].

Notice that theformulationand simplification of aquadratic optimal fuzzy controlproblem is achieved
by fuzzily merging distributed rule-based T–S type fuzzy subsystems into anentirefuzzy system. This can
initiate and activate the research inglobal optimalfuzzy controller design. The unification ofindividual
matrices (Ai(k) andBi(k), i = 1, . . . , r) and normalized membership functions (hi(X(k)), i = 1, . . . , r,
andwi(Y (k)), i = 1, . . . , �) into syntheticalmatrices (A(k), B(k), H(X(k)) andW(Y(k))) generates
a linear-like global system representation of a fuzzy system with the value of each element of the non-
linear terms (H(X(k)) andW(Y(k))) being located in segment[0,1]. This linear-like representation
motivates us to develop the design scheme of a global optimal fuzzy controller in the way of general
linear quadratic approach, i.e., calculus-of-variation method. Moreover, the multistage-decomposition
approach is to transform the optimal control problem into an ongoing stage-by-stage dynamic issue; that
is, the optimal solutions can be resolved fromN segmentalnonlinear TPBVP instead of the nonlinear
TPBVP for the entire horizon. This decomposition operation can speed up numerical solution and keep
the global optimality at the same time. Furthermore,N̄ denotes the number of stages at which mem-
bership functions can be assumed to be invariant during the whole single stage and is assumed to make
thebackward recursiveRiccati-like equationavailable. This avoids the high computational complexity
of the collocation method at the expense ofapproximate optimalitydue to the time-invariant assump-
tion. Furthermore, a procedure including a dynamical decomposition algorithm is proposed to justify the
time-invariant assumption in practice [26].

According to the derivation above, we can obtain the global-concept-based optimal fuzzy controller
for both continuous and discrete-time fuzzy systems as follows.

Proposition 3 (Global-concept continuous, Wu and Lin[26] ). Consider the time-invariant fuzzy system
inEq. (1)and fuzzy controller inEqs. (3); ifN > N̄ , (Ai, Bi) is c.c. and(Ai, C) is c.o., for all i = 1, . . . , r,
then

(X∗∞(t), R∗∞(t)) = (Xi
∗

∞(t), Ri
∗

∞(t)),∀t ∈ [t i0, t i1], t10 = t0, t
N
1 = ∞, i = 1, . . . , N, (20)

whereRi
∗

∞(t) is theith-stage asymptotically optimal control law,

Ri
∗

∞(t) = −Wt
i [WiW

t
i ]−1BtH t

i �
i∞Xi

∗
∞(t), t ∈ [t i0,∞), (21)

which minimizesJ i∞(R(·)) = ∫ ∞
t i0

[Xt(t)LX(t) + Rt(t)W t
i WiR(t)] dt , andXi

∗
∞(t) is the corresponding

asymptotically optimal trajectory that satisfies

Ẋi
∗

∞(t) = (HiA−HiBB
tH t

i �
i∞)Xi

∗
∞(t), t ∈ [t i0,∞), (22)

where�i∞ is the unique symmetric positive semidefinite solution of the SSRE,

AtH t
i K +KHiA−KHiBB

tH t
i K + CtC = 0. (23)

Proposition 4 (Global-concept discrete-time, Wu and Lin[27] ). Consider the time-invariant fuzzy sys-
tem and fuzzy controller described, respectively, by Eqs. (1)and(3)withL = CtC. If there existsN̄ such
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that ifN > N̄ , (Ai, Bi) is c.c. and(Ai, C) is c.o., i = 1, . . . , r, then, for each stage, (X∗∞(k), R∗∞(k)) =
Xi

∗
∞(k), Ri

∗
∞(k)), ∀k ∈ [ki0, ki1−1], k1

0 = k0, k
N
1 = ∞,where the ith-stage asymptotically optimal control

law,

Ri
∗

∞(k) = −Wt
i [WiW

t
i ]−1BtH t

i �
i∞[In +HiBB

tH t
i �
i∞]−1HiAX

i∗∞(k), k ∈ [ki0,∞), (24)

which minimizesJ i∞(R(·)) = ∑∞
k=ki0[X

t(k)LX(k) + Rt(k)Wt
i WiR(k)]; Xi∗∞(k) is the corresponding

asymptotically optimal trajectory,

Xi
∗

∞(k + 1) = [In +HiBB
tH t

i �
i∞]−1HiAX

i∗∞(k), k ∈ [ki0∞), (25)

where�i∞ is the unique symmetric positive semidefinite solution of the discrete-time algebraic Riccati-like
equation,

K =L+ AtH t
i K[In +HiBB

tH t
i K]−1HiA, (26)

K =L+ AtH t
i KHiA− AtH t

i KHiB[In + BtH t
i KHiB]−1BtH t

i KHiA. (27)

3. Physical system modelling and controlling

In this section, we shall generate the T–S fuzzy models and design the optimal controllers for four
complicated nonlinear physical systems. The INFMC algorithm is adopted to integrate the neural-fuzzy
modelling and optimal fuzzy controlling process, and more to guarantee that the proposed neural-learning-
based T–S fuzzy models can approximate the original physical systems very well. The neural-fuzzy-based
optimal fuzzy controller are designed from both local and global concept, respectively. Simulation results
show that the proposed optimal fuzzy controllers can effectively drive the physical systems to the target
points in a short time.

3.1. Neural-based T–S fuzzy modelling

In this section, we shall use the proposedlinear NFN structure to generate the correspondinglinear
T–S fuzzy models for the mass–spring–damper system[11], the chaotic Chua’s circuit system [21], the
model car system [13] and the articulated vehicle system [18], respectively.

A mass–spring–damper system can be formulated as [11]

ẍ = −0.1ẋ3 − 0.02x − 0.67x3 + u, (28)

wherex ∈ [−1.5 1.5] andẋ ∈ [−1.5 1.5].
It is not necessary to train the input/output pattern repeatedly in the learning process. There initially

exists no rule in the neural-fuzzy structure. As on-line feeding in the training data, the following opera-
tions are done simultaneously: the input/output spaces are partitioned, the fuzzy rules are generated, the
consequent structure and the parameters in the structure are identified optimally. The training results are
shown in Fig. 3 and the neural-learning-based T–S fuzzy model for the mass–spring–damper system is
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Fig. 3. Neural-based fuzzy modelling (solid line) for a continuous mass–spring–damper system (dashed line).

as follows:

Ri : If x1 is T1i(m1i , �1i) andx2 is T2i(m2i , �2i),

thenẊ(t) = AiX(t)+ Biu(t), i = 1, . . . ,5, (29)

where fuzzy term setsT11(−0.4158,0.6545), T21(0.3982,0.5249), T12(−0.597,0.7889),
T22(−0.8596,0.6376), T13(0.1681,0.4798), T23(0.3514,0.6428), T14(−0.5881,0.7827),
T24(−1.1486,0.6783), T15(−0.5881,0.7827), T25(1.1379,1.0588);

A1 =
[

0.3718 0.6995
1 0

]
, A2 =

[
0.0014 1.3836

1 0

]
A3 =

[
0 −0.1848
1 0

]
,

A4 =
[

0 −2.7786
1 0

]
, A5 =

[ −0.741 −1.5384
1 0

]
,

Bi =
[

1
0

]
, i = 1, . . . ,5;X(t) =

[
x(t)

ẋ(t)

]
.

According to the controllability and observability analysis in[25], we know the generated fuzzy model
in Eq. (29) is c.c. and c.o.
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We next consider a more complex continuous nonlinear chaotic system, Chua’s circuit, which is an
electronic system with one inductor (L), two capacitors (C1,C2), one linear resistor (R) and one piecewise
linear or nonlinear resistor (g) included. The dynamic behavior of Chua’s circuit can be described as[21]

v̇C1 = 1

C1

(
1

R
(vC2 − vC1 − g(vC1))

)
,

v̇C2 = 1

C2

(
1

R
(vC1 − vC2)+ iL

)
,

i̇L = 1

L
(−vC2 − R0iL), (30)

wherevC1 andvC2 are the voltage of capacitors andiL is the instant current of the inductor; the nonlinear
resistor is characterized asg(vC1) = GbvC1 + 1

2(Ga − Gb)(|vC1 + E| − |vC1 − E|) with parameters
Ga, Gb < 0. We denote the state variableX = [vC1, vC2, iL]t and chooseR = 10/7,R0 = 0,L = 1/7,
C1 = 0.1,C2 = 2,Ga = −4,Gb = −0.1 andE = 1. After successful training in Fig. 4, the generated
T–S fuzzy model is

Ri : If x1 is T1i(m1i , �1i), thenẊ(t) = AiX(t), i = 1, . . . ,4, (31)

Fig. 4. Neural-based fuzzy modelling (solid line) for a continuous Chua’s chaotic system (dashed line).
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where the fuzzy term setsT11(−0.105,1.556), T12(7.45,5.525), T13(0.031,5.004), T14(−8.939,7.622);

A1 =

 68.85 7 0

0.35 −0.35 0.5
0 −7 0


 , A2=


 −2.395 7 0

0.35 −0.35 0.5
0 −7 0


 , A3=


 12.06 7 0

0.35 −0.35 0.5
0 −7 0


 ,

A4 =

 −2.508 7 0

0.35 −0.35 0.5
0 −7 0


 .

We now step for fuzzy modelling the discrete-time nonlinear systems, the car model system[13],

x1(k + 1)= x1(k)+ vt

l tan(u(k))
,

x2(k + 1)= x2(k)+ vt sin(x1(k)),

x3(k + 1)= x3(k)+ vt cos(x1(k)), (32)

wherex1(k), x2(k) andx3(k) are, respectively, the angle of the car, the vertical and horizontal position
of the rear end of the car;u(k) is the steering angle,l is the length of the car,t is the sampling time and
v is the constant speed. The parameters were chosen asl = 2.8 m, v = 1.0 m/s andt = 1.0 s. After
neuro-fuzzy modelling in Fig. 5, we have

Ri : If xi(k) is T1i(m1i , �1i), thenX(k + 1) = AiX(k)+ Biu(k), i = 1, . . . ,5, (33)

Fig. 5. Neural-based fuzzy modelling (solid line) for a discrete-time model car system (dashed line).
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where fuzzy term setsT11(0.001,0.224), T12(−0.57,0.353), T13(0.567,0.345), T14(−1.562,0.618),
T15(1.561.0.619); X(k) = [x1(k), x2(k)]t ;

A1 =
[

1 0
1.01 0

]
, A2 =

[
1 0

0.969 1

]
A3 =

[
1 0

0.974 1

]
,

A4 =
[

1 0
0.686 1

]
, A5 =

[
1 0

0.672 1

]
, B1 =

[
0.377

−0.003

]
, B2 =

[
0.39
0.01

]
, B3 =

[
0.388
0.011

]
,

B4 =
[

0.394
−0.104

]
, B5 =

[
0.403
−0.15

]
,

which is c.c. and c.o.
We further concern ourselves with a multi-dimensional and more complicated discrete-time nonlinear

articulated vehicle[18],

x1(k + 1)= x1(k)+ v�t
l

tan(u(k)),

x2(k)= x1(k)− x3(k),

x3(k + 1)= x3(k)+ v�t
L

sin(x2(k)),

x4(k + 1)= x4(k)+ v�t cos(x2(k)) sin

(
x3(k + 1)+ x3(k)

2

)
,

x5(k + 1)= x5(k)+ v�t cos(x2(k)) cos

(
x3(k + 1)+ x3(k)

2

)
, (34)

whereu(k) is the steering angle;x1(k), x2(k), x3(k), x4(k) andx5(k) are the angle of truck, the angle
difference between truck and trailer, and the angle of trailer, the vertical and horizontal position of the
rear end of the trailer, respectively. We setl = 0.2 m,L = 0.32 m,v = −0.1 m/s, �t = 0.5. After
neuro-fuzzy modelling in Fig. 6, we obtain the following correspondinglinearT–S fuzzy model:

Ri : If x2(k) is T2i(m2i , �2i) , x3(k) is T3i(m3i , �3i) andx4(k) is T4i(m4i , �4i),

thenX(k + 1) = AiX(k)+ Biu(k), i = 1, . . . ,4, (35)

where fuzzy term setsT21(0.178,0.182), T31(1.316,0.188), T41(0.63,0.18), T22(0.809,0.123),
T32(0.532,0.801), T42(−0.07,0.578), T23(0.809,0.123), T33(183.6,254.1) T43(−1.03,0547),
T24(−0.043,1.19), T34(−1.614,0.975), T44(0.409,0.89), T25(−0.043,1.19), T35(0.935,2.059),
T45(−1.44,2.32);

A1 =

 −0.388 0.155 0.42

−2.848 0.215 3.039
−5.085 −0.889 3.476


 , A2 =


 −0.232 0.133 −0.051

−1.246 −0.167 0.114
−2.688 −6.848 1.669


 ,

A3 =

 0.062 0.641 −0.242

−1.076 2.063 −2.07
−11.16 9.032 −0.596


 , A4 =


 3.808 −0.562 0.057

−0.129 0.995 0.000
−0.504 0.069 0.99


 , B1 =


 1.602

3.662
5.345


 ,
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Fig. 6. Neural-based fuzzy modelling (solid line) for a discrete-time articulated vehicle system (dashed line).

A5 =

 2.674 −0.348 0.029

−0.17 1.004 −0.0003
−0.366 0.042 0.992


 , B2 =


 1.329

0.391
−23.31


 , B3 =


 1.162

12.56
128.5


 , B4 =


 −2.395

−0.017
0.404


 ,

B5 =

 −1.433

0.012
0.281


 ; X(k) =



x1(k)

x2(k)

x3(k)

x4(k)



t

,

which is also c.c. and c.o.

3.2. Optimal fuzzy controlling

Based on the proposed T–S fuzzy model in Eq. (29) for the continuous mass–spring–damper sys-
tem, the fuzzy model in Eq. (31) for continuous Chua’s circuit, the fuzzy model in Eq. (33) for the
discrete-time model-car system and the fuzzy model in Eq. (35) for the discrete-time articulated vehi-
cle system, we can now obtain the corresponding optimal fuzzy controllers, which can achieve global
minimum effect under quadratic performance consideration defined on theentirefuzzy system and fuzzy
controller.

Fig. 7 shows the simulation results for the mass–spring–damper system in Eq. (28) at the initial
conditions,X(0) = (−1, − 1)t , (−1, 1)t , (1, − 1)t and (1, 1)t , and the designedlocal-concept



S.-J. Wu et al. / Fuzzy Sets and Systems 154 (2005) 182–207 199

1.5

1

0.5

0

-0.5

-1

-1.5

1.5

0.5

-0.5

-1

-1.5

ve
lo

ci
ty

109876543210

time

109876543210

time

109876543210

time

0

1

po
si

tio
n

4
3.5

3
2.5

2
1.5

1
0.5

0

-0.5
1

u*
(t

)
(1,1)

(1,-1)

(-1,-1)

(-1,1)

(1,1)

(1,-1)

(-1,-1)

(-1,1)

Fig. 7. (a) The state responses of the continuous mass–spring–damper system with the designedlocal-conceptoptimal controller
at the four initial conditions:X(0) = (−1, − 1)t , (−1, 1)t , (1, − 1)t and(1, 1)t ; (b) the designedlocal-conceptoptimal
controller withX(0) = (−1, − 1)t .

optimal controller withX(0) = (−�/2, 10, 0)t . As for the automaton chaotic system, in order to control
the chaotic behavior, the external forces are imposed on the Chua’s circuit in Eq. (30); and hence the
corresponding automaton forced-free fuzzy model in Eq. (31) is then rewritten as the following forced
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Fig. 8. The state responses of the continuous Chua’s chaotic system with initial conditionsX(0) = (0, 1, 0)t , actuated by the
designedglobal-conceptoptimal controller att = 200.

fuzzy model,

Ri : If x1 is T1i , thenẊ(t) = AiX(t)+ BiU(t), i = 1, . . . ,3, (36)

where

U(t) =

 u1(k)

u2(k)

u3(k)



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Fig. 9. The state responses and trajectories of the discrete-time model car system with the designedlocal-conceptoptimal
controller at the four initial conditions:X(0) = (−�/2, 10, 0)t , (�/2, 10, 5)t , (�/2, − 10, 0)t and(−�/2, − 10, 5)t .
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Fig. 10. The state responses of the discrete-time articulated vehicle system with the designedglobal-conceptoptimal controller
at the four initial conditions:X(0) = (−86.1◦, 12.4◦, 73.7◦, 0.59, − 0.41)t , (−110◦, −45◦, − 65◦, 0.59, − 0.61)t ,
(−118◦, −1.61◦, − 116◦, − 1.71, − 0.41)t and(60◦, 5◦, 55◦, − 1.71, − 0.61)t .
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Fig. 11. (a) The trajectory of the discrete-time articulated vehicle system with the designedglobal-conceptoptimal controller
at the four initial conditions:X(0) = (−86.1◦, 12.4◦, 73.7◦, 0.59, − 0.41)t , (−110◦, −45◦, − 65◦, 0.59, − 0.61)t ,
(−118◦, −1.61◦, − 116◦, − 1.71, −0.41)t and(60◦, 5◦, 55◦, − 1.71, −0.61)t ; (b) the designed global-concept optimal
controller withX(0) = (−86.1◦, 12.4◦, 73.7◦, 0.59, − 0.41)t .

is the imposed external input andBi(t), i = 1, . . . ,3, is chosen as the identity matrix with dimension
3 × 3. Fig. 8 shows the state responses of the continuous Chua’s chaotic system with initial conditions
X(0) = (0, 1, 0)t , controlled by the designedglobal-conceptoptimal controller applied att = 200.

As for discrete-time system, the steering angle of the model car is restricted tou(k) < �/2. Hence, we
assume the controller output for the model car system isu(k) < 1.2. Based on the proposed fuzzy model
and the correspondinglocal-conceptfuzzy controller, we have the simulation results for four initial con-
ditions,X(0) = (−�/2, 10, 0)t , (�/2, 10, 5)t , (�/2, −10, 0)t and(−�/2, −10, 5)t , in Fig. 9. Fig. 10
shows the state response of the articulated vehicle closed-loop system controlled by the proposedglobal-
conceptoptimal fuzzy controller at initial conditions,X(0) = (−86.1◦, 12.4◦, 73.7◦, 0.59, − 0.41)t ,
(−110◦, −45◦, −65◦, 0.59, −0.61)t , (−118◦, −1.61◦, −116◦, −1.71, −0.41)t and(60◦, 5◦, 55◦,
−1.71, − 0.61)t . Fig. 11 is the trajectory at initial conditions,X(0) = (−86.1◦, 12.4◦, 73.7◦, 0.59,
−0.41)t , (−110◦, − 45◦, − 65◦, 0.59, − 0.61)t , (−118◦, − 1.61◦, − 116◦, − 1.71, − 0.41)t
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Fig. 12. The modelling indexIM(t) for local-concept optimal fuzzy controller actuated mass–spring–damper system with initial
conditionX(0) = [−1, − 1]t , where the dashed line denotes outputY (t) = x(t) and the solid line denotesY (t) = ẋ(t).

and(60◦, 5◦, 55◦, − 1.71, − 0.61)t , and the proposedglobal-conceptoptimal controller withX(0) =
(−86.1◦, 12.4◦, 73.7◦, 0.59, − 0.41)t .

3.3. Performance and stability

The modelling indexIM in Eq. (2) not only provides an index to integrate the neural-fuzzy modelling
and controlling for both the model-based and model-free physical system due to the stability properties
mentioned in our previous paper, but also serves as a modelling-error index for the neural-fuzzy modelling
process in both transient and infinite-time states. Fig. 12 shows the modelling index evolution of the
proposed neural-learning-based T–S fuzzy model in Eq. (29) for the mass–spring–damper system in
Eq. (28) with initial condition set to beX(0) = [−1,−1]t . The index is nearly coincident with one
except in some trivial points; in other words, the modelling error approaches zero in the large. Hence,
with the INFMC algorithm, we can self-organize a T–S fuzzy model of a physical system under limited
modelling error.

Furthermore, since the proposed neural-based T–S fuzzy model can approximate the real physical very
well, the properties of the closed-loop system (the real physical system compensated with the proposed
optimal fuzzy controller) are the same as those of the closed-loop fuzzy system (the T–S fuzzy model
compensated with the proposed optimal fuzzy controller). For the mass–spring–damper system, since
each fuzzy system in Eqs. (29) is c.c. and c.o., we know the local-concept closed-loop fuzzy systems
and the global-concept closed-loop fuzzy system, and then their corresponding closed-loop real physical
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systems are exponentially stable[25–27]. The same properties can be found in Chua’s circuit, model-car
and articulated vehicle closed-loop systems.

4. Conclusions

A neural-learning-based fuzzy inference network, which emphasizes physical system input- and state-
dependence consequences in each fuzzy rule, is proposed to achieve thelinearT–S fuzzy modelling. Both
the local-concept and global-concept optimal fuzzy controller design scheme are adopted to stabilize the
nonlinear system. Furthermore, based on the guaranteed stability properties, an INFMC algorithm with
defined modelling index included is proposed to integrate the neural-fuzzy modelling and optimal fuzzy
controlling. Via the proposed INFMC algorithm, the neural-based fuzzy model for a nonlinear system is
ensured; hence, the intrinsic properties of the closed-loop physical system can be captured by those of
the corresponding closed-loop fuzzy system. Two continuous and two discrete-time physical systems are
concerned in implementation of the modified neural-fuzzy structure and the proposed INFMC algorithm.
Simulation results demonstrate that the proposed NFN can self-organize thelinear T–S fuzzy models
for those real systems with limited modelling errors and that the proposed neural-based optimal fuzzy
controller can drive the physical systems to desired targets in a short time.

Appendix A.

Proof of Proposition 1. Via the converse theorem, we know the stability of the resultant feedback fuzzy
system concurs with that of the linearized fuzzy system (with respect toXo)

Ẋ∗(t) =
r∑
i=1

hi(Xo)[Ai − BiB
T
i �i∞]X∗(t). (37)

For clarity, we introduce the notationAci to denote the local feedback system matrix. Then, as we know
each feedback fuzzy subsystem is exponentially stable, which means thespectrumof Aci , i = 1, . . . , r,
denoted by�[Aci], is located in the open left-half plane of the complex space,Co−, i.e.,�[Aci] ⊂ C◦−,
i = 1, . . . , r. Accordingly, we have�[hi(Xo)Aci] ⊂ Co−, i = 1, . . . , r, via the spectral mapping theorem
andhi(Xo) ∈ [0,1] for all Xo ∈ �n. Hence, the zero solution oḟX(t) = hi(Xo)AciX(t) on t� t0 is
exponentially stable; in other words, there exists constantsai > 0 andmi > 0 such that for allt0 ∈ �+

‖ ehi(Xo)Aci(t−t0) ‖ �mie−ai(t−t0), ∀t� t0, i = 1, . . . , r.

Then, the state transition matrix,�(t, t0), of the linearized fuzzy system in Eq. (37) is

‖�(t, t0)‖ = ‖e
∑r
i=1 hi(Xo)Aci(t−t0)‖�

r∏
i=1

‖ehi(Xo)Aci(t−t0)‖�
r∏
i=1

mie
−ai(t−t0)�me−a(t−t0),

wherem
�= ∏r

i=1mi > 0 anda
�= ∑r

i=1 ai > 0. Therefore, the linearized fuzzy system and also the
feedback fuzzy system are exponentially stable.
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