Convergence Time for the Linkage Learning
Genetic Algorithm

Ying-ping Chen' ypchen@csie.nctu.edu.tw
Department of Computer Science
National Chiao Tung University, Hsinchu City 300, TAIWAN

David E. Goldberg deg@uiuc.edu
Department of General Engineering
University of Illinois, Urbana, IL 61801, USA

Abstract

This paper identifies the sequential behavior of the linkage learning genetic algorithm,
introduces the tightness time model for a single building block, and develops the con-
nection between the sequential behavior and the tightness time model. By integrat-
ing the first-building-block model based on the sequential behavior, the tightness time
model, and the connection between these two models, a convergence time model is
constructed and empirically verified. The proposed convergence time model explains
the exponentially growing time required by the linkage learning genetic algorithm
when solving uniformly scaled problems.

Keywords
Genetic algorithms, genetic linkage, linkage learning, linkage learning genetic algo-
rithm, sequential behavior, tightness time, convergence time

1 Introduction

Genetic algorithms (GAs) are powerful search techniques based on principles of evolu-
tion. They are now widely applied to solve problems in many fields. Most genetic algo-
rithms employed in practice nowadays are simple genetic algorithms with fixed chro-
mosomes and operators. Unable to learn linkage among genes, these traditional genetic
algorithms suffer from the linkage problem (Goldberg, Korb, & Deb, 1989; Goldberg,
Deb, & Thierens, 1993; Thierens, 1995). They require the users to possess prior domain
knowledge of the problem so that the genes on chromosomes can be correctly arranged
with respect to the chosen operators. When problem domain knowledge is available,
the problem can be solved using traditional genetic algorithms with an appropriate
chromosome representation. However, when that knowledge is not available, one way
to handle the problem is to make the GA capable of adapting and learning linkage.
Harik (1997) took Holland’s call for the evolution of tight linkage (Holland, 1975)
and proposed the linkage learning genetic algorithm (LLGA). The LLGA uses the (gene
number, allele) coding scheme with non-coding segments to permit genetic algorithms to
learn tight linkage of building blocks through probabilistic expression (PE). While the
LLGA performs much better on badly scaled problems than traditional simple GAs, it

fThe work was done while the author was a graduate student in the Department of Computer Science at
the University of Illinois at Urbana-Champaign and a member of Illinois Genetic Algorithms Laboratory.

Evolutionary Computation 13(3): 279-302

Y.-p. Chen and D. E. Goldberg

does not work well on uniformly scaled problems. Therefore, we need to understand
why the LLGA does not succeed in solving uniformly scaled problems and need to
know how to design a better algorithm. This paper aims to gain better understanding
of the LLGA. In particular, a convergence time model is constructed to explain why
the LLGA needs exponentially growing time to solve uniformly scaled problems. In
addition to the convergence time model, the sequential convergence behavior of the
LLGA is also identified.

This paper starts with a brief survey of the existing genetic linkage learning tech-
niques for genetic algorithms in section 2. Current linkage learning methods are classi-
fied into three categories according to the way they detect and process genetic linkage.
Section 3 describes the essential components of the LLGA in detail as well as the dif-
ficulty faced by the LLGA. Then, in section 4, the sequential behavior of the LLGA is
identified, the tightness time model for a single building block is introduced, and the
connection between the sequential behavior and the tightness time model is developed.
A convergence time model for the LLGA is constructed thereafter by integrating these
results. Finally, the summary and conclusions of this paper are presented in section 5.

2 Genetic Linkage Learning Techniques

In the literature, a lot of efforts have been made to handle and process genetic linkage
learning. This section briefly presents some of the existing linkage learning schemes
for genetic algorithms. Readers who are interested in this topic should refer to other
materials (Larrafiaga & Lozano, 2001; Pelikan, Goldberg, & Lobo, 2002; Smith, 2002)
for more information. Existing linkage learning techniques can be broadly classified
according to the way they detect and process genetic linkage, into the following three
categories proposed by Munetomo and Goldberg (1999b):

e perturbation-based methods;
¢ linkage adaptation techniques;
e probabilistic model builders.

Each category is described in the remainder of this section.

2.1 Perturbation-based Methods

Perturbation-based methods detect the genetic linkage between genes by perturbing
the individual and observing the fitness difference caused by the perturbation. These
methods consider the nonlinearity or epistasis detectable with perturbation as link-
age and extract such information via sampling or enumerating. The messy genetic al-
gorithm (mGA) (Goldberg, Korb, & Deb, 1989; Goldberg, Deb, & Korb, 1990) encoded
genes as (gene number, allele) pairs, called messy coding, and adopted messy operators
to cut and splice chromosomes. With a process consisting of heterogeneous phases
and epoch-wise iterations, mGA was able to learn genetic linkage by using perturba-
tion. To achieve a scalable computational speed, Goldberg, Deb, Kargupta, and Harik
(1993) modified mGA and developed the fast messy genetic algorithm (fmGA), which can
solve difficult problems in a sub-quadratic computational time by utilizing probabilistic
complete enumeration, building block filtering, and extended thresholding. Kargupta
(1996) proposed the gene expression messy genetic algorithm (gemGA), which utilized a
genetic linkage identifying procedure, called the transcription operator, for constructing
linkage groups. The name of gemGA is somewhat misleading, because messy coding
and operators are not employed in gemGA.

280 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

In addition to developing complete genetic algorithms capable of learning link-
age, Munetomo and Goldberg (1998) proposed the linkage identification by nonlinearity
check (LINC), as a procedure for identifying linkage groups based on a perturbation
methodology. LINC assumed that the linkage can be detected by checking the non-
linearity of the change of fitness values reflecting the perturbations in a pair of genes.
When using LINC, each pair of genes is perturbed, and the corresponding fitness val-
ues are obtained. If the fitness change indicates the non-allowable nonlinearity for some
pair of genes, those genes are considered linked. Moreover, Munetomo and Goldberg
(1999a) proposed another linkage identifying procedure, the linkage identification by non-
monotonicity detection (LIMD), which checked the violation of monotonicity conditions
instead of nonlinearity. The equivalence of LIMD and LINC-AN was proved in their
work. LINC was later extended to linkage identification based on epistasis measures (LIEM)
(Munetomo, 2002a) by substituting the epistasis measure for LINC criterion to check the
linkage strength among pairs of genes, and LIMD was extended to linkage identifica-
tion with epistasis measure considering monotonicity conditions (LIEM?) (Munetomo, 2002b)
with the same extension.

2.2 Linkage Adaptation Techniques

Linkage adaptation techniques employ specifically designed representations, opera-
tors, and mechanisms for adapting genetic linkage along with the evolutionary pro-
cess. Compared to the perturbation-based methods or the probabilistic model builders,
which will be introduced in the next section, linkage adaptation techniques are closer
to the biological metaphor of evolutionary computation because of their representa-
tions, operators, and mechanisms. Schaffer and Morishima (1987) added the punctu-
ation marks, which were extra bits attached to each gene, onto the chromosome repre-
sentation. The punctuation marks indicate whether a position on the chromosome is
a crossover point in order to adapt the recombination operation. They are also trans-
ferred with the allele bits to which they are attached during crossover events such that
the adaptation of the punctuation marks are achieved in the same evolutionary process
as well. With a similar coding scheme, Levenick (1995) proposed a generic endogenous
crossover control, which utilizes the metabits to implement the differential crossover prob-
ability. The difference between metabits and punctuation marks is that metabits indi-
cate the probability for a position to be chosen as a crossover point, while punctuation
marks are used to determined whether or not a position is a crossover point. Following
his previous conclusion of using introns in the genotype (Levenick, 1991), Levenick pro-
posed to use metabits for controlling the probability of crossover positions to simulate
the effect of inserting introns into the chromosome.

Along this line, Smith and Fogarty (1996) proposed the linkage evolving genetic op-
erator (LEGO) for adapting the recombination strategy via evolution of genetic linkage.
In LEGO, two boolean flags are attached to each gene for indicating whether a gene
is linked to its “left” neighbor or to its “right” neighbor on the chromosome, respec-
tively. If the mutual flags of two adjacent genes are both true, these two genes are
considered linked; otherwise, they are not linked. Consecutive linked genes on the
chromosome are considered as a building block, and the whole population is treated as
a pool of building blocks. Offspring are then created via iterations of competitions held
among building blocks starting at the same position. The last existing linkage learning
method in this category is the linkage learning genetic algorithm (LLGA), which uses a
special chromosome representation and an expression mechanism for learning genetic
linkage. As the subject topic of this study, the LLGA will be introduced in detail later.

Evolutionary Computation Volume 13, Number 3 281

Y.-p. Chen and D. E. Goldberg

2.3 Probabilistic Model Builders

Probabilistic model builders learn genetic linkage via building probabilistic models
based on the current population and generating new individuals according to the ob-
tained probabilistic models. The relationship, which can be considered as genetic link-
age, between genes or variables is demonstrated in the form of probabilistic models.
Compared to the linkage adaptation techniques, these model builders are computation-
oriented instead of biology-oriented, and many of them currently have the best perfor-
mance in this field. In the early development stage of probabilistic model builders,
genes are assumed independent of each other. Therefore, these precursors to the model
builders are not linkage learning techniques but are important to this research direc-
tion. For example, the population-based incremental learning (PBIL) algorithm (Baluja,
1994) which replaces the population with a probability vector to represent the probabil-
ity distribution of each allele is one of the first attempts to build probabilistic models in
this field. Offspring are created based on the probability vector and selected with trun-
cation selection. The probability vector is updated toward those selected individuals
with a specified learning factor. With a different probability vector updating rule, the
univariate marginal distribution algorithm (UMDA) (Mithlenbein & Paaf3, 1996) processes
the whole population to calculate the frequency of each allele and uses the results as the
next probability vector. According to the current probability vector, the compact genetic
algorithm (cGA) (Harik, Lobo, & Goldberg, 1999) generates two individuals and lets
them compete with each other. The probability vector is updated toward the winner
with a learning factor of the inverse of the virtual population size.

By using pairwise models or complex probabilistic models involving more than
two variables, the probabilistic model builders can be considered as linkage learning
techniques in the context of this paper. For example, the mutual-information-maximizing
input clustering (MIMIC) algorithm (Bonet, Isbell, & Viola, 1996) uses a chain distribu-
tion to maximize the mutual information of adjacent variables. For efficiency, MIMIC
adopts a greedy search method for constructing the probabilistic model. The combin-
ing optimizers with mutual information trees (COMIT) method (Baluja & Davies, 1997)
builds a dependency tree to express the relations between genes. A polynomial max-
imal branching algorithm (Edmonds, 1967) that can obtain globally optimal models is
utilized. The bivariate marginal distribution algorithm (BMDA) (Pelikan & Miihlenbein,
1999) uses a set of dependency trees to model the relations instead of a single tree.
Pearson’s chi-square test (Marascuilo & McSweeney, 1977) is used in BMDA for deter-
mining the linkage between variables.

For more complex models, Harik (1999) proposed the extended compact genetic al-
gorithm (ECGA) to capture the relations involving one or more genes by building the
marginal product model based on a minimum description length (MDL) metric. In ECGA,
one or more variables are included in one joint probability distribution in order to min-
imize the MDL metric of the overall model. Therefore, genes are divided into several
linkage groups after building the marginal product model. The Bayesian optimization
algorithm (BOA) (Pelikan, Goldberg, & Cantt-Paz, 2000) utilizes the Bayesian network
as its underlying model to learn probabilistic dependency among genes. To determine
whether one model is better than another, the Bayesian-Dirichlet (BD) scoring metric
(Heckerman, Geiger, & Chickering, 1994) is employed, and to search for good models,
a greedy search method is currently used due to efficiency. However, other metrics and
search algorithms can be adopted in BOA as well. Finally, by the nature of probability
distributions, the paradigm of probabilistic model builders can be extended to handle
real-valued variables, such as the factorized distribution algorithm (FDA) (Miihlenbein &

282 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

Mahnig, 1999), the IDEA framework (Bosman & Thierens, 2001), and the like. For more
detailed information of related algorithms in the continuous domain, readers should
consult other complete and specific surveys of probabilistic model builders (Larrafiaga
& Lozano, 2001; Pelikan, Goldberg, & Lobo, 2002).

3 The Linkage Learning Genetic Algorithm

In this section, key elements of the linkage learning genetic algorithm (LLGA) proposed
by Harik (1997) are reviewed. The LLGA is capable of learning genetic linkage in the
evolutionary process without the help of extra measurements and techniques. A modi-
fied version of the LLGA working with promoters proposed in our previous work (Chen
& Goldberg, 2002) is used in this study and described in this section. Interested readers
may consult other materials (Harik, 1997; Harik & Goldberg, 2000; Chen & Goldberg,
2002) for more detailed background information.
The following topics are presented:

e chromosome representation;
e the exchange crossover operator;
o the linkage learning mechanisms.

In addition to introducing the LLGA, this section also presents the difficulty faced by
the LLGA and the purpose of the present work.

3.1 Chromosome Representation

The LLGA chromosome representation is composed of
e moveable genes;
e non-coding segments;
e probabilistic expression;
e promoters.

Each of these elements is described in what follows.

The LLGA chromosome consists of moveable genes encoded as (gene number, allele)
pairs and is considered as a circle. The genes in the LLGA are allowed to reside any-
where in any order on the chromosome, while those in a traditional GA are unmovable
and fixed at specified loci. To create a genotypic structure capable of expressing linkage,
non-coding segments are included in the LLGA chromosome. Non-coding segments
have been widely used and studied in genetic algorithms (Levenick, 1991; Wu, Lind-
say, & Smith, 1994; Wineberg & Oppacher, 1996) and genetic programming (Nordin,
Francone, & Banzhaf, 1996, Andre & Teller, 1996; Iba & Terao, 2000). In the LLGA,
non-coding segments act as non-functional elements on the chromosome. Unlike non-
coding segments used elsewhere, the LLGA’s non-coding segments are moveable like
the functional genes. By using non-coding segments, linkage of building blocks can be
more accurately expressed. For example, the linkage learning methods, such as punc-
tuation marks, LEGO, LINC/LIMD, and the messy GA family, use only binary linkage
to specify the relationship between genes. In these methods, genes are either linked or
not linked, and all linked genes form a building block or a linkage group. Compared to
these methods, the chromosome design of the LLGA can provide many different levels

Evolutionary Computation Volume 13, Number 3 283

Y.-p. Chen and D. E. Goldberg

A Point of interpretation
(5,1) (5,1)
(5,0)
(5,0) (5,0)
B
(3,1) (4,0) (3,1) (4,0)
(4,1) (3,1) (4,1)
(3,0) (3,0)

Figure 1: Different points of interpre- Figure 2: An example of EPE-2 chro-
tation might interpret a PE chromo- mosomes. Each gene can have up to 2
some as different solutions. complement genes.

of building-block linkage in the form of distances of genes belonging to the same build-
ing block on the chromosome. As a consequence, genetic linkage of building blocks can
be accurately expressed in the LLGA.

Moreover, probabilistic expression (PE) was proposed to preserve diversity at the
building-block level. A PE chromosome contains all possible alleles for each gene. For
the purpose of fitness evaluation, a chromosome is interpreted by selecting a point of
interpretation (POI) and choosing for each gene the allele occurring first in a clockwise
traversal of the circular chromosome. As a consequence, a chromosome represents a
probability distribution over the range of possible solutions instead of a single solution.

When different points of interpretation are selected, a PE chromosome might be
interpreted as different solutions. Figure 1 shows genes 3, 4, and 5 of a PE chromo-
some composed of 6 genes, of which genes 0, 1, and 2 are not shown in the figure for
simplicity. If point A is the point of interpretation, the part of these 3 genes of the
chromosome will be considered as ((5,1) (4,0) (4,1) (3,0) (3,1) (5,0))
and interpreted as ((5,1) (4,0) 4+ (3,0) 433> +570)) = **001, where
the struck genes are shadowed by their complement genes, and since genes 0, 1, and 2
are not shown here, “*” is used to represent the unknown alleles. Moreover, if point
B is the point of interpretation, the part of the chromosome will then be considered as

((4,0) (4,1) (3,0) (3,1) (5,0) (5,1)) and interpreted as ((4,0) +4+1>
(3,0) 3+ (5,0) +5+%)) = **000.

If we consider a PE chromosome as containing exactly one copy of a shadowed
gene, we can generalize PE to let a chromosome contain more than one copy of a shad-
owed gene. Therefore, the extended probabilistic expression (EPE) can be defined with
a parameter k that permits a chromosome to contain up to & copies of a shadowed gene.
Figure 2 shows an example of an EPE-2 chromosome.

Chen and Goldberg (2002) proposed the use of promoters, which were called start
expression genes, in the LLGA to handle separation inadequacy and to improve nucle-
ation potential so that the building blocks can be more easily separated and tightened.
Promoters are special non-functional elements on the chromosome. While in the LLGA
without promoters, all genes and non-coding segments can be the points of interpreta-
tion of the child after crossover, only promoters can be the points of interpretation in
the LLGA with promoters. Furthermore, the LLGA with promoters uses PE instead of
EPE to encode its chromosome.

284 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

3.2 Exchange Crossover

In addition to PE and EPE, the exchange crossover operator is another key mechanism
for the LLGA to learn genetic linkage. Exchange crossover is defined on a pair of chro-
mosomes. One of the chromosomes is the donor, and the other is the recipient. The
operator cuts a random segment of the donor, selects a grafting point at random on the
recipient, and grafts the segment onto the recipient. The grafting point is the point of
interpretation of the generated offspring. Starting from the point of interpretation, re-
dundant genetic material caused by injection is removed right after crossover to ensure
the validity of the offspring.

In the LLGA with promoters, although the grafting point can still be any genes
or non-coding segments, the point of interpretation of the offspring is no longer the
grafting point. Instead, the new point of interpretation is the nearest promoter before
the grafting point on the chromosome. After the grafting point is randomly chosen,
we look for the first promoter in front of the grafting point and make it the point of
interpretation for the offspring. The genetic material is then transferred in the following
order: (1) the segment between the promoter and the grafting point, (2) the segment
chosen from the donor, and (3) the rest of the recipient.

3.3 Linkage Learning Mechanisms

With the integration of PE and the exchange crossover operator, the LLGA is capable of
solving difficult problems without prior knowledge of good linkage. Traditional GAs
have been shown to perform poorly on difficult problems (Thierens & Goldberg, 1993;
Goldberg, Deb, & Thierens, 1993) without such knowledge. To better decompose and
understand the working behavior of the LLGA, two key mechanisms of linkage learn-
ing: linkage skew and linkage shift have been identified and analyzed (Harik & Goldberg,
1996). Linkage skew occurs when an optimal building block is transferred from the
donor to the recipient. Linkage shift occurs when an optimal building block resides in
the recipient and survives an injection. Both linkage skew and linkage shift make the
building block’s linkage tighter. With these two mechanisms, the linkage of building
blocks can evolve, and tightly linked building blocks are formed during the process.

3.3.1 Quantifying linkage

For studying the linkage learning process, a proposed definition for quantifying linkage
(Harik & Goldberg, 1996) is adopted, which is the sum of the square of the inter-gene
distances of a building block, considering the chromosome to be a circle of circumfer-
ence 1. Figure 3 shows an example for calculating the linkage of a three-gene building
block. The definition is appropriate in that linkage in such a definition specifies a mea-
sure directly proportional to the probability for a building block to be preserved under
the exchange crossover operator.

3.3.2 Linkage skew

Linkage skew, the first linkage learning mechanism, occurs when an optimal building
block is successfully transferred from the donor onto the recipient. The conditions for
an optimal building block to be transferred are (1) the optimal building block resides
in the cut segment, and (2) the optimal building block gets expressed before an inferior
one does. The effect of linkage skew was found to make linkage distributions move
toward higher linkages by eliminating less fit individuals. Linkage skew does not make
the linkage of a building block of any particular individual tighter. Instead, it drives
the whole linkage distribution to a higher state.

Evolutionary Computation Volume 13, Number 3 285

Y.-p. Chen and D. E. Goldberg

Point of interpretation
(5,1)

Linkage
A= oekoL+ B+ yry

(5,0 a+B+y=1.0

@)
(3,1) (4,0

Figure 3: Calculation for the linkage of a three-gene building block. The linkage is de-
fined as the sum of the square of the inter-gene distances of a building block, consider-
ing the chromosome to be a circle of circumference 1. The linkage is calculated accord-
ing to the expressed genes, and in this example, the distance between the three genes
are o, 3, and . Thus, by definition, a4 8+~ = 1, and the linkage A = axa+ % G+y*7.

3.3.3 Linkage shift

Linkage shift is the second linkage learning mechanism. It occurs when an optimal
building block resides in the recipient and survives a crossover event. For the optimal
building block to survive, there cannot be any gene contributing to a transferred de-
ceptive building block. Linkage shift gets a building block tighter in an individual with
deletion of duplicate genetic material caused by injection of exchange crossover.

3.4 Difficulty Faced by the LLGA

We study the LLGA on problems containing multiple building blocks in two forms—
the uniformly scaled problem and the exponentially scaled problem. When the prob-
lem is composed of only a short, single building block, the mechanisms of the LLGA
work as expected. However, when the problem consists of multiple building blocks,
the success or failure depends on how these building blocks are scaled. As reported
by Harik (1997), when the building blocks of a problem are exponentially scaled, the
LLGA can solve the problem in a linear time function of the number of building blocks.
However, when the building blocks are uniformly scaled, the LLGA either needs a
population size that grows exponentially with the problem size based on Harik’s re-
sults or takes exponential time to converge according to our recent study. Therefore,
the LLGA takes linear or exponential time depending on the scaling of the building
blocks of the problem. It is currently unknown why the behavior of the LLGA seems
inconsistent when solving multiple building blocks of different scalings. This research
tries to understand the difficulty faced by the LLGA and tries to provide explanations
to the seemingly inconsistent behavior.

4 Convergence Time for the LLGA

In this section, we develop the convergence time model for the LLGA step by step. We
start by describing the settings of all the experiments for observing the behavior of the
LLGA and verifying the theoretical results. The first step is to empirically identify the
sequential behavior of the LLGA from the macro view. The next step is to introduce
the tightness time model for a single building block based on the two linkage learning
mechanisms from the micro view. Finally, after extending the tightness time model to
establish the connection between the models from the macro view and the micro view,
a convergence time model for the LLGA is constructed by integrating all these models.

286 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

[111[1]1] [o[o]o]o] [1]o[1]o] [ofo[1]o] [1]o[1[1] [0[1]1]0]

\ T | | ? L2 g 1 g % L2 |
#lir

4 \ \

3 1
g 21 -
£

17 —

0 |

0 1 2 3 4

Unitation (# of ones)

Uniformly Scaled: 4x1+3x1+1x1+2x1+40x1 +1x1 =11
Exponentially Scaled: 4x 1 +3x2+1x4+2x8+0x16+1x32= 106

Figure 4: The order-4 trap function used in this study and two examples for concatenat-
ing six, order-4 trap functions—one is uniformly scaled and the other is exponentially
scaled—to form larger test problems.

4.1 Experiment Settings

The experiment settings for all the experiments in this study is described in this sec-
tion. First, we introduce the test function for understanding the LLGA, and then, the
algorithm configuration and parameters, including the selection operator and the pop-
ulation size, are presented.

4.1.1 Test function

In this study, the order-4 trap function (Ackley, 1987; Deb & Goldberg, 1993) is adopted
as a subproblem for constructing all the test problems. A trap function is a piecewise-
linear function defined on unitation, which is the number of ones in a binary input
string. The function divides the domain into two sets. One of them leads to a global
optimum, and the other leads to a local optimum. In particular, Figure 4 shows the
order-4 trap function used in this study. Note that for this order-4 trap function, the
ratio r of the local optimum and the global optimum is r = 3/4 = 0.75. As indicated by
Deb and Goldberg (1993), the order-4 trap is fully deceptive because r = 0.75 > 7pn, =
(k—1)/(2k — 3) = 0.6, where k = 4 for order-4 trap functions.

Moreover, as also shown in Figure 4, to construct larger test problems, we mainly
consider two scaling methods to combine those elementary subproblems, which are
also considered as building blocks in our framework. One way is to scale them uni-
formly, and the other exponentially. These scalings are employed not only because of
their prevalence in the literature but also because they are abstract versions of many
decomposable problems (Goldberg, 2002). Uniformly scaled problems resemble those
with subproblems of equal importance, while exponentially scaled problems represent
those with subproblems of distinguishable importance. In the remainder of this paper,
the scaling factor of the exponentially scaled building blocks is 5.0.

Evolutionary Computation Volume 13, Number 3 287

Y.-p. Chen and D. E. Goldberg

Table 1: Parameters for population sizing based on the gambler’s ruin model.
Parameter | Value

@ 0.1

k 4
Jbb 1.102

d 1.0

d 0.5253

4.1.2 General parameters

In this paper, tournament selection without replacement is used. Harik (1997) proposed
using a high selection pressure to drive both search and linkage learning processes.
However, according to Chen and Goldberg (2002), the selection pressure required is
not necessarily as high as Harik proposed. As a consequence, we set the tournament
size to 3 throughout this paper.

The population size is another essential parameter of genetic algorithms. Using
a fixed population size to handle problems of various sizes is inappropriate for the
present work because the difficulty of a problem usually increases with the size. We
employ the gambler’s ruin model (Harik, Cantut-Paz, Goldberg, & Miller, 1999) for
population sizing, which can be approximated with the following formula:

(m—1)

d k)

where k is the length of a single building block, « is the failure probability we are
willing to tolerate, oy, is the standard deviation of the fitness of a building block, m is
the total number of building blocks, and d is the signal, which is the fitness difference
between the global optimum and the local optimum of the building block.

Since the tournament size is set to 3, the signal is adjusted with the equation (Harik,
Canta-Paz, Goldberg, & Miller, 1997) d’ = d + ®~!(1/s)ow, where s is the tournament
size, and ®~1(1/s) is the ordinate of a unit normal distribution where the CDF equals
1/s. Table 1 summarizes the parameters for calculating population size according to
the order-4 trap functions. Table 2 lists all population sizes used for the test prob-
lems composed of different numbers of building blocks. Note that the gambler’s ruin
model for population-sizing was developed based on the model of random walk and
verified with the problems composed of uniformly scaled building blocks. However,
in this paper, we employ this population-sizing model for both uniformly scaled and
exponentially scaled building blocks. The rationale is that the population sizes for uni-
formly scaled building blocks can be considered an upper bound of that for exponen-
tially scaled building blocks. According to the temporal-salience structure (Thierens,

Opor/T
population size n = —2F~ ! In(a) —2

Table 2: Population sizes for the test problems composed of different BB numbers.
m n |m n|m n|m n
1 N/A| 6 154 |11 218 |16 266
2 70 7 168 | 12 228 | 17 276
3 98 8 182 |13 238 | 18 284
4
5

120 | 9 194 | 14 248 | 19 292
138 | 10 206 | 15 256 | 20 300

288 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

Goldberg, & Pereira, 1998) of the exponentially scaled problems, GAs work on the most
salient part of the chromosome, then on the next most salient part, and so on. Thus, at
a given time, the population size required to solve an exponentially scaled problem
should be smaller than that required to solve a uniformly scaled problem of the same
number of building blocks. Therefore, for observation and comparison purposes, we
use this population-sizing model for both kinds of problems in this work.

Other parameters are set as follows. The crossover rate is 1.0 such that the
crossover event always happens. The maximum number of generation is 10000. The
number of promoters is set to 2m, where m is the number of building blocks. The
number of non-coding elements is set to 100m to maintain a constant disruption prob-
ability as soon as a building block is tightly linked. Finally, all results in this study are
averaged over 50 independent runs of experiments unless mentioned otherwise.

4.2 Macro View: Sequential Behavior

As mentioned in section 3.4, the LLGA seems to have an inconsistent behavior when
solving the problem having multiple building blocks with different scaling. Therefore,
the first step in this study is to identify consistent underlying working behavior if it
exists. Experiments for the exponentially scaled problem and the uniformly scaled
problem are conducted respectively for observing the working behavior of the LLGA.
As expected, the empirical results reveal a consistent, sequential behavior.

4.2.1 Exponentially scaled building blocks

Harik (1997) had identified that the exponentially scaled problems are solved by the
LLGA sequentially. The building blocks get tightly linked and are solved one by one.
In the following, we conduct our own experiments to verify this sequential behavior.

Time to converge First, we use the LLGA to solve exponentially scaled problems
composed of different numbers of building blocks. We vary the number of building
blocks from 4 to 15 and record the number of generations when the following condition
is true for 20 consecutive generations: the difference between the number of building
blocks solved by the generational best individual and the average number of building
blocks solved by all individuals is less than 0.0001. The result is shown in Figure 5.
As we can see, the time for the LLGA to converge when solving exponentially scaled
problems increases linearly as the number of building blocks increases.

Building block propagation Next we verified that the time for solving exponentially
scaled problems grows linearly with the size of the problem as previously reported.
For more detailed information about the working behavior, we would like to under-
stand the difference between solving m building blocks from scratch and solving m + j
building blocks with j building blocks already solved. In this set of experiments, we
solve and tighten several building blocks before the LLGA run and observe the conver-
gence time under different settings and configurations. To be exact, Table 3 lists all the
experiments conducted for this purpose. Figure 6 shows the experimental results. It is
observed that for convergence time, solving m + j exponentially scaled building blocks
with j building blocks pre-solved is equivalent to solving m building blocks from
scratch. This means that the solved building blocks are propagated smoothly through
the process without being disrupted. Otherwise, solving m + j building blocks with j
building blocks pre-solved would take more time than solving m building blocks.

Time to tighten the first building block Linear convergence time with proper build-
ing block propagation implies that the time for the first building block to converge

Evolutionary Computation Volume 13, Number 3 289

Y.-p. Chen and D. E. Goldberg

T T T T T T T T T T T T
450 | Time to converge —e— i

400
350 |
300
250

200 -

Time (Number of Generations)

150 -

| | | | | | | | | | | |
4 5 6 7 8 9 10 11 12 13 14 15
Number of Building Blocks

Figure 5: Time for the LLGA to converge when solving exponentially scaled building
blocks. The convergence time grows linearly with the number of building blocks.

should remain constant. Thus, for every ¢ generations, one building block is solved and
effectively disappears from the scope of the LLGA. Note that the “first building block”
here does not necessarily mean the building block of the highest number, the salient
building block, or any particular building block. The “first building block” refers to the
building block achieving certain linkage first among all building blocks. The results
are shown in Figure 7. The time for the first building block to converge seems to hold
constant when solving the problem consisting of different numbers of building blocks.

4.2.2 Uniformly scaled building blocks

After observing the LLGA’s behavior on solving exponentially scaled building blocks,
we now turn to uniformly scaled building blocks to observe the experimental results.

Time to converge As we did in section 4.2.1, we first use the LLGA to solve uniformly
scaled problems. We vary the number of building blocks from 4 to 15 and record the
number of generations when convergence. Figure 8 shows the results of the experi-
ments. The convergence time to solve uniformly scaled problems grows exponentially
with the number of building blocks. If we consider the overall complexity, these results
do not contradict those reported by Harik (1997), because the overall complexity grows
exponentially in both cases.

Table 3: Experiments for observing the building block propagation.
Number of pre-solved BBs | Range of numbers of BBs

0 3,4,---,10
1 4,7,---,11
2 58,12
3 6,9, --,13

290 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

OBB T T T T T
300 Fo
@
c
K]
©
2 250 B
[
O]
S
£ 200 4
€
=}
£
Q
£ 150 i
l_
100 1 1 1 1 1
2 4 6 8 10 12 14
Number of Building Blocks
(@)
T
300 B
)
c
kel
©
© 250 | -
Q
(G}
k]
2 200 | J
S
=
£
(0]
£ 150 -
'_
100 1 1 1 1 1
2 4 6 8 10 12 14

Adjusted Number of Building Blocks
(b) Shifted by the number of pre-solved building blocks

Figure 6: Convergence time for solving exponentially scaled building blocks with some
building blocks pre-solved. It shows that the time needed to solve m+ j building blocks
when j building blocks are solved equals the time needed to solve m building blocks.

Evolutionary Computation Volume 13, Number 3 291

Y.-p. Chen and D. E. Goldberg

100

I_Iinkagle=0'_85 L

Linkage =0.80 - e
2 8o0f |
ke
©
()
& 60| |
(O]
©
3
c 40 - |
=}
=
) R R e mem- -
E o0 L @ [PR o p— [- E E‘_ ,,,,,,,, E I E} _________ ; ________ E __________ a |

0 L L 1 I 1 1 1 1 | | | |

4 5 6 7 8 9 10 11 12 13 14 15
Number of Building Blocks

Figure 7: Time to tighten the first building block holds constant for different numbers
of building blocks when solving exponentially scaled problems.

Building block propagation For uniformly scaled problems, we also wish to know
if there is any difference between solving m building blocks from scratch and solving
m + j building blocks with j building blocks already solved such that a possible con-
sistent working behavior can be established. We use the identical experiments listed in
Table 3 as we did in section 4.2.1. Figure 9 shows the experimental results. It was unex-
pected that for convergence time, solving m + j uniformly scaled building blocks with
j building blocks solved is also equivalent to solving m building blocks from scratch.
Because the convergence time grows exponentially, it was expected that building block
creation and disruption play a relatively more important role than they do in solving
exponentially problems. However, the results of this experiment show that building
block propagation also works well when solving uniformly scaled building blocks.

Time to tighten the first building block According to the experimental results from
previous experiments, we might expect that for uniformly scaled building blocks, the
time for the first building block to be tightened grows exponentially. Because building
block propagation also works for uniformly scaled problems, there seems no way for
the convergence time to increase exponentially if the time to tighten the first building
block does not grow exponentially. Figure 10 shows the time for the LLGA to tighten
the first building block. The time for the first building block to converge grows ex-
ponentially with the number of building blocks. It implies that the convergence time
growth is mainly determined by the time to tighten the first building block.

These results not only ensure the building block propagation but also imply that if
there are m unsolved building blocks, when a building block is solved, the situation or
configuration is equivalent to when there are m — 1 unsolved building blocks and the
whole process restarts. Hence, we propose the first-building-block model for describing
the sequential behavior of the LLGA.

292 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

T T T T
[Time to converge —e—

10000

1000

Time (Number of Generations)

100 I I I I I I I I I I I
4 5 6 7 8 9 10 11 12 13 14 15

Number of Building Blocks

Figure 8: Time for the LLGA to converge when solving problems of uniformly scaled
building blocks. The convergence time grows exponentially with the number of build-
ing blocks. Straight lines on a semi-log scale are indicative of exponential growth.

4.2.3 Sequential behavior

Based on the experimental results obtained in the previous sections, we propose a sim-
ple model, called the first-building-block model, to describe the sequential behavior of the
LLGA. By assuming that the convergence time is an accumulation of the time to tighten
the first building block, we can develop the first-building-block model as follows. First
of all, we define the function Lipp as

tipp () = time to tighten the first building block (1)

in a problem consisting of m building blocks
and the function ¢¢ for the convergence time as

tc(m) = convergence time for solving a problem (2)
consisting of m building blocks.

By our assumption of the first-building-block model, we can express t¢ as

m

te(m) = Z Ubb (1) + teo , (3)

i=1
where t¢o is a constant. The sequential behavior is therefore established through the
first-building-block model. By rewriting ¢ as

m

te(m) = Z tepb (1) + te(io) 4)

i=ig+1

where i is the least number of building blocks of the available experimental results for
convergence time, the model can be empirically verified with the obtained experimen-
tal results which are shown in Figures 11 and 12.

Evolutionary Computation Volume 13, Number 3 293

Y.-p. Chen and D. E. Goldberg

1600 |

1400

1200

1000

800 -

600 -

400 -

Time (Number of Generations)

200

Number of Building Blocks
(@)

1600

1400

1200

1000

800

600

400

Time (Number of Generations)

200

0 I I I I I
2 4 6 8 10 12 14

Adjusted Number of Building Blocks
(b) Shifted by the number of pre-solved building blocks

Figure 9: Convergence time for solving uniformly scaled building blocks with some
building blocks pre-solved. It shows that the time needed to solve m + j building
blocks when j building blocks are solved equals the time needed to solve m building
blocks.

294 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

[Linkage = 0.85
10000 :_Llnkage =0.80

T
N,
|

1000 }

Time (Number of Generations)
[]

100 —‘;5'75 E

I | | | | | | | | | | | |
4 5 6 7 8 9 10 11 12 13 14 15
Number of Building Blocks

Figure 10: Time to tighten the first building block grows exponentially with the number
of building blocks when solving uniformly scaled problems.

4.3 Micro View: Tightness Time

The next step toward the convergence time model for the whole linkage learning pro-
cess is to derive the tightness time, the linkage learning time for a single building block
to achieve a specified linkage. Based on the models for linkage skew and linkage shift,
Chen and Goldberg (2003) proposed a tightness time model for a single building block
obtained by extending and integrating the two fundamental models as

log(1—) — log(1 — Ry)
N cslog(1 —¢)

te(A) ; ©)

where t,()\) is the tightness time for a given linkage A, A is the mean of the initial
linkage distribution, ¢ = 2/(k + 2)(k + 3), k is the order of the building block, and
¢s & 2 is determined empirically.

Furthermore, given the initial linkage distribution, A remains constant during the
whole process. For simplicity, we can definee =1 —Xand & = 1 — Ay. Also, ¢ ~ k%
when k£ — oco. Hence, Equation (5) can be rewritten as a function of € as

2
ty(e) =

log — . (6)

Equation (6) shows that tightness time is proportional to the square of the order of
building blocks. The longer the building block, the much longer the tightness time. In
addition, tightness time is proportional to the logarithm of the desired linkage.

4.4 Convergence Time

After identifying the sequential behavior of the LLGA in the top-down manner and
developing the tightness time model for a single building block based on the linkage
learning mechanisms in a bottom-up manner, the missing link here is to understand

Evolutionary Computation Volume 13, Number 3 295

Y.-p. Chen and D. E. Goldberg

450 |]
2 400 | _
S
©
o 350]
[0
o
S 300]
(0]
€
5 250]
=
g
E 200 |]
= Time to converge —e—
First BB model (linkage 0.85) ---u---
10FL FirstBB model (inkage 0.80) &

4 5 6 7 8 9 10 11 12 13 14 15
Number of Building Blocks

Figure 11: For exponentially scaled building blocks, the first-building-block model
agrees with the experimental results.

how multiple building blocks affect the tightness time for the first building block when
the building blocks are uniformly scaled. Therefore, we will now identify the effect
of multiple building blocks on the tightness time for a single building block and then
construct the convergence time model for the LLGA by integrating the models from the
macro view, the micro view, and the connection in between.

4.4.1 From one building block to m building blocks

Because the tightness time model assumes (1) a single building block and (2) all events
are effective for linkage learning, when dealing with m uniformly scaled building
blocks, we need to take the probability of a linkage learning event into consideration.
First of all, we define a linkage learning event as either a linkage skew event or a link-
age shift event. Note that when analyzing the tightness time, the probability of the
linkage learning event, p¢(1), is assumed to be 1 for m = 1. When handling uniformly
scaled building blocks, p¢(m) will be lower than 1 due to the interaction among equally
important building blocks. Since we are interested in the dimensional model of conver-
gence time, the following analysis assumes the middle stage of linkage learning.

Genetic material from the donor First, we consider the genetic material cut from the
donor during a crossover event. When the exchange crossover operates, a donor and a
recipient are selected from the population. Based on the linkage learning mechanisms,
which were identified under the condition that there is only one building block in the
problem to be solved, we assume that (1) a segment from the donor containing only one
complete building block (and other incomplete building blocks) contributes linkage
learning and (2) the m building blocks are uniformly distributed in individuals in the
middle linkage learning process. On average, there are m /2 building blocks transferred
from the donor to the recipient. There are (m’%) possible conditions to choose m /2 out
of m building blocks. Therefore, the probability for the donor segment containing only
one complete building block out of m building blocks is ('}') /(,,,)-

296 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

I Tlime tlo corlwergle —e—

L First BB model (linkage 0.85) -l
— | First BB model (linkage 0.80) = o
2
hel
® 10000 | E
[0
C
[0
(©]
©
o)
Qo
§ 1000 | i
£
(0]
=
|_

100 | | | | | | | | | | | |

4 5 6 7 8 9 10 11 12 13 14 15
Number of Building Blocks

Figure 12: For uniformly scaled building blocks, the first-building-block model agrees
with the experimental results.

Genetic material of the recipient In addition to the genetic material from the donor,
pee(m) also depends on the genetic material of the recipient. If the building block in
question is disrupted by the grafting point, there is no linkage learning event. Based on
the calculation of random linkage proposed by Harik and Goldberg (1996), the proba-
bility for a building block of order k to reside on one of the two segments is described
as 2/(k + 1). If the building block is in the segment before the grafting point, a linkage
shift event occurs. If the building block is in the segment after the grafting point, a
linkage skew event happens.

Tightness time for m uniformly scaled building blocks As a result, the probability
of a linkage learning event is

=25/

By combining the tightness time model for a single building block and the probability
of a linkage learning event, we get the tightness time model for m uniformly scaled
building blocks as

1

t(m,e) = tf(ﬁ)m ;

“uwot |(2) /()] §

By using the Stirling approximation m! ~ (m/e)”v/2wm, we obtain

_ krl) vz 2m
t(m,e)—tde)()ﬁmﬁ’ o

2
k+1 2m
V2T m\/ﬁ '

Evolutionary Computation Volume 13, Number 3 297

= tg(e)

Y.-p. Chen and D. E. Goldberg

T T T T T T
L Experimental results o]
Theoretical prediction

10000

1000

Time (Number of Generations)

100 F

| | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Building Blocks

Figure 13: Tightness time for the first building block achieving A = 0.80 among multiple
uniformly scaled building blocks.

Figure 13 shows that the experimental results agree with the tightness time model for
A = 0.80 when solving multiple uniformly scaled building blocks.

4.4.2 Model for convergence time

Finally, by integrating the results from the sequential behavior (Equation (3)), the tight-
ness time model (Equation (6)), and the connection in between (Equation (9)), we can
obtain the LLGA convergence time model for some desired linkage as

I

tC(m76) = t(l,€) +tC0)

<Hdk+1y)+t'
:)4 \/ﬂl\/; CO »

((/&1 e>k+12i)+t
Ao £ FEE ;
2 \\2e, %) Var i) T

2h41). €\ ON 2
— (T D 10g) ST 2 4t
(RVor: ga) 2 i e

i=1

=1

Il
.MS

' (10)

where ¢, and t¢ are constants, m is the number of uniformly scaled building blocks,
k is the order of the single building block, e = 1 —), and A is the desired linkage. As
shown in Figure 14, the results agree with the proposed convergence time model.

5 Summary and Conclusions

We started with a brief survey of the existing genetic linkage learning techniques for
genetic algorithms. These methods were classified into three groups: (1) perturbation-
based methods, (2) linkage adaptation techniques, and (3) probabilistic model builders,

298 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

fExIperilmenltaI resuts o |
t Convergence time (linkage 0.80)

10000

1000

Time (Number of Generations)

[T R T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

Number of Building Blocks

Figure 14: Convergence time for the LLGA when A = 0.80 on the problem composed
of multiple uniformly scaled building blocks.

according the way these techniques detect and process genetic linkage. Then, key ele-
ments of the LLGA were introduced, including chromosome representation, exchange
crossover, and the linkage learning mechanisms. The sequential behavior was observed
when the LLGA were solving both exponentially scaled problems and uniformly scaled
problems. The first-building-block model was proposed accordingly from the macro
view based on the sequential behavior. By extending and integrating the linkage learn-
ing mechanisms, the tightness time model for a single building block was developed
from the micro view. Establishing the connection between these models, a convergence
time model for the LLGA was constructed and empirically verified. The proposed
convergence time model explains why the LLGA requires exponential time to solve
uniformly scaled problems and gives us an insight into how the LLGA operates.

In this paper, we identified a consistent, sequential behavior of the LLGA. It was
previously believed that when solving a uniformly scaled problem, the LLGA works on
all building blocks simultaneously, while when solving an exponentially scaled prob-
lem, the LLGA works on the salient building block, the second most salient building
block, and so on. By identifying the sequential behavior of the LLGA, we gain bet-
ter understanding about how the LLGA works—one building block at a time. The
difference is that for exponentially scaled building blocks, the salient building block
is tightened first with a very high probability due to the selectional advantage, but for
uniformly scaled building blocks, each building block has the same probability of being
tightened first. Recognizing the sequential behavior might shed light on a better design
of the LLGA to perform well on both exponentially and uniformly scaled problems.

The proposed convergence time model indicates that the time required by the
LLGA to solve a uniformly scaled problem grows exponentially in terms of the number
of building blocks. The exponential growth of time, according to the analysis, mainly
comes from the competition among the building blocks of equal salience. The decrease
of the probability of crossover events increases the linkage learning time correspond-
ingly. Therefore, based on the model, the possible ways to improve the LLGA’s per-

Evolutionary Computation Volume 13, Number 3 299

Y.-p. Chen and D. E. Goldberg

formance on uniformly scaled problems include (1) effectively reducing the number
of building blocks simultaneously processed by the LLGA and (2) employing certain
mechanisms or procedures to make the LLGA process building blocks sequentially.
These two ways may be promising directions to improve the LLGA’s performance.

More work along this line still needs to be done including both theoretical and
practical aspects. For the theoretical aspect, more exact and sophisticated models for
the linkage learning process are needed for understanding the nature of genetic linkage
learning. On the other hand, for the practical aspect, new representations, mechanisms,
or procedures should be developed and tested for improving the performance of the
LLGA as discussed.

Acknowledgments

The work was sponsored by the Air Force Office of Scientific Research, Air Force Ma-
teriel Command, USAF, under grants F49620-00-0163 and F49620-03-1-0129. Research
funding for this work was also provided by a grant from the National Science Foun-
dation under grant DMI-9908252. The US Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation
thereon.

The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of the Air Force Office of Scientific Research, the National
Science Foundation, or the U.S. Government.

References

Ackley, D. H. (1987). A connectionist machine for genetic hill climbing. Boston: Kluwer Academic.

Andre, D., & Teller, A. (1996). A study in program response and the negative effects of introns
in genetic programming. In Proceedings of the First Annual Conference on Genetic Program-
ming (GP 96) (pp. 12-20). MIT Press.

Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic search
based function optimization and competitive learning (Tech. Rep. No. CMU-CS-94-163). Pitts-
burgh, PA: Carnegie Mellon University.

Baluja, S., & Davies, S. (1997). Using optimal dependency-trees for combinatorial optimiza-
tion: Learning the structure of the search space. In Proceedings of the Fourteenth International
Conference on Machine Learning (pp. 30-38). Morgan Kaufmann Publishers, Inc.

Bonet, J. S. D., Isbell, C., & Viola, P. (1996). MIMIC: Finding optima by estimating probability
densities. Advances in Neural Information Processing Systems, 9, 424-430.

Bosman, P. A., & Thierens, D. (2001). Advancing continuous IDEAs with mixture distributions
and factorization selection metrics. In Proceedings of the Optimization by Building and Using
Probabilistic Models Workshop at GECCO-2001 (pp. 208-202). GECCO.

Chen, Y.-p., & Goldberg, D. E. (2002). Introducing start expression genes to the linkage learn-
ing genetic algorithm. Lecture Notes in Computer Science (LNCS), 2439, 351-360. (Also Illi-
GAL Report No. 2002007).

Chen, Y.-p., & Goldberg, D. E. (2003). Tightness time for the linkage learning genetic algorithm.
Lecture Notes in Computer Science, 2723, 837-849. (Also IlliGAL Report No. 2003002).

Deb, K., & Goldberg, D. E. (1993). Analyzing deception in trap functions. In Foundations of
Genetic Algorithms 2 (pp. 93-108). Morgan Kaufmann Publishers, Inc.

Edmonds, J. (1967). Optimum branchings. Journal of Research of the National Bureau of Stan-
dards, 71B, 233-240.

Goldberg, D. E. (2002, June). The design of innovation: Lessons from and for competent genetic al-

gorithms, Volume 7 of Genetic Algorithms and Evoluationary Computation. Kluwer Academic
Publishers. ISBN: 1-4020-7098-5.

300 Evolutionary Computation Volume 13, Number 3

Convergence Time for the LLGA

Goldberg, D. E., Deb, K., Kargupta, H., & Harik, G. (1993). Rapid, accurate optimization of dif-
ficult problems using fast messy genetic algorithms. In Proceedings of the Fifth International
Conference on Genetic Algorithms (ICGA-93) (pp. 56—64). Morgan Kaufmann Publishers, Inc.
(Also IliGAL Report No. 93004).

Goldberg, D. E., Deb, K., & Korb, B. (1990). Messy genetic algorithms revisited: Studies in
mixed size and scale. Complex Systems, 4(4), 415-444.
Goldberg, D. E., Deb, K., & Thierens, D. (1993). Toward a better understanding of mixing in

genetic algorithms. Journal of the Society of Instrument and Control Engineers, 32(1), 10-16.
(Also IlIiIGAL Report No. 92009).

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems, 3(5), 493-530. (Also TCGA Report No. 89003).

Harik, G., Canti-Paz, E., Goldberg, D. E., & Miller, B. L. (1997). The gambler’s ruin problem,
genetic algorithms, and the sizing of populations. In Proceedings of the 1997 IEEE Interna-
tional Conference on Evolutionary Computation (pp. 7-12). IEEE Publishers.

Harik, G., Cantut-Paz, E., Goldberg, D. E., & Miller, B. L. (1999). The gambler’s ruin problem,
genetic algorithms, and the sizing of populations. Evolutionary Computation, 7(3), 231-253.

Harik, G. R. (1997). Learning gene linkage to efficiently solve problems of bounded difficulty using
genetic algorithms. Doctoral dissertation, University of Michigan, Ann Arbor, ML (Also
NIiGAL Report No. 97005).

Harik, G. R. (1999). Linkage learning via probabilistic modeling in the ECGA (IIliGAL Report No.
99010). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic Algo-
rithms Laboratory.

Harik, G. R., & Goldberg, D. E. (1996). Learning linkage. In Foundations of Genetic Algorithms 4
(pp. 247-262). Morgan Kaufmann Publishers, Inc. (Also IIliGAL Report No. 96006).

Harik, G. R., & Goldberg, D. E. (2000, June). Learning linkage through probabilistic expression.
Computer Methods in Applied Mechanics and Engineering, 186(2-4), 295-310.

Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999). The compact genetic algorithm. IEEE Trans-
actions on Evolutionary Computation, 3(4), 287-297.

Heckerman, D., Geiger, D., & Chickering, M. (1994). Learning Bayesian networks (Tech. Rep. No.
MSR-TR-94-09). Redmond, WA: Microsoft Research.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of
Michigan Press. ISBN: 0-262-58111-6.

Iba, H., & Terao, M. (2000). Controlling effective introns for multi-agent learning by ge-
netic programming. In Proceedings of Genetic and Evolutionary Computation Conference 2000
(GECCO-2000) (pp. 419-426). Morgan Kaufmann Publishers, Inc.

Kargupta, H. (1996). The gene expression messy genetic algorithm. In Proceedings of the 1996
IEEE International Conference on Evolutionary Computation (pp. 814-819). IEEE Publishers.

Larrafiaga, P., & Lozano, J. A. (2001, October). Estimation of distribution algorithms: A new tool
for evolutionary computation, Volume 2 of Genetic algorithms and evolutionary computation.
Boston, MA: Kluwer Academic Publishers. ISBN: 0-7923-7466-5.

Levenick, J. R. (1991). Inserting introns improves genetic algorithm success rate: Taking a
cue from biology. In Proceedings of the Fourth International Conference on Genetic Algorithms
(ICGA-91) (pp. 123-127). Morgan Kaufmann Publishers, Inc.

Levenick, J. R. (1995). Metabits: Generic endogenous crossover control. In Proceedings of the
Sixth International Conference on Genetic Algorithms (ICGA-95) (pp. 88-95). Morgan Kauf-
mann Publishers, Inc.

Marascuilo, L. A., & McSweeney, M. (1977). Nonparametric and distribution-free methods for the
social sciences. CA: Brooks/Cole Publishing Company.

Miihlenbein, H., & Mahnig, T. (1999). FDA - a scalable evolutionary algorithm for the opti-
mization for the optimization of additively decomposed functions. Evolutionary Computa-
tion, 7(4), 353-376.

Evolutionary Computation Volume 13, Number 3 301

Y.-p. Chen and D. E. Goldberg

Miihlenbein, H., & Paaf, G. (1996). From recombination of genes to the estimation of distribu-
tions 1. Binary parameters. Lecture Notes in Computer Science, 1141, 178-187.

Munetomo, M. (2002a). Linkage identification based on epistasis measures to realize effi-
cient genetic algorithms. In Proceedings of the 2002 Congress on Evolutionary Computation
(CEC2002) (pp. 1332-1337). IEEE Publishers.

Munetomo, M. (2002b). Linkage identification with epistasis measure considering monotonic-
ity conditions. In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL2002) (pp. 550-554). IEEE Publishers.

Munetomo, M., & Goldberg, D. E. (1998). Identifying linkage by nonlinearity check (IlliGAL Re-
port No. 98012). Urbana, IL: University of Illinois at Urbana-Champaign, Illinois Genetic
Algorithms Laboratory.

Munetomo, M., & Goldberg, D. E. (1999a). Identifying linkage groups by nonlinearity /non-
monotonicity detection. In Proceedings of Genetic and Evolutionary Computation Conference
1999 (GECCO-99) (pp. 433—440). Morgan Kaufmann Publishers, Inc.

Munetomo, M., & Goldberg, D. E. (1999b). Linkage identification by non-monotonicity detec-
tio for overlapping functions. Evolutionary Computation, 7(4), 377-398. (Also IlliGAL Report
No. 99005).

Nordin, P, Francone, F, & Banzhaf, W. (1996, October). Explicitly defined introns and de-
structive crossover in genetic programming. In Angeline, P. J., & Kinnear, Jr., K. E. (Eds.),
Advances in Genetic Programming, Volume 2 (Chapter 6, pp. 111-134). MIT Press.

Pelikan, M., Goldberg, D. E., & Cantt-Paz, E. (2000). Linkage problem, distribution estimation,
and bayesian networks. Evolutionary Computation, 8(3), 311-341. (Also IIliGAL Report No.
98013).

Pelikan, M., Goldberg, D. E., & Lobo, F. G. (2002). A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications, 21(1), 5-20. (Also
NIiGAL Report No. 99018).

Pelikan, M., & Miihlenbein, H. (1999). The bivariate marginal distribution algorithm. In Ad-
vances in Soft Computing-Engineering Design and Manufacturing (pp. 521-535). Springer.

Schaffer, J. D., & Morishima, A. (1987). An adaptive crossover distribution mechanism for
genetic algorithms. In Proceedings of the Second International Conference on Genetic Algorithms
(ICGA-87) (pp. 36-40). Morgan Kaufmann Publishers, Inc.

Smith, J. (2002). On appropriate adaptation levels for the learning of gene linkage. Genetic
Programming and Evolvable Machines, 3(2), 129-155.

Smith, J., & Fogarty, T. C. (1996). Recombination strategy adaptation via evolution of gene
linkage. In Proceedings of the 1996 IEEE International Conference on Evolutionary Computation
(pp. 826-831). IEEE Publishers.

Thierens, D. (1995). Analysis and design of genetic algorithms. Doctoral dissertation, Katholieke
Universiteit Leuven, Leuven, Belgium.

Thierens, D., & Goldberg, D. E. (1993). Mixing in genetic algorithms. In Proceedings of the Fifth
International Conference on Genetic Algorithms (ICGA-93) (pp. 38-45). Morgan Kaufmann
Publishers, Inc.

Thierens, D., Goldberg, D. E., & Pereira, A. G. (1998). Domino convergence, drift, and the
temporal-salience structure of problems. In Proceedings of the 1998 IEEE International Con-
ference on Evolutionary Computation (pp. 535-540). IEEE Publishers.

Wineberg, M., & Oppacher, F. (1996). The benefits of computing with introns. In Proceedings of
the First Annual Conference on Genetic Programming (GP 96) (pp. 410-415). MIT Press.

Wu, A. S, Lindsay, R. K., & Smith, M. D. (1994). Studies on the effect of non-coding segments
on the genetic algorithm. In Proceedings of the Sixth IEEE Conference on Tools with Artificial
Intelligence (pp. 744-747). IEEE Publishers.

302 Evolutionary Computation Volume 13, Number 3

This article has been cited by:

1. Chung-Yao Chuang, Ying-ping Chen. 2010. Sensibility of Linkage Information and Effectiveness of Estimated Distributions.
Evolutionary Computation 18:4, 547-579. [Abstract] [PDF] [PDF Plus]

http://dx.doi.org/10.1162/EVCO_a_00010
http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00010
http://www.mitpressjournals.org/doi/pdfplus/10.1162/EVCO_a_00010

